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ABSTRACT Industrial networks rely on standard real-time communication protocols, such as ProfiNet
RT. These real-time protocols use cyclic data exchange between IO devices and controllers. Each IO device
reports its internal state to the controller at a predefined frequency, even if the state of the device is unchanged.
These reports are essential to accurately monitor the health of the devices, but network resources are limited
and it is not advisable to overload the network with unnecessary packets. The traffic generated by a single
device is insignificant, but in an industrial site with hundreds of such devices, the number of packets to
be transmitted adds up. As cloud-based industrial controllers (e.g., cloud-based soft-PLCs) become more
prevalent, all generated IO device traffic must be forwarded over the access link to edge computing or
private/public cloud infrastructure. Wireless (e.g. 5G radio) transmission of many small packets leads to
spectrum efficiency issues and high power consumption. In this paper, we propose an in-network solution to
significantly reduce industrial network traffic by cooperating with two P4 programmable network elements
deployed on both sides of an access link. Excess traffic is filtered out and new data content is cached at both
ends while detecting both link and device failures in real-time. The adaptive mechanism introduced allows
the system to automatically optimize its efficiency and performance by dynamically enabling and disabling
traffic filtering/caching. Our measurements show that the method can significantly reduce the wireless link
load while being seamlessly deployable in existing industrial environments without modifying the protocol,
IO devices, and controllers.

INDEX TERMS Industrial communication, Internet of Things, SCADA systems, software-defined
networking.

I. INTRODUCTION
Over the past few decades, industrial controls have evolved
from boards full of control relays to modern programmable
logic controllers (PLCs). Other types of specialty controllers
such as distributed control system controllers for the process
control industry have also developed as industrial controls
became more and more automated. Nowadays the whole
industrial network is changing quickly. More and more
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cloud-based solutions appear to replace the traditional indus-
trial controller hardware. With the advent of 5G, a stable,
highly reliable network connection can be established over
the radio similar to the wired counterparts. The communi-
cation between different parts of an industrial site or other
remote locations, such as private and edge cloud nodes
became a viable option over the radio.

While the idea is functional, connecting programmable
logic controllers and IO devices via 5G radio presents a
number of new challenges. Sensors and PLCs are cur-
rently implemented to send status signals with predetermined

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 24935

https://orcid.org/0000-0002-8083-3277
https://orcid.org/0000-0001-7539-9878
https://orcid.org/0000-0002-8875-5330
https://orcid.org/0000-0003-4459-4843


C. Györgyi et al.: Adaptive Network Traffic Reduction on the Fly With Programmable Data Planes

frequencies usually between 1 and 1000 Hz. This amount of
messages leads to a high overhead affecting both spectral and
energy efficiency. Analyzing the contents of these packets,
we found that most of the data is redundant, they do not
contain any new sensor information. While these packets are
redundant, they also take a crucial part in the connection,
because both PLCs and IO devices are very sensitive to packet
loss and jitter. In our work, we classify these messages and
treat redundant packets as simple life-signals, while using the
valuable sensor information to operate the system.

In this paper, we focus on real-time industrial protocols
that implement a communication behavior called cyclic data
exchange (for example ProfiNet [1]). In such protocols, each
IO device and the appropriate PLC cyclically exchange data
packets with a predefined frequency. This predefined fre-
quency communication does not allow us to simply change
existing wired networks to wireless, simply because hundreds
or thousands of such devices will deplete the radio spectrum
very quickly. To overcome the radio limitation we propose
a new method, using the concept of in-network computing
to substantially reduce the network traffic that we need to
transmit over the radio link. By installing a programmable
switch before the radio transceiver at both ends of the com-
munication, we can get rid of the unnecessary data trans-
mission from IO devices whose internal state is unchanged.
Each programmable switch is capable of storing the device
states, and also is able to detect missing packets. Since both
switches have this information, the sender switch only needs
to transmit updates and error information over the radio. The
receiver switch, if it does not receive any status updates or
error information from the radio, will continuously generate
and send out the life signals to the PLC.

Our solution adds a layer of logic on top of existing proto-
cols and does not require any modifications to the protocol
itself, the PLC, or the IO devices. Seamless deployment
of this system is possible by placing two instances of the
P4-programmable switches (or smartNICs) at the two sides
of the critical link for example the radio. No further changes
in the infrastructure or modifications in the configurations
are required. The proposed solution provides a real-time
reaction to link and device failures but still does not intro-
duce significant computational and memory overhead. The
reduction in network load achieved by eliminating redundant
traffic opens up new uses for wireless communications that
were previously not possible due to the limitations described
above, without the need to implement new communication
protocols. Our solution makes it possible to convert existing
systems using different real-time communication to wireless
without the difficulties of deploying new protocols.

This paper extends the work of [2] with the following
additional features making the method more efficient in non-
static environments: 1) We introduce an adaptive mode of
operation, where the traffic reduction module dynamically
switches on and off for each device depending on the number
of state changes. 2) We propose a missing event detection
method to recognize both device and link failures quickly.

Our pipeline implements a mechanism that exchanges infor-
mation about the availability of IO devices and also about the
state of the radio link. 3) We present the integrated pipeline
implemented in P4 and evaluate it on an Intel/Barefoot
Tofino-based hardware switch. 4) We have also extended
the evaluation with several new scenarios, various network
settings, and further aspects.

II. RELATED WORK
To provide computer networks with a high degree of flexibil-
ity and scalability Software Defined Networking (SDN) [3]
introduced a newway of programming abstractions by decou-
pling the data and the control plane functionality. While the
literature on control plane programmability has a rich past,
difficulties of programmable and portable data planes have
just started gaining attention in recent years. To offer network
developers the desired flexibility, specific programming lan-
guages have evolved. These languages let experts describe the
entire packet processing pipeline in a protocol-independent
way from a high-level abstraction. P4 [4] is one of the
language propositions, which has achieved the most influ-
ential community support, backed by members from both
industry and academia. The language has numerous compil-
ers for diverse software and hardware targets, ranging from
general-purpose processors, NetFPGAs [5] and SmartNICs,
to custom-designed sets of ASICs such as Intel Tofino.

Protocol-independent network programming opens up the
fields for a new era, in which switches are more than simple
packet-forwarding tools. By offloading low-latency process-
ing rules to in-network devices, network hardware can also
take part in calculations on the application level during com-
munication. These newborn paradigms are called in-network
computing and edge computing, where server-based com-
putations are offloaded partly or completely to the pro-
grammable switches. In contrast with cloud computing where
computing servers are located far away from end-users, edge
computing and in-network computing offer computation very
close to the endpoints. Doing so will minimize the response
time, therefore satisfying the low-latency constraints in vari-
ous domain-specific applications became viable.

The integration of SDN into industrial networks has proven
to be beneficial in terms of increased reliability, scalabil-
ity, and cost-efficiency. A number of scientific papers have
been published over the years on the topic, highlighting its
advantages as well as potential challenges that need to be
addressed [6], [7]. In particular, research has focused on
improving network performance, reducing latency, increas-
ing the reliability, and security of industrial networks [8].
Other research topics have included the development of algo-
rithms for better traffic management, optimizing energy con-
sumption in industrial settings, and enabling mobility across
various industrial applications [9]. Kim et al. demonstrate a
prototype implementation for in-band network telemetry [10]
with P4 language, using a software switch as the imple-
mentation platform. They show how their implementation
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can be used to diagnose various performance problems.
Jin et al. [11] implement NetCache, which is a new rack-
scale key-value store architecture that leverages in-network
caching to provide dynamic load balancing across all storage
servers. Bremler-Barr et al. [12] show how a simple L7
load balancer over Software-Defined Networks can work.
NETHCF a line-rate in-network system using programmable
switches to design a novel defense against spoofed IP traffic
is introduced in [13]. Laki et al. [14] present that with the
advent of P4, description, validation, and evaluation of AQM
algorithms in a generic framework has become possible since
the different drop policies applied by these methods can be
implemented in ingress and/or egress control blocks of a P4
program.

Not originally developed for the execution of complex
algorithms, these devices are restrained by their process-
ing capability, and the rules to be executed on them are
limited. However several studies showed, those in-network
devices can effectively be used to execute simple control algo-
rithms for example [15] controlling an inverted pendulum.
Cesen et al. [16] offer an emergency action execution plat-
form to overcome the latency problems caused by the possible
connection problems between the devices and the controller.
The authors produce emergency packets, with stop com-
mands, directly from the data plane. The emergency action
can be triggered if the switch detects a packet with a specific
payload. In Industrial IoT, the infrastructure needs to handle
the data generated by millions of sensors, and support the
control of production processes in real time. Mai et al. [17]
proposed an edge- and in-network computing architecture for
industrial IoT, where they use complex event processing to
transform the application-specific functions into operation
units and offload them to the network devices. Security is
also a serious concern in industrial IoT. Wusteney et al. [18]
in their paper, analyze the arising problems and quantify the
delay and jitter impacts caused by using firewalls and packet
filters in TSN networks.

III. SYSTEM OVERVIEW
Assume a cloud-assisted industrial environment where the
data communication between IO devices (sensors and actu-
ators) is deployed in the industrial site and software PLCs
running in the cloud (public, private, or edge). The industrial
site has a 5G radio access that transmits all the traffic of
the real-time protocol between the software PLCs and the
IO devices. Each PLC continuously queries the state of the
IO devices with a predefined frequency. The typical update
period fits into the range of 1ms-10s and may vary from
device to device. In our system model, we assume two oper-
ational phases of each device: 1) Active phase when the
reported IO data continuously changes, representing the case
when the IO device (e.g., an actuator) performs an indus-
trial task or its environment is not static (e.g., in case of a
sensor), and 2) Passive phase when the IO device is in an
idle state (e.g., a robot arm waiting for the next product)

or its environment is static (e.g., a temperature sensor in
the hall), leading to traffic with constant IO data. In passive
phases, packets report the same IO data, but this traffic is still
needed for PLCs to maintain the aliveness of controlled IO
devices. Note that industrial protocols (such as ProfiNet RT)
do not tolerate significant packet losses. In our systemmodel,
passive and active phases alternate during the operation of
each IO device. When an IO device is active, all the IO data
carry important information needed for the continuous moni-
toring of the industrial process, but in passive phases, a large
amount of redundant data may be transmitted toward the
PLCs polluting the radio link. In such a case, traffic reduction
on the wireless access link would have several advantages
including improved spectrum efficiency and reduced power
consumption.

To avoid the transmission of unnecessary packets over
the radio link, we propose an in-network traffic reduc-
tion method. Accordingly, we assume two P4-programmable
switches at the two sides of the radio link (as shown in Fig. 1).
The two programmable switches cooperate to keep track of
the latest state (reported packet data) of IO devices, filter
out redundant traffic, recognize whether a device is in an
active or a passive phase and turn traffic reduction on and
off accordingly, and detect the device and radio link failures.
As illustrated in the figure, each P4-switch emulates the
presence of the devices (either IO devices or PLCs) located
on the other side of the radio link, responding to packets of the
local (deployed on the same side of the radio) devices. Both
P4-switches implement the same data and control planes and
the proposed method has the advantage that no modification
in the IO devices and the protocol is needed.

IV. IMPLEMENTATION
The proposed approach combines three key functionalities:
1) algorithms for storing and updating packet data and reduc-
ing data traffic over the radio link, 2) methods for mon-
itoring the status of the radio link and the different IO
devices, 3) dynamic enable and disable of the traffic reduc-
tion, to adapt to the network characteristics. In this section,
we discuss these functions separately and show how they
can be implemented in P4 programmable data planes as a
single packet processing pipeline. An overview of the whole
pipeline is shown in Fig. 2.

A. DATA TRAFFIC REDUCTION
In industrial real-time protocol communication, an IO device
and the responsible PLC continuously exchange state infor-
mation at a predefined frequency. This frequency is negoti-
ated between the PLC and the IO device in advance, using
control packets. Traditionally PLC communication is consid-
ered not feasible over wireless links, due to the enormous
number of tiny packets generated by the IO devices. Our goal
was to create a model, which we can use in real-world PLC
communication regardless of the frequency, and reduce IO
traffic on such a scale that allows wireless access links to
interconnect the industrial site and the cloud. By caching IO
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FIGURE 1. The latest packet data is stored by the switch used to generate
the response expected by the other end. If the packet data of a particular
device is changed, the packet is forwarded to the switch on the other side
to update the stored data content.

data contents in programmable switches, we are able to filter
redundant traffic and decrease the load of the critical link.

The proposed pipeline has two main tasks: 1) caching IO
data and sending automatic responses and 2) packet filtering
and state change detection. Each IO device expects replies to
their messages, therefore traditional traffic filtering (dropping
packets) is not feasible in our scenario. The P4-switch has to
handle the incoming data packets from local IO devices, store
their carried contents, and send back a response on behalf of
the PLC controller on the other side of the radio network,
without transmitting data over the wireless link.

The packet filter is responsible for detecting a change in the
reported device state (IO data) and for notifying the P4-switch
on the other side of the radio link where the stored state infor-
mation needs to be updated. Fig. 1 depicts our model, and
the key steps of handling an incoming packet. We deploy a
P4-programmable switch on both sides of the radio, and these
switches in cooperation will handle the previously described
traffic reduction and automatic reply functionality.

When the state of an IO device is unchanged, it periodically
sends redundant data. Packet processing in this case consists
of the following steps: 1) The source IO device src generates a
packet to the destination PLC dst. The packet arrives at the P4
capable switch deployed before the radio link. 2) The switch
first calculates a hash from the packet data. If the newly
calculated hash equals the hash value stored in a register for
device src, the switch will not forward the packet through the
radio link. Instead, it generates a reply for that packet identical
to a valid reply from the PLC dst, and returns the packet to
the IO device. The reply can be created from the data packet
by modifying the protocol header fields: setting the device
identifier to the ID of dst, updating the cycle-counter from
a register, and filling the IO data with last seen bytes of dst
from a match-action table. 3) Finally, it sends the packet back
to src. Device srcwill treat the received packet as if the actual
sender was dst.

After describing how the P4-switch can handle the idle
stages of an IO device, take a look at the process of managing
device state changes. 1) Source IO device src generates a

packet to the destination PLC dst as previously. 2) The
P4-Switch before the radio link hashes the packet data, com-
pares it to the cached value, and recognizes that it is different,
indicating state change in the src. The packet is cloned and
the switch transmits one copy over the radio link, while the
other packet is returned to src with changes identical to the
previous case. 3) The P4-switch on the dst side of the radio
link receives the packet containing the status change. This
switch notifies the control plane (CP) about the status change
and forwards the packet to the CP. 4) The control plane fills
the match-action table responsible for storing the packet data
of IO devices with the new data content of src. 5) The CP
then sends the packet back to the data plane marked with
a CP-ACK flag. The data plane directs it towards the radio
link. 6) The packet flagged with CP-ACK arrives back to
the P4-Switch at the src side. After recomputing the hash
of the data, it updates the stored hash value of src (stored
in a register). Finally, it drops the CP-ACK packet. 7) dst
side P4-switch will use the updated packet data of the IO
devices, therefore the automatic responses will contain the
latest information.

This pipeline uses two register arrays indexed by a device
ID to store the sequence numbers called CycleCounters, and
hash values to check the validity of the cached packet data.
Cached IO data is stored in a match-action table where the
keys are the device IDs, and the table action after a match is
used to overwrite the data bytes of the packet with the latest
observed values.

While the abovementioned functionality works well in
most cases, there are a few scenarios where additional logic is
needed. The first problemwith ourmodel happens if the delay
between the interacting P4-Switches is bigger than the send
frequency, so the delay is higher than the cache update time.
Let us show an example when the IO device starts alternating
its IO data between the same two values denoted by ‘‘A’’ and
‘‘B’’ (e.g., A A A B A B A B . . . ). In this case, the first ‘‘B’’
is detected as expected. However, if the radio delay is big
enough, so the CP-ACK does not arrive back in time, and the
cache will still contain the value ‘‘A’’. The next ‘‘A’’ is then
not forwarded over the radio since its IO data is identical to
the cached value.

To solve this issue, a slight modification is needed in the
original algorithm. Accordingly, when the method detects
that the hash is changed, it immediately overwrites the stored
hash with an extremal value, so false positive caches cannot
occur, and for every individual status change the other side
will be notified. While this extension handles the previously
stated case, it is still not robust enough to handle every
delay-sensitive situation shown in Fig. 5. This example illus-
trates the case when the CP-ACK feedback for a previously
sent ‘‘B’’ packet arrives back late, just before the IO device
moves from state ‘‘A’’ to ‘‘B’’. The CP-ACKupdates the hash,
resulting in a situation where the ‘‘B’’ packets will not trigger
the notification of the other side about the changed state. The
transition from state ‘‘A’’ to ‘‘B’’ is only recognized later
when the CP-ACK for the first ‘‘A’’ packets arrives back.
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Considering the limited capabilities of P4 programmable
devices, we extended our model with an additional register
array, that stores the hash values of the latest observed IO
data packet for each device. The P4-switch when receiving a
packet stores the calculated hash value in the new register.
CP-ACK-s are only committed if the acknowledged hash
matches the hash of the latest data stored in the new register.
With this final extension, our model can handle the delay-
sensitive problems, while the pipeline is still not too complex
to be able to deploy on P4 programmable hardware.

B. MISSING EVENT DETECTION
To make the application of the proposed data reduction
method transparent to IO devices, it is important to react to
failures as soon as possible. To this end, the proposed pipeline
contains a mechanism that exchanges information about the
availability of the devices and the state of the radio link.
If failure is detected, the automatic responses described in
Sec. IV-A need to be stopped by the appropriate P4-Switch to
ensure the original behavior of the industrial network. Each
received packet expresses the viability of the sender device
by setting a bit in a bitmap register. This status bit needs
to be continuously confirmed. If a device becomes unavail-
able, the P4-Switches stop the transmission of the automatic
responses that acted as life-signals. The main operational
steps shown in Fig. 3 are the following: 1) A packet generator
engine (hardware or software) generates a probe packet at
a predefined frequency. 2) The probe is then filled with the
status bitmap of known IO devices by the data plane. This
bitmap carries information about the aliveness of devices at
the local side of the radio link. To monitor the radio state both
P4-Switches maintain a radio time-to-live (TTL) counter that
is decremented by 1 whenever a probe is sent. If it reaches
zero, the radio becomes unavailable. 3) The probe is sent over
the radio link. 4) If a probe is received from the other side of
the radio link, the radio TTL in the recipient is set to the initial
value (3 in our case). The bitmap of device states is refreshed
according to the received information, and the probe packet is
dropped. Note that both P4-Switches apply the same probing
process, exchanging information asynchronously and inde-
pendently.

The aforementioned bitmap that gets inserted into the
probe packet is created with the use of a primitive queue-like
data structure. It comprises a number of registers equal to
the number of consecutive probe packets (2 in the evalua-
tion scenarios) during which the aliveness of IO devices is
checked. When the probe packet is received at the other side
of the access link, the transmitted bitmap is stored and taken
into account during the generation of automatic responses.
No response message is generated on behalf of non-available
devices.

C. ADAPTIVITY
In Sec. V, we show an evaluation scenario where an IO
device is in an active phase and thus the proposed traffic
reduction method doubles the load on the radio link instead

of reducing it. This is caused by the overhead of CP-ACK
and Probe packets. To improve efficiency, we extended the
traffic reduction pipeline with an adaptivity mechanism that
can recognize active and passive phases and dynamically
enable and disable traffic reduction. Note that a control plane
monitoring the device states can also implement such an
adaptivity method by constantly re-configuring the tables and
registers. However, this may result in a significant CPU load
and introduce extra delays in the system. To avoid these
disadvantages, we provide a sole data plane solution for this
task.

Originally, each packet received on the radio port is sent to
the control plane which learns it by modifying the appropriate
table entries. In the adaptive case, there are three possible
options upon arrival of an IO data packet: OP1) delivering it to
the recipient device, OP2) sending it to the control plane only,
and OP3) delivering it to the recipient and sending a copy to
the control plane. The appropriate action is selected based on
the value of a new register used for measuring how frequently
the IO data of a given device changes. At packet arrival on the
radio port, the register value is incremented (representing the
case when a change occurred) and is decremented whenever
an automatic response is sent (no change). These adaptivity-
related components are visualized in the pipeline diagram
Fig. 2 with a red background color.

Option 1 delivers the packet to the recipient IO device
but does not result in CP-ACKs. Thus, packets are simply
forwarded without applying the traffic reduction method.
Option 2 is the initial behavior. Option 3 delivers the packet,
but also learns the new IO data content and sends CP-ACKs
back to the other side of the radio link. The latter mech-
anism allows us to re-enable the traffic reduction method
for a given flow fast. Note that for Options 1 and 3, the
generation of automatic response messages is disabled (via a
bitmap register). To demonstrate the benefits and flexibility of
the proposed adaptivity extension, we describe two example
configurations.

1) ALTERNATING SHORT AND LONG TASKS
Suppose a robot arm alternates between active and pas-
sive phases. During the active phase, its state is constantly
changing while in the passive phase, it remains unchanged.
In our example, the short task results in an active phase
of 10 packets long, while the longer task is active for
200 packets. By creating a set of rules that only allows
traffic reduction in the passive phase, the network can be
significantly offloaded. Then the decision logic between the
three options can be configured as follows: Traffic reduction
is on (OP2), if r_change_counter < 11. Traffic reduction
is off (OP1), if 10 < r_change_counter ≤ 200. And prepa-
ration for re-activating traffic reduction (OP3), if 200 <

r_change_counter.

2) LOW LATENCY USE-CASE
Assume a sensor that typically shows the same value and
where it is vital to be able to notify the PLC immediately if the
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FIGURE 2. The proposed P4 switch pipeline, showing the traffic reduction functionality, visualizing the adaptivity components with red
background.

FIGURE 3. Operation of the missing event detection component.

value changes. For this case, a configuration can be provided
where the new sensor value arrives at the PLC as quickly
as in the original system, while there is no traffic on the
wireless link during the long passive phases. In this example,
we show another example rule set that aims at minimizing the
reaction time. The default rule is to apply OP1 meaning that
the packet received from the other side of the radio link is
simply forwarded to its destination. However, for every 25th
packet received from the given IO device, OP3 is selected that
in addition to the default behavior sends a copy to the CPU for
learning the IO data content. In this case, a CP-ACK is also
generated and sent back to the other side of the radio, enabling
traffic filtering. One can observe that the two sides of the radio
link operate differently. On the device side, traffic reduction
is on for all the packets, but if a new sensor value is observed,
the packet is immediately forwarded through the radio link.
On the PLC side, the packets coming from the other side are
always forwarded to the PLC without any delays. In addition,

the method periodically (25 cycles) sends a CP-ACK back to
turn traffic reduction on at the device side.

This configuration ensures that the new sensor value
arrives at the PLC as fast as in the original system where
traffic reduction is not implemented while in long passive
phases, there is no traffic on the wireless access link.

D. EFFECT ON INFORMATION DELAY
In this section, we estimate the effect of our algorithms on the
information delay. dplc is the delay of the wired connection
between the PLC and the corresponding switch, ddev simi-
larly. dradio is the delay between the two switches including
the wireless radio connection. dcpu is the delay of the control
plane processing and h is the time between two consecutive
IO data packets assuming lossless communication.

Suppose the IO device sends packets with arbitrary content
until a given point of time called starting point. After this
point, it transmits the same data over and over again. The
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FIGURE 4. Illustration for the definition of information delay.

FIGURE 5. The worst case delay sensitive scenario in traffic reduction on
the receiver side.

point of timewhen the PLC receives this repetitive data for the
first time is what we call the realization point. We define the
information delay as the difference between these two time
points as illustrated in Fig. 4.

Using this model, the delay of the original system without
the use of our traffic reductionmethod is always ddev+dradio+
dplc. Without any adaptivity features, the optimized flow has a
delay of ddev+dradio+dcpu+dplc because instead of delivering
the packet the P4-Switch forwards it to the control plane and
learns its content.

The worst-case scenario is when the change is not rec-
ognized immediately. For example, a CP-ACK arrives just
before the starting point with the same data the IO device
will send in the next cycle (Fig. 5). The total delay sums
up to 3dradio + 2dcpu + 2h + dplc + ddev in the worst case.
It can be proved that the proposed traffic reduction strategy
always recognizes the change immediately. Thus, the worst
case scenario equals to ddev + dradio + dcpu + h+ dplc. If we
configure the adaptivity feature in a way that it uses only
direct forwarding and delivering with a copy to the CPU
(Option 1 and 3), then the information delay can be reduced
to the original ddev + dradio + dplc.

We studied how dropped packets impact the operation
on a lossy channel. First, note that for proper operation,
the channel should be error-free because real-time protocols
demand very strict delay and jitter constraints, and if the
channel cannot satisfy that the whole operation is at risk.
However, if packet loss occurs it can be divided into two
categories. If the acknowledgment is lost, it has no impact
on the information delay, because it means that only the data
packet will be retransmitted and reacknowledged. In this case,
the recipient already has the changed data in time. If a data
packet gets lost, then the packet will be retransmitted, which
will introduce a delay dradio.

FIGURE 6. Hardware topology diagram with a Tofino-based P4-Switch,
x86 servers running Codesys SoftPLC, and IO devices.

FIGURE 7. Individual packets and the number of packets transmitted over
the radio link without adaptivity rules (moving average with 85 ms
window).

V. EVALUATION
We have implemented the proposed solution in P4 using
the Tofino Native Architecture (TNA) and carried out the
evaluation in our testbed using a Tofino-based P4-Switch
(Stordis BF2556X-1T) and x86 servers running Codesys
IDE, Codesys SoftPLC,1 and an IO device based on the
open-source ProfiNet device stack of RT-Labs2 as it can be
seen on Fig. 6. Note that we use a single P4 capable switch
in the evaluation representing the two instances (two pipes)
of the proposed method at the two sides of the radio link.
We emulated the reliable radio link using a loop directly
interconnecting two ports of the switch.

A. TRAFFIC PATTERNS
Fig. 7 presents an example of traffic patterns observed on
the radio channel. Packets belonging to four different cate-
gories: individual ProfiNet IO data (ProfinetAB, ProfinetBA),
CP-ACK (ACKs), and probe (Probes) packets. In the case
of ProfinetBA P4-Switches only do simple forwarding. Thus,
it can be used as a baseline, representing the data communi-
cation if the proposed traffic reduction method is not applied.
For comparison purposes, both ProfinetAB and ProfinetBA
send IO data packets every 8 ms. One can also observe that
the Probes introduced in Sec. IV-B are continuously present
on the channel. The P4-Switches send them to monitor the

1https://store.codesys.com/codesys-control-for-linux-sl.html
2https://github.com/rtlabs-com/p-net
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FIGURE 8. Individual packets and the number of packets transmitted over
the radio link using adaptivity rules (moving average with 85 ms window).

state of the radio link and exchange information about the
availability of devices deployed on the different sides of
the critical link. Note that this traffic represents a constant
overhead of the proposed method which is independent of the
number of IO devices, PLCs, and their load in the system.

The timeline of the measurement mentioned above
includes seven regions. 1) In the beginning, the traffic reduc-
tion method is not applied. ProfinetAB packets are forwarded
by the switches like ProfinetBA. Thus, there are no CP-ACK
packets in the system. Because of that, the traffic levels
are the same for ProfinetAB and ProfinetBA. 2) The sec-
ond interval is a short transitional phase where we turn the
proposed traffic reduction method on. It begins when the
switch at the other side of the radio link starts memorizing
the IO data and sending CP-ACK responses. The transition
ends when the other switch starts filtering out the unchanged
ProfinetBA data packets. 3) The third phase illustrates the
best scenario for our traffic reduction method, resulting in
packet transmission over the radio link only if the packet
data was changed. The data rarely changes, only six times
in this region. One can observe that a CP-ACK packet is
transmitted for each transmitted IO data packet, leading to
two transmitted packets instead of one. However, the number
of transmitted packets is negligible even with these CP-ACK
packets compared to the reference traffic ProfiNetBA. 4) In
the fourth phase, each packet carries new data bytes (active
phase), illustrating the case when achieving traffic reduction
is impossible. Moreover, CP-ACKs double the total num-
ber of packets transmitted over the radio. Note that we can
mitigate this worst-case by dynamically turning on and off
the proposed solution. Thus, the traffic can be maximized at
the original level (same as ProfiNetBA). 5) In the next phase
is the same as the third one. The device turns back to a passive
state with few changes in the data. 6) We stop the traffic
reduction method and switch back to normal forwarding of
ProfiNetAB traffic. 7) The traffic reduction method is turned
off like in the first phase.

Fig. 7 shows an evaluation scenario where the adaptivity
feature of our method is not applied. As a result, one can
observe a two times higher traffic level in the region of
frequent changes (rose area). In Fig. 8 we present a scenario
using the adaptivity feature to dynamically turn on and off

FIGURE 9. Comparison of traffic levels in different scenarios.

traffic filtering. The applied rule set turns traffic reduction
off after 5 consecutive changes. In order to have a chance to
enable traffic reduction when the IO device becomes passive
again, the P4-Switch at the PLC side sends CP-ACKs at
the end of a cycle interval whose length doubles until the
reduction is enabled again or the maximum interval length is
reached. The effect of this rule is visible in the figure; the traf-
fic level stays high even after the period of frequent changes
until the next CP-ACK. These ‘‘false-positive’’ changes are
the price of adaptivity. Packet filtering does not take effect
until the latest IO data is learned and acknowledged.

B. TRAFFIC REDUCTION ABILITY
As shown previously in this section, the achievable traf-
fic reduction capabilities highly depend on how frequently
the IO data to be transmitted changes. However, other fac-
tors also influence the result: the frequency at which IO
devices send data exchange packets, and the response time
of CP-ACK packets (the time between forwarding a new data
packet through the radio link and receiving the corresponding
CP-ACK).

To compare the performance of original (without traffic
reduction), optimized (with traffic reduction) and adaptive
(traffic reduction with adaptivity) approaches with a different
setting, we implemented simulation scenarios, using SimPy,3

a discrete event simulation library.
We consider four different traffic patterns. In the ‘‘30 relax

20 change’’ scenario, the device sends 30 packets with the
same content and then 20 packets with constantly changing
content (longer relaxed and medium-long changing phases).
This pattern is repeated in the scenario. Thanks to the
longer relaxed and not so long active phase, the optimiza-
tion can filter out many packets. The adaptive approach
can even further optimize the medium-long changing phase
by reducing the number of CP-ACKs sent during passive
phases.

The ‘‘10 relax 20 change’’ scenario describes a similar case
with a short relaxed phase (10 packets with the same content
and then 20 packets with constantly changing content). Since
the changing phase is twice as long as the relaxed phase,
the bad performance of the non-adaptive optimization is not
surprising. We can also see that the adaptive case is close to
the original even in this not-ideal setting.

The ‘‘random intervals’’ chooses the length of the relaxed
and changing phase randomly between 1 and 50 cycles. The
total lengths of relaxed and changing phases are close to each

3https://simpy.readthedocs.io/en/latest/
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other which explains the difference between the original and
optimized performances. The adaptivity can still improve the
efficiency in longer passive phases.

The ‘‘change with 0.2 probability’’ scenario changes the
packet content with a 20% probability every time. The sim-
ilarity between the optimized and adaptive results can be
explained by the following two observations. First, the prob-
ability of very long changing periods is low, and the two
approaches behave similarly in passive phases. Second, even
if a longer active period appears, the subsequent packet
changes or remains the same independently.

Our evaluation with different radio delay values shows
similar results. Note that the adaptivity extension requires
proper settings. If it is misconfigured (e.g., waiting too long
before turning traffic reduction on again), the method gen-
erates excess traffic instead of a reduction. We can conclude
that our adaptive algorithm can deal not only with long non-
changing values, but it can handle longer changing periods
too. Even if the traffic reduction is not so significant all
the time, it can help in reducing the overhead of the traffic
reduction method.

C. RESOURCE USAGE
Our implementation has a relatively low footprint. In the
proposed method there is a linear relation between SRAM
usage and the number of IO devices, while it does not require
any expensive TCAM. The current implementation only uses
the ingress pipeline of the P4-Switch, requiring 12 stages
(including the adaptivity extension).

Register usage can be a key question. The traffic reduc-
tion component uses four different register arrays for the:
hashes of the acknowledged packets; last seen packets; list
of blocked devices; list of modified flows (once we alter a
flow, we have to maintain the cycle counter by ourselves).
The adaptivity extension requires at least two more registers:
one for the counter register that is the input of the decision-
making; and one for preventing the next automatic response.
The missing event detection needs an additional n register:
for the n elements of the queue like data structure. Lastly, one
additional register is used to monitor the availability of the
radio.

D. DEPLOYABILITY AND LIMITATIONS
One of the main advantages of the proposed solution is that
it does not require changes in other infrastructure elements.
It works as a plug-and-play extension to an existing sys-
tem. The method can dynamically be turned on and off and
applied on a set of devices. Our approach can also be used
with various other industrial protocols that use end-to-end
state transfer. Such open IoT protocols include OPC Unified
Architecture or MQTT SN publish/subscribe messaging pro-
tocol. Ethercat is a counterexample, which is not suitable for
such a system due to its daisy chain architecture. Not only
because the daisy chain is not ideal for a system like ours, but
also because the traditional implementation of the daisy chain
over a wireless link is pointless.

The ProfiNet IO data can be up to 1440 bytes. However, our
implementation supports only the minimum-sized packets
with 40 bytes of data.

Naturally, the question arises ofwhether background traffic
affects the solution or not. The traffic management engine
of today’s P4 switches supports strict priority scheduling
and queueing, unfavorable drops and higher delays can be
prevented by processing the ProfiNet traffic with the highest
priority.

VI. CONCLUSION
The communication between IO devices and PLCs produces
countless small packets, so it was not feasible to build a radio
link between the devices and the cloud-based soft-PLCs.
In this paper, we proposed a model in which device states
are managed locally to minimize communication over critical
links. Using in-network computing, we have presented our
prototype that can integrate into real-time industrial environ-
ments without affecting the required reliability and without
the need to modify the protocol, PLC, or IO devices. We have
also shown that by managing redundant sensor data locally,
we can significantly reduce the average load on critical links,
such as 5G radios between different parts of an industrial
site. Through our evaluations, we have demonstrated the
benefits of the proposed method in several aspects. We have
quantified the impact of traffic reduction both in the stan-
dard scenario and using our adaptive switching. We found
that our implementation has no significant impact on infor-
mation latency while also having relatively low resource
requirements.
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