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ABSTRACT Image super-resolution (SR) is a research field focusing on image degradation techniques.
The High-order Deterioration Model (HDM) implemented in Real-ESRGAN has proven more effective in
simulating the degradation of real-world images compared to conventional bicubic kernel interpolation.
However, images reconstructed by Real-ESRGAN suffer from two significant weaknesses. Firstly, the
rebuilt image is overly smooth and suffers from substantial texture information loss, resulting in a worse
performance than classical models such as SRGAN and ESRGAN. Secondly, the reconstructed images
exhibit better visualization effects but are entirely different from the original image, violating the principle
of image reconstruction. To address these issues, this paper presents an improved image SR model based on
the HDM implemented in Real-ESRGAN. The first-order degradation modeling of HDMwas removed, and
only the second-order degradationmodeling was kept to reduce the degree of visual deterioration. PatchGAN
was used as the fundamental structure of the discriminator, and a channel attention mechanism was added to
the generator’s dense block to enhance texture details in the reconstructed images. The L1 loss function was
also replaced with the SmoothL1 loss function to improve convergence speed and model performance. The
proposed model, IRE, was evaluated on various benchmark datasets and compared to Real-ESRGAN. The
results show that the proposed model outperforms Real-ESRGAN regarding visual quality and measures
such as RankIQA and NIQE. The study also indicates that PatchGAN, as the discriminator, reduces the
average training time by approximately 28%.

INDEX TERMS Super resolution, real-ESRGAN, SmoothL1, channel attention, PatchGAN.

I. INTRODUCTION
Machine learning is a critical subfield in artificial intelli-
gence. Deep learning is a prominent approach that aims to
extract high-level abstract features from data and compre-
hend the underlying distribution patterns through multiple
non-linear transformations. This approach generates unbi-
ased judgments or predictions about incoming data. Image
SR, a technique based on deep learning, involves converting
low-resolution (LR) images into high-resolution (HR) images
using specific algorithms [1], [2], [3]. This process addresses
issues such as blurry or poor-quality images due to the limi-
tations of the image acquisition environment.

The associate editor coordinating the review of this manuscript and
approving it for publication was Miaohui Wang.

Previous classical image SR models, such as SRGAN and
ESRGAN, utilized bicubic kernel interpolation to generate
LR images from HR images [4], [5]. However, in reality,
image resolution typically suffers from various degradations
in diverse combinations, and using bicubic kernel interpola-
tion alone can only partially simulate the degradation of real-
life images. To address this issue, blind SR was developed to
recover unknown and complicated damaged LR images [6].
Blind SR can be separated into explicit and implicit modeling,
depending on the downsampling technique employed. In this
article, we only focus on explicit modeling.

Themost widely used form of explicit modeling is classical
degradation modeling, which employs a simple combination
of four degradation processes - Blur, Resize, Noise, and JPEG
Compression - to degrade an image [7], [8]. Unlike bicubic
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FIGURE 1. The SR results of ×4 for SRGAN, ESRGAN, Real-ESRGAN and the Ground-truth. (Sample 1: 101085 from BSD100 [30]; Sample 2: 001 from
Urban100 [31]; Sample 3: 189080 from BSD100 [30].

kernel interpolation, classical degradation modeling degrades
images more complexly, with a higher degree of degradation,
making it more suitable for modeling the real-life degradation
of image resolution. Using classical degradation modeling,
the resulting LR images are closer to the characteristics of
real-life images, providing a more practical approach for
image SR.

Real-ESRGAN employs the HDM downsampling tech-
nique, which models numerous rounds of the degradation
process, with each iteration using a classical degradation
model [9]. While HDM has been shown to simulate the dete-
rioration of real-world images more accurately, our experi-
ments have revealed that Real-ESRGAN is only occasionally
successful in restoring specific images and yields even worse
results than traditional models like SRGAN and ESRGAN,
as judged by the human eye. The images produced by Real-
ESRGAN exhibit two significant shortcomings. The first

issue, as shown in Fig.1 for samples 1 and 2, is that the
images created with Real-ESRGAN are overly smooth and
nearly completely lose features like the texture of the original
image. Morever, the image restored using Real-ESRGAN has
the best outcomes and the most apparent clarity, as shown in
example 3 in Fig.1. A closer examination of the original HR
image reveals that they were two entirely separate images,
defeating the intended purpose of SR. Therefore, an improved
model based on Real-ESRGAN is required to address the
issues in Real-ESRGAN.

Overall, the main contributions of this paper is listed as
follows:

1) To address these above issues, we made the following
improvements to the network structure and loss func-
tion of the model:

• To mitigate the extent of image degradation
resulting from the degradation modeling process,
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we have eliminated first-order degradation mod-
eling from HDM of Real-ESRGAN and retained
only the second-order degradation modeling.

• By incorporating the channel attention mechanism
with the dense block, we introduce a novel dense
block structure that is deeper and more intricate
[10], [11]. This structure enables the entire gen-
erator to concentrate more intently on the regions
of interest, resulting in generated images endowed
with greater texture details.

• We utilized PatchGAN as the fundamental struc-
ture of our discriminator. PatchGAN provides a
wider perceptual domain than traditional discrimi-
nators, enabling our model to focus on more intri-
cate visual details [12].

• We changed the loss function, substituting the
SmoothL1 loss function for the original L1 loss
function of Real-ESRGAN. The SmoothL1 loss
function has demonstrated more excellent stability
during training, manifested bymarkedly fewer gra-
dient fluctuations and heightened resilience to the
impact of outliers, compared to its L1 loss function
counterpart [13].

2) The feasibility of the proposed model in this paper is
based on a large amount of experimental data. In the
ablation study, the NIQE, RankIQA, and PI metrics
measured by our proposed model on different test
datasets are optimal in all cases. Furthermore, the
proposed model surpasses five classical SR models,
including SRGAN and ESRGAN,with varying degrees
of improvement in measuring the NIQE and PI metrics
on different test datasets.

The remaining part of the paper proceeds as follows:
Section II begins by laying out the pertinent work in image
SR approaches. The section III concerns the methodology
employed for this study. The experimental section of this
paper is covered in section IV, and section V provides a
synopsis of the whole paper.

II. RELATED WORK
A. IMAGE SUPER-RESOLUTION BASED ON GAN
Dong et al. introduced deep learning to the field of image
SR [14]. They developed the network model SRCNN,
which employed a three-layer Convolutional Neural Network
(CNN) to learn the mapping connection between LR and HR
images. SRCNN plays a fundamental role in the development
of image SR since it was the first model that introduced deep
learning to the industry. One notable limitation of conven-
tional CNNs is their limited capacity to restore image texture
features when faced with substantial upscaling factors. One
of the most promising approaches for unsupervised learning
on complex distributions in recent years is the deep learning
model GAN, described by Yuan et al. [15]. Compared to
traditional CNN, GAN is more suitable for image SR due
to its unique principle mechanism. Fig.2 illustrates the basic
idea behind image SR using GAN.

FIGURE 2. Principles of image SR based on GAN.

Ledig et al. developed the SRGAN, which utilized Gener-
ative Adversarial Network (GAN) for image SR to make a
new advancement in the image SR technology based on deep
learning [16]. The GAN primarily consists of a generator
and a discriminator. The generator synthesizes the HR image,
and the discriminator plays an adversarial game to determine
whether the given image is from the generator or the actual
sample, allowing the generator to reconstruct the LR image
into an HR image eventually. SRGAN is the first model to
apply GAN to image SR, which plays a significant role in
developing the latest image SR techniques with new research
directions.

Initially, the generator receives the LR images from the val-
idation set and generates corresponding HR images through
over-reconstruction. The LR images are obtained by down-
sampling the related HR images in the training set. Sub-
sequently, the discriminator evaluates the integrity of the
HR images produced by the generator by comparing them
with actual HR images from the training set. The generator
optimizes its network based on the loss value computed by
the discriminator using these two images, and the process
continues iteratively in an adversarial manner. Eventually,
the generator learns to convert a given LR image into an
HR image while deceiving the discriminator. Following the
introduction of SRGAN, numerous GAN-based image SR
models have been put forth, with ESRGAN [5] and Real-
ESRGAN [9] being among the most well-known. Overall,
development on GAN for image SR is ongoing.

B. HIGH-ORDER DEGRADATION MODEL
Several approaches can be used to enhance the performance
of image SR. SRGAN introduced a novel generative net-
work structure, SRResNet, as an alternative to the SRCNN-
based structure [4]. SRGAN redesigned the loss function by
proposing a perceptual loss that circumvents the problem of
excessive smoothing in the reconstructed images caused by
using the Mean Squared Error (MSE) loss function directly.
The perceptual loss of SRGAN combines content loss and
adversarial loss with variable weighting factors [16]. ESR-
GAN, on the other hand, incorporated the network structure
of EDSR [17], replacing the residual block [18] of SRGAN
with the Residual-in-Residual Dense Block (RRDB) [5], and
introduced residual scaling to mitigate the adverse effects
of removing the batch normalization (BN) [19] layer on the
training stability of the deep network. Unlike SRGAN, the
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FIGURE 3. Principles of HDM with Real-ESRGAN.

loss function of ESRGAN features Relativistic average GAN
(RaGAN), which computes the relative distance between the
actual and generated images rather than the absolute distance
[20]. This enables better discrimination between the actual
and generated images during training. Furthermore, ESR-
GAN improved the visual quality of the images by employing
the feature maps before, rather than after, the activation layer
of the VGG [21] network, resulting in sharper edges and a
more compelling visual experience.

To address the limitation of SRGAN and ESRGAN,
Real-ESRGAN proposes a novel technique called blind SR.
As shown in Fig.3, Real-ESRGAN’s approach differs from
SRGAN and ESRGAN by not using bicubic kernel interpo-
lation to downsample HR images but instead relying on blind
SR to simulate image degradation.

As depicted in Fig.3, Real-ESRGAN’s proposed HDM
constitutes a two-stage degradation modeling technique, uti-
lizing two iterations of classical degradation procedures.
Each step involves blurring, downsampling, adding noise,
compressing the image, and incorporating the sinc filter to
address ringing and overshooting artifacts that often arise
in images with excessive segmentation. Overall, the HDM
employed by Real-ESRGAN is a more accurate representa-
tion of real-life image degradation than conventional bicubic
kernel interpolation.

C. CHANNEL ATTENTION MECHANISM
The depth of the CNN is a critical factor in visual SR. How-
ever, current SR networks suffer from two limitations. Firstly,
training the network becomes more difficult as the network
depth increases. Secondly, LR images may contain abundant
low-frequency and high-frequency information. The low-
frequency region is typically flat, while the high-frequency
part includes features such as edges and textures. However,
the network treats all data equally, resulting in a reduced
expressiveness of CNN. Therefore, In order to address these
concerns above, Zhang et al. proposed the channel attention
mechanism [10]. The channel attention mechanism can max-
imize the use of information in the high-frequency part and
improve the quality of the reconstructed image. Fig.4 depicts
its primary structure.

The channel attention mechanism consists of several key
components, including a global pooling layer, two convolu-
tional layers(descending and ascending), and two activation
functions(ReLU, Sigmoid).

FIGURE 4. Basic structure of the channel attention mechanism.

The global average pooling operation, as denoted in Eq.(1),
involves pooling the feature map (size: H*W) by taking its
average [10]. The primary role of global average pooling
layer(HGP) is to compress and aggregate information so that
information from the international sensory field of the net-
work can be fully utilized. Each channel (xc) in the input
feature map is allocated a corresponding value (zc). Typically,
channels with high-frequency information in the image are
assigned greater weights, whereas those with low-frequency
information are given relatively lower weights.

zc = HGP (xc) =
1

H ×W

H∑
i=1

W∑
j=1

xc(i, j) (1)

The gate mechanism, as represented by Eq.(2), comprises
the channel-downscaling layer (WD), the ReLU activation
function (R(•)), and the channel-upscaling layer (WU ). This
mechanism can effectively regulate the complexity of the
model and improve its generalization capabilities [10]. Addi-
tionally, the sigmoid activation function (S(•)) is employed
to facilitate individualized learning for each channel and
modulate its excitation level. Each value prior to the sigmoid
function determines the appropriate weight (FC ) assigned to
the corresponding channel.

FC = S (WU ∗ R (WD ∗ ZC )) (2)

Eq.(3) denotes the each feature map(xc) is multiplied by
its appropriate weight(FC ) and output [10]. In conclusion,
by preserving the high frequencies of the image, the channel
attention mechanism enables the reconstructed image to have
a more apparent texture detail.

Ioutput = FC ∗ xc (3)

D. PatchGAN
Isola et al. introduced the PatchGAN, which has a different
general structure than a typical GAN discriminator [12]. The
input image is processed through several convolution layers
and a fully linked layer or activation function before output
for an ordinary discriminator. Contrarily, PatchGAN is a
completely convolutional network topology. Without going
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through the fully connected layers or activation functions, the
input image is outputted after passing through the multiple
convolutional layers. As a result, the output of PatchGAN
differs from that of a typical discriminator. A normal dis-
criminator produces one evaluation value (True or False) as
its output, which assesses the entire image produced by the
generator or the likelihood that the input sample is valid. The
result of PatchGAN is an N*N matrix in which each point
(True or False) represents a tiny area of the original image,
i.e., the likelihood that each area is an actual sample. The
final result of the discriminator is the average of these region
assessments. In images needing HR and detail, PatchGAN
discriminators are more appropriate than standard GAN dis-
criminators.

E. L1 LOSS
The L1 loss is one of the most frequently used losses function
in the field of image SR. The mean absolute error function is
another name for the L1 loss function. The average of the
difference between the projected value of the model f(x) and
the actual value y is referred to as the mean absolute error.
Eq.(4) and Eq.(5) denotes the function formula and deriva-
tive formula for the L1 loss function, respectively, where x
represents the discrepancy between the projected value and
the actual value of the model.

L1(x) = |x| (4)

dL1(x)
dx

=

{
1, if x > 0
−1, if x < 0

(5)

It has been observed that the penalty is constant for any
amount of difference since the L1 loss function is derived
as the absolute value of the mistake (y - f(x)). As a result,
it does not cause a gradient explosion problem and has a
stable gradient for any input value. However, the principal
limitation of the L1 loss function is that its derivative is
constant, as shown in Eq.(5). So the absolute value of the
derivative of the L1 Loss function concerning the predicted
value is still 1 when the difference between the predicted
value and the ground truth is slight in the later stages of
training. This issue severely limits the learning performance
of the model, as the loss function oscillates around a steady
value, hindering its convergence towards better accuracy.

III. METHOD
As shown in Fig.1, the images reconstructed by Real-
ESRGAN were excessively smooth and drastically lacked
image texture features. There are two main reasons for this.
First off, using HDM results in excessive image deterioration,
which has the opposite impact on images that are not as
severely deteriorated in real life. Second, due to the unique
fundamental mechanism of GAN, training the model is con-
siderably more difficult when dealing with a complicated and
high-intensity technique of image degradation. As a result,
the quality of the reconstructed image effect is naturally
reduced.

FIGURE 5. Overall framework diagram.

In order to address these above concerns, we have
improved Real-ESRGAN in three aspects: HDM, network
structure, and loss function. The overall framework diagram
is shown in Fig.5.

A. REMOVE THE FIRST-ORDER IN HDM
In order to create a similar LR image with a significant
amount of deterioration, HDM in Real-ESRGAN involves
blurring, downsampling, adding noise, and compressing the
image in two rounds of an HR image. Unlike SRGAN and
ESRGAN, which solely employ bicubic kernel interpolation,
Real-ESRGAN uses area and bilinear interpolation for the
downsampling step alone. Additionally, HDM employs a
randomly chosen mix of four different forms of noise —
Gaussian, Poisson, Color, and Gray noise — applied to the
image, together with image blurring and compression, which
severely and irreversibly damage the image.

Although removing the first-order degradation process
may not improve the simulation as intended, as it does not
match the actual degradation process. This also reflects a
problem with the current blind SR: the degree of image
degradation is not well balanced with the final performance
of the model. Although the higher degradation of the image
can better simulate the actual degradation of the image in
reality, the model cannot reconstruct it perfectly with the
existing technology, and the results are uneven. Therefore,
balancing the degradation level of images and the model’s
performance is a hot and challenging issue in the field of blind
SR in the future, which is why the model proposed in this
paper discards the first-order degradationmodeling and keeps
only the second-order degradation modeling. The schematic
illustration of our adjustments is shown in Fig.6.

B. NETWORK ARCHITECTURE
1) GENERATOR WITH CHANNEL ATTENTION
The underlying design of SRResNet, split into a residual
depth module and a sub-pixel convolution module, serves as
the foundation for the overall structure of the Real-ESRGAN
generator, as shown in Fig.7. The sub-pixel convolution mod-
ule magnifies the image, while the residual depth module
extracts features from the input image. The feature extraction
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FIGURE 6. Remove the first-order and retain the second-order schematic.

FIGURE 7. Generative network structure of Real-ESRGAN.

FIGURE 8. Original dense block structure (left) and improved dense block
structure (right). Conv means the convolutional layer and
AdaptiveAvgpool means the global average pooling layer.

block comprises three dense blocks with dense connections,
as shown in Fig.8 [22]. By incorporating the dense block
of Real-ESRGAN with the channel attention mechanism of
RCAN, we propose a novel dense block structure based on
the generative network topology of Real-ESRGAN.

The original dense block has been altered in the ways listed
below. The first three convolutional layers are still present and
densely connected in the dense block. A channel attention
method takes the role of the final two convolutional layers.
In Fig.8, the updated structure is displayed.

2) DISCRIMINATOR
To substitute the original discriminator of U-net, we devel-
oped a new discriminator illustrated in Fig.9, which employs

FIGURE 9. A discriminator structure designed with PatchGAN as the basic
structure. Conv means convolutional layer, Maxpool means maximum
pooling layer, BatchNorm means BN layer.

PatchGAN as its underlying architecture. The discriminator
network structure comprises of an interleaved combination
of convolutional layers, maximum pooling layers, BN layers,
and Leaky ReLU activation functions. The maximum pool-
ing layers have two main functions. Firstly, the information
retrieved by the convolution layer can be further reduced in
dimension, which lowers the computational load. Secondly,
it increases resilience in offset, rotation, and other factors of
images. It also improves the invariance of image attributes.
The training and convergence of the network are accelerated
using the BN layer.

The PatchGAN technique enables the integration of local
and global image properties by distinguishing various small
patches of the original image and characterizing local image
components. This approach facilitates the creation of HR
images. Furthermore, averaging the resulting categorized fea-
ture map can accurately distinguish between real and fake
images.

C. LOSS FUNCTIONS
L1 is the loss function in most classical models, includ-
ing SRGAN, ESRGAN, and Real-ESRGAN. We employ
SmoothL1 as our loss function in the model put out in this
research. To make up for the limitations of the L1 loss func-
tion, we have enhanced the loss function of Real-ESRGAN
by utilizing the SmoothL1 loss function instead of the L1 loss
function, which is more ‘‘smooth’’ than the L1 loss function.
Eq.(6) denotes the updated total loss function formula, where
LVGG/i,j denotes the perceptual loss [23] and LGAN denotes
the adversarial loss [16].

LIRE = LSmoothL1 + LVGG/i,j + 0.1 ∗ LGAN (6)

1) SMOOTHL1 LOSS
It has been observed from the name of the function that the
SmoothL1 loss function is essentially an L1 loss function
that has been smoothed, as shown in Fig.10. Eq.(7) and
Eq.(8) denotes the functional and derivative formulae for the
SmoothL1 loss function, respectively [13].

SmoothL1 (x) =

{
0.5 x2, if |x| < 1
|x| − 0.5, otherwise

(7)

dSmoothL1 (x)
dx

=


1, if x ≥ 1
x, if |x| < 1
−1, if x ≤ −1

(8)

VOLUME 11, 2023 45339



Z. Zhu et al.: IRE: Improved Image SR Based on Real-ESRGAN

As shown in Eq.(8), the SmoothL1 loss function also
imposes an upper limit of 1 on the absolute value of the gra-
dient of x for large x values and a modest gradient for small x
values. This feature prevents the gradient from being too large
and disrupting the network parameters. Researchers have
suggested that the SmoothL1 loss function has advantages
over the L1 loss function, as it is better suited for function
convergence and model learning. Notably, Fig.10 highlights
the distinct functional plots of the L1 and SmoothL1 loss
functions.

2) PERCEPTUAL LOSS WITH SMOOTHL1
Following are the definitions of the SmoothL1 loss function
and perceptual loss function in Eq.(7) [13]. The Eq.(9) and
Eq.(10), as shown at the bottom of the page, denotes the pixel-
wise L1 loss function and pixel-wise SmoothL1 loss function,
respectively [4]. Eq.(7) and Eq.(10) may be compared to
demonstrate that IHRx,y − GθG (I

LR)x,y in Eq.(10) is equivalent
to x in Eq.(7). The difference between the anticipated and
actual values is represented by x in Eq.(7). For a portion of
the LR feature map with position point (x, y) in the whole
image, it is defined in Eq.(10) as the difference between
the reconstructed fake HR feature map and the original HR
feature map. Each position of the feature map in the network
is represented by (x, y), and its width and height are each rep-
resented byW andH , respectively. ILR and IHR, respectively,
stand for the input LR image and HR image. The GθG (I

LR)x,y
shows the fabricated HR image.

Eq.(11) and Eq.(12), as shown at the bottom of the page,
refers to the perceptual loss based on L1 and SmoothL1 that
is obtained prior to acquiring the VGG-based activation layer,
respectively [21]. This is achieved by calculating the distance
between the abstracted feature maps of SR and HR, which
is based on the average absolute distance using the L1 loss
function in Real-ESRAGN. However, in our proposed model,
we have modified the perceptual loss function to use the
SmoothL1 loss function instead of the original L1 loss func-
tion for calculating the distance between the SR and HR fea-
turemaps. Thus, x in Eq.(7) is ∅i,j(IHR)x,y − ∅i,j(GθG (I

LR)x,y)

FIGURE 10. L1 loss function and SmoothL1 loss function plots.

in Eq.(12). Here, ∅i,j denotes the feature map acquired by the
j-th convolutional layer in the VGG19 network before the i-th
maximum pooling layer. Additionally,Wi,j and Hi,j represent
the dimensions of the individual feature maps in the VGG
network.

IV. EXPERIMENTS
A. DATASETS DETAILS AND IMPLEMENTATION
The DIV2K dataset, which includes 800 HR and 800 LR
images each, served as our training dataset [24]. We use
MATLAB bicubic kernel interpolation to downscale the HR
images into the LR images, with the downsampling factor
set to 4. Since the images of the DIV2K dataset have a
2K resolution, a larger size is unnecessary for the training
procedure. Therefore, before training, we first used the pre-
crop script function to divide each image into sub-image
blocks with overlapping parts; the size of the sub-image
blocks is 480*480; this resulted in 32592 HR and LR images,
respectively. Fig.11 shows a diagram of the image pre-crop.
In this experiment, the input size of the images fed into

the model is 256*256, and the kernel size is 3. In the abla-
tion study, we use HDM to degrade the images. And in
the final comparison experiments, our proposed model(IRE
and IRE+) uses second-order degenerate modeling. The
model presented in this paper uses several different types of

LSRL1 =
1

r2WH

rW∑
x=1

rH∑
y=1

{∣∣∣∣IHRx,y − GθG

(
ILR

)
x,y

∣∣∣∣ (9)

LSRSmoothL1 =
1

r2WH

rW∑
x=1

rH∑
y=1

0.5 ∗

(
IHRx,y − GθG

(
ILR

)
x,y

)2
, if

∣∣∣IHRx,y − GθG

(
ILR

)
x,y

∣∣∣ < 1∣∣∣IHRx,y − GθG

(
ILR

)
x,y

∣∣∣ − 0.5, otherwise
(10)

LL1VGG/i,j =
1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

{∣∣∣∣∅i,j (IHR)x,y − ∅i,j

(
GθG

(
ILR

)
x,y

)∣∣∣∣ (11)

LSmoothL1VGG/i,j =
1

wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

0.5 ∗

((
∅i,j

(
IHR

)
x,y − ∅i,j

(
GθG

(
ILR

))
x,y

)2)
, if

∣∣∣(IHR)x,y − GθG

(
ILR

)
x,y

∣∣∣ < 1∣∣∣∅i,j (IHR)x,y − ∅i,j

(
GθG

(
ILR

)
x,y

)∣∣∣ − 0.5, otherwise
(12)
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FIGURE 11. Image pre-cropping diagram(Sample: 001 from DIV2K [24]).

activation functions. In the dense block of the original gener-
ator, the activation function used is Leaky ReLU. In contrast,
the generator is improved by adding a channel attention block
with both ReLU and Sigmoid activation functions. For the
PatchGAN discriminator used in this model, the activation
function used is Leaky ReLU.

Similar to Real-ESRGAN, our implementation is built on
BasicSR. Our experiments were conducted using the PyTorch
framework, and training was performed on a GPU with
NVIDIA Tesla P100 and GeForce GTX 1080. The tests were
conducted on a CPU with an Intel(R) Core(TM) i3-8130U
CPU clocked at 2.2GHz.

B. ABLATION STUDY
In order to show the effectiveness of our suggested improve-
ment strategy, we have compiled and tested eight distinct
situations based on the improvement approach. The abla-
tion study was divided into eight distinct scenarios based
on the type of loss function employed (L1 loss function or
SmoothL1 loss function), the type of discriminator archi-
tecture used (U-net [25] or PatchGAN), and whether a
channel attention mechanism was added to the dense block
of the generator. To ensure the impartiality of the experi-
ment, each scenario was conducted in the same experimental
environment.

1) TRAINING SETTINGS
We carried out ablation study using ESRGAN because Real-
ESRGAN is challenging to train. We set the batch size to
16 and the training HR patch size to 128. The pre-trained
ESRGAN model is used during training and is optimized
using the Adam function [26]. The number of fundamen-
tal building blocks in the generator is set to 23 by Real-
ESRGAN, and we alternate the generator and discriminator
until the model converges.

Eq.(13) denotes the loss function training the generators
for the first to fourth scenarios of the ablation study.

L1∼4 = LL1VGG/i,j + α ∗ LSRL1 + β ∗ LGAN (13)

Eq.(14) denotes the loss function training the generators
for the fifth to eighth scenarios of the ablation study.

L5∼8 = LSmoothL1VGG/i,j + α ∗ LSRSmoothL1 + β ∗ LGAN (14)

We used α = 10−2 and β = 5 ∗ 10−3 as the parameters
for each set of trials. We set the number of iterations to 100k
and cut the learning rate(10−4) in half when the number of
iterations hit 50k.

LGAN denotes the adversarial loss, which consists of the
generator loss(LGRa) as well as the discriminator loss(LDRa) as
shown in Eq.(15).

LGAN = LGRa + LDRa (15)

LGRa = −EIHR
[
log (1 − DRa (IHR, ISR))

]
− EISR

[
log (DRa (ISR, IHR))

]
(16)

LDRa = −EIHR
[
log (DRa (IHR, ISR))

]
− EISR

[
log (1 − DRa (ISR, IHR))

]
(17)

The Eq.(16) and Eq.(17) denotes the generator (G) loss and
discriminator (D) loss, respectively. IHR and ISR, respectively,
stand for the HR image and the image reconstructed by the
generator. The Ra denotes the RaGAN and EI(•) (•) represents
the operation of taking average for all data (super-resolved)
in the mini-batch [5].

2) RESULTS
Table 1 presents the experimental results for eight distinct
scenarios. The NIQE (Natural Image Quality Evaluator)
[27] metric was used to evaluate the performance on five
test datasets, namely Set5 [28], Set14 [29], BSD100 [30],
Urban100 [31], and DIV2K100 [24]. Lower NIQE scores
indicate better performance. The training time for each sce-
nario is also reported in Table 1. Among the eight scenarios
that deviated from our suggested model (scenario 8), scenario
7 achieved the best performance on all testing datasets except
Set5. The highest-performing scenarios used the SmoothL1
loss function, lacked a channel attention mechanism in the
generator, and used PatchGAN as a discriminator. It is worth
noting that scenario 1 is essentially Real-ESRGAN without
the HDM for image degradation. Thus, the NIQE values
obtained by scenario 8 on Set5, Set14, BSD100, Urban100,
and DIV2K100 are respectively 16.09%, 12.03%, 8.87%,
9.89%, and 13.48% lower than those of Real-ESRGAN
(without HDM). Moreover, 4 hours and 43 minutes were
reduced in the training period. Notably, the models were
subjected to an equivalent number of iterations in the eight
unique scenarios examined. In such instances, it was observed
that the employment of the SmoothL1 loss function leads to
an overall enhancement of model accuracy under identical
experimental conditions with a faster convergence rate.

To better understand the influence of the various
approaches on the performance of the model, we compiled
the data in Table 1. We report the mean NIQE and training
time for each testing dataset using the various approaches
in Table 2. As seen from Table 2, we observed that when
SmoothL1 was employed as the loss function, the training
time and average NIQE metric in four of the five testing
datasets were notably lower than those obtained with L1.
This suggests that the SmoothL1 loss function leads to
faster convergence and enables the model to achieve higher
accuracy. It is common for a dense block to become more
intricate and consequently take longer to train with the
addition of a channel attention mechanism. Furthermore,
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TABLE 1. Results of ablation study [4×upscaling](h:hour m:minute).

the average training time was reduced by approximately
28% (13.40/18.69 × 100%). The average NIQE metric was
consistently lower in all scenarios when PatchGAN was used
as the discriminator instead of U-net on all five test sets. Thus,
it is evident that utilizing PatchGAN as the discriminator as
the fundamental structure not only results in a lower NIQE
measure but also significantly reduces the training time,
establishing the superiority of PatchGAN.

Additionally, to further illustrate the superior performance
of our suggested model. Perceptual Index (PI) [32] and
RankIQA [33], both of which exhibit superior performance
when their values are lower. Fig.12 and Fig.13 present the
results, respectively. Fig.12 displays the PI of the model,
which was determined using five test sets for eight distinct
scenarios. The lower the PI, the better the model performed.
Given that scenario 4(L1+CA+PatchGAN) has the lowest PI
and the most excellent performance on Set5 and DIV2K100,
as can be seen from the figure, the height of the column
symbolized by red is the lowest. The scenario with the lowest
PI on Set14 is scenario 3(L1+PatchGAN). The lowest PI
was obtained in scenario 7(SmoothL1+PatchGAN) in two
of the five test sets(BSD100, Urban100). In conclusion, the
PI values determined by scenario 8(IRE+) on BSD100 and
Urban100 are, respectively, 15.76% and 8.67% lower than
those of scenario 1(Real-ESRGAN without HDM).

The measured RankIQA and proportionate size of the
model for each of the eight distinct situations for each
of the five test sets are shown in Fig.13. We emphasize
the sector with the lowest percentage of model values on
each test set, as lower RankIQA values indicate better
model performance. In three of the five test sets(Set5, Set14,
and DIV2K100), as seen from the figure, our suggested
model(SmoothL1+CA+PatchGAN) has the lowest percent-
age of RankIQA measured with 11.3%, 10.9%, and 11.3%,
respectively. It shows that our proposed model has the most
excellent performance among the eight models. Addition-
ally, on BSD100 and Urban100, respectively, the lowest
percentages of RankIQA for scenarios 3(L1+PatchGAN)
and 7(SmoothL1+PatchGAN) were found. In summary, the
RankIQA values determined by scenario 7(IRE) on Set5,
Set14, and DIV2K100 are, respectively, 15.20%, 20.46%,
and 10.27% lower than those of scenario 1(Real-ESRGAN
without HDM).

3) ANALYSIS
Our suggested model(SmoothL1+CA+PatchGAN) only
provides lower metric data on RankIQA in the ablation

research. Conversely, the model represented by scenario
7(SmoothL1+PatchGAN) has lower measured values in
NIQE and PI. The results in ablation study show that it
does not show the best performance of our suggested model.
Therefore, to ensure the validity of our suggested model,
we designate it as IRE(SmoothL1+CA+PatchGAN) and
the model that performed the best in the ablation study as
IRE+(SmoothL1+PatchGAN).

C. FINAL COMPARISON EXPERIMENT
1) TRAINING SETTINGS
Our two suggested models (IRE and IRE+) are trained using
Real-ESRGAN with batch size set to 1 and training HR
patch size set to 256. The Adam function parameters and
the number of fundamental building blocks in the generator
are the same as in the ablation study. We employ the pre-
trained model of Real-ESRGAN for the training procedure.
We eliminated the first-order degenerate modeling for the
HDM and did not alter any other settings. We set the number
of iterations to 100k and trained the generator using the loss
function of Eq.(6).

2) QUANTITATIVE COMPARISON
On seven test sets(Set5, Set14, BSD100, Urban100,
DIV2K100, RealSR-Canon [34], and RealSR-Nikon [34])—
we utilized NIQE to evaluate two of our suggested mod-
els (IRE, IRE+) with those traditional models, such as
SRResNet, BSRGAN [35], SDSR [35], Real-ESRGAN, and
SwinIR [36]. In each row,we highlight the top data findings in
red and the second-best results in blue. To enable comparable
and fair experimental findings, we evaluated and recorded the
data for each model using the same NQIE metric test script
function because the training sets utilized by various models
and the network topology vary significantly.
Table 3 shows that while the remaining three test sets

have the lowest NIQE indicators on Real-ESRGAN, our
proposed model (IRE, IRE+) achieves optimality on four
of the seven test sets (Set5, Urban100, RealSR-Canon, and
RealSR-Nikon). Specifically, the NIQE value measured by
IRE on Set5 is 12.31% lower than Real-ESRGAN, but the
NIQE value recorded by IRE+ on Urban100 was just 0.32%
lower. Additionally, the NIQE values determined by IRE+ on
RealSR-Canon and RealSR-Nikon are 3% and 2.41% lower
than Real-ESRGAN, respectively. Except for the Urban100
and RealSR-Nikon test sets, all test sets attained optimality on
our model for the sub-optimal data outcomes. In conclusion,

45342 VOLUME 11, 2023



Z. Zhu et al.: IRE: Improved Image SR Based on Real-ESRGAN

TABLE 2. Results of the collated ablation study.

FIGURE 12. Visual bar chart: PI(Perceptual Index) measured over 5 test sets(Set5 [28], Set14 [29], BSD100 [30], Urban100 [31], DIV2K100 [24])
for eight scenarios of the model[4×upscaling]. (L1 represents L1 loss function, S1 represents SmoothL1 loss function, CA represents channel
attention, U represents U-net discriminator, P represents PatchGAN discriminator.)

the quantitative comparison shows that our model incorpo-
rates 9 of the 14 data metrics (both optimal and sub-optimal),
which is sufficient to demonstrate the superiority of our sug-
gested model.

Moreover, to make our proposed model more convincing.
We tested differentmodels using PI and visualized them using
line plots, the results of which are shown in Fig.14. It can
be seen that our proposed model (IRE, IRE+) achieves the
lowest PI on four test sets (Set5, Urban100, RealSR-Nikon,
RealSR-Canon) with values of 4.403, 3.851, 3.705, 4.162,
respectively, out of seven test sets, which proves the better
performance of our proposed model.

Finally, to make the paperwork more convincing, we did
comparison experiments based on whether the image degra-
dation process of Real-ESRGAN uses the HDM or only
second-order degradation modeling. We tested on seven test
sets using the NIQE metric. And the comparison results are
shown in Table 4, which shows that five test sets measured
lower NIQE values when only using second-order degra-
dation modeling, proving that Real-ESRGAN can achieve
better results when only using second-order degradation
modeling.

3) QUALITATIVE ANALYSIS
In order to more clearly demonstrate the viability of our
suggested model, we chose a few example images from the
test set and compared them qualitatively using various mod-
els. The results of the qualitative comparison are presented
in Fig.15.

It has been observed that the reconstructed images using
our suggested model(IRE+) exhibit crisper texture features
and better human-eye outcomes than the other traditional
models from the three samples in Fig.15. Additionally, the
veggies in sample 2 demonstrate that even the original high-
quality images cannot match the resolution of the recon-
structed images using IRE+.

4) DISCUSSION AND FUTURE WORK
Real-ESRGAN is a relatively new model in the field of
SR. If we do not focus on the previously reported meth-
ods but only on Real-ESRGAN, the four ways proposed in
this paper are innovative for the improved model based on
Real-ESRGAN. First, the change fromHDM to second-order
degenerate modeling is the first of its kind. Second, most
SR models, including SRGAN and ESRGAN, use L1 loss
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FIGURE 13. Visual pie chart: RankIQA measured over 5 test sets(Set5 [28], Set14 [29], BSD100 [30], Urban100 [31], DIV2K100 [24]) for eight
scenarios of the model[4×upscaling]. (L1 represents L1 loss function, S1 represents SmoothL1 loss function, CA represents channel attention,
U represents U-net discriminator, P represents PatchGAN discriminator.)

TABLE 3. Quantitative comparison results of our proposed model with other classical models, the lower the NIQE the better[4×upscaling].

as the loss function, while the model proposed in this paper
uses SmoothL1 loss. Thirdly, the channel attention used in
this paper is not considered a content innovation but a formal
innovation. Unlike most models that directly put the channel
attention block into the network structure, this paper replaces
the channel attention block with the last two convolutional
layers in the dense block in the generator. Finally, this paper
uses PatchGAN as a discriminator, a first for Real-ESRAGN
and other models based on its improvement.

Of course, there are several limitations in the study of this
paper listed as follows:

• The disadvantage of the PSNR and SSIM metrics
commonly used in the SR domain is that the met-
ric values measured in the images reconstructed by
Real-ESRGAN are often not the best to demonstrate

their performance [37]. As a result, NIQE, RankIQA
and PI was employed as the ultimate reference indi-
cation, and this argument was made throughout the
experiments in this paper. However, some of the
images produced by the model suggested in this study
do not provide the best illustrations regarding how
they affect the human eye while having the lowest
NIQE, RankIQA, and PI metrics, among other classical
models.

• The NIQE values in Table 1 obtained with the channel
attention mechanism included were higher than those
tested without it. It is because we employed the original
generator to train directly in this research rather than
pre-training the generator with the channel attention
mechanism. Due to this distinction, the formally trained
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FIGURE 14. Quantitative comparison results of our proposed model with other classical models, the lower the PI the better[4×upscaling].
(In the horizontal coordinate, 1 represents SRResNet [4], 2 represents BSRGAN [35], 3 represents SDSR [35], 4 represents SwinIR [36],
5 represents Real-ESRGAN [9], 6 represents IRE, 7 represents IRE+.)

TABLE 4. Quantitative comparison results of Real-ESRGAN with HDM or the only second-order degradation modeling, the lower the NIQE the
better[4×upscaling].

model fails to deliver the expected outcomes when put to
the test. We accept that this is a flaw in the experiments
presented in this paper, and we will take what we’ve
learned from it to improve our future trials.

• The major limitation of image SR is that most existing
models only target upscaling factors of 4× and less.
Therefore, more study is needed to develop a model
targeting 8× or even more upscaling factors.
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FIGURE 15. Qualitative comparison results of our proposed model with other classical models[4×upscaling]. (Sample 1: 0849 from DIV2K100 [24];
Sample 2: 0889 from DIV2K100 [24]; Sample 3: 08 from RealSR-Canon [34].

In comparison with previous models, the HDM employed
in Real-ESRGAN can more accurately simulate the pro-
cess of image degradation in real-world scenarios. However,
as the degree of image degradation increases, the difficulty of
model training also increases, and image restoration becomes
more challenging. Thus, achieving a balance between image
degradation and restoration presents a significant challenge
for future research, necessitating the development of new
network structures and advanced methods.

V. CONCLUSION
Themain goal of the study was to develop an improvedmodel
based on Real-ESRGAN. In the final comparison experi-
ments, we compare themodel proposed in this paper with five
authoritative models, such as BSRGAN and Real-ESRGAN.
The experimental results show that the two traditional met-
rics(NIQE and PI) measured on the five test datasets(Set5,
Set14, BSD100, Urban100, and DIV2K100) commonly used
in the SR domain are optimal, which is sufficient to prove
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the superiority of our proposed model. In summary, these
experiments confirm that themodel(IRE and IRE+) proposed
in this paper can generate images with more texture detail and
lower metrics than the previous classical model.

The proposed method based on the improved model by
Real-ESRGAN in this paper achieves better results in both
qualitative and quantitative aspects. First, the model can
attain higher accuracy because the SmoothL1 loss function
has better convergence than the L1 loss function. Second,
compared to the original discriminator, the discriminator cre-
ated using PatchGAN as the fundamental structure recon-
structs the image with more distinct texture features. Finally,
most of the RankIQA and PI metrics measured by our pro-
posed model on five different test datasets outperformed
Real-ESRGAN.
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