
Received 28 January 2023, accepted 9 March 2023, date of publication 10 March 2023, date of current version 16 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3256302

Proactive Auto-Scaling Approach of Production
Applications Using an Ensemble Model
MOHAMED SAMIR , KHALED T. WASSIF , AND SOHA H. MAKADY
Faculty of Computers and Artificial Intelligence, Cairo University, Giza 12613, Egypt

Corresponding author: Soha H. Makady (s.makady@fci-cu.edu.eg)

ABSTRACT The resource usage behaviors of application workloads are currently the primary concern of
cloud providers offering hosting services. These services should be able to adapt to workload changes by
automatically provisioning and de-provisioning resources so that, at all times, the existing resources in a
system match the current service demand. Such behavior can be achieved manually by hiring a DevOps
team to manage the application’s resources. Another option would be automating the resource provisioning
processing using automated rules. Once such rules are met, the hosting environment will scale the resources
accordingly. However, managing a DevOps team or creating flaky rules can lead to over-scaling application
resources. This work proposes a new approach: a proactive auto-scaling framework built on an ensemble
model. Such a model utilizes several machine learning techniques to scale application resources to match
resource demand before the need arises. We evaluated our solution against three real production applications
hosted onCegedimCloudHosting Environment, an industrial environment serving several cloud applications
from various domains, and against other machine learning models used in similar proactive auto-scaling
experiments mentioned in past work. The experimentation results show that predicting application resources
like CPU or RAM is feasible. Moreover, even in production environments, our ensemble model performs
optimally in the CPU case and is near the optimal model when predicting RAM resources.

INDEX TERMS Auto-scaling, resource allocation, dynamic resource provisioning, resource management
on clouds.

I. INTRODUCTION
Cloud providers and virtualized data centers offer a stan-
dard feature called service elasticity. Service elasticity is the
capability to automatically provide and de-provide resources
to meet the present service demand as nearly as feasible at
each moment to adjust the system to workload changes [1].
In addition, service elasticity reduces power consumption due
to its avoidance of over-provisioning resources [2]. Service
elasticity is a concept adopted by most service providers to
satisfy peak demand periods and guarantee Quality of Ser-
vice (QoS) to the users during the service lifetime. Therefore,
service elasticity reduces the number of resources needed to
implement the service.
Furthermore, it is considered a critical energy-saving mech-
anism for data centers and cloud providers [1]. Service elas-
ticity mechanisms are classified into two categories: reactive

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Liu .

and proactive. Reactive mechanisms work by monitoring the
system resources and performance requirements and trig-
gering a particular scaling act accordingly. The rule-based
and threshold auto-scaling mechanisms are examples of reac-
tive mechanisms used by cloud-based service providers. The
rule-based systems work by providing a new node whenever
the state of the system satisfies some rule [3].While threshold
auto-scaling systemswork bywithdrawing or adding a certain
number of resources when a specific metric (e.g., the server
load) exceeds or falls below a certain threshold. The main
issue with reactive mechanisms is that the reaction time (the
time from when a trigger condition is detected until the
resources are available for use) may not be quick enough
to prevent system overloading [4]. In addition, these mech-
anisms may lead to system instability because of the constant
fluctuation of resource allocation [1].

The proactive (or predictive) technique uses statistical
or mathematical models of observed workloads and sys-
tem metrics to forecast the number of resources required

25008
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-3192-3337
https://orcid.org/0000-0002-7401-5219
https://orcid.org/0000-0002-3330-6204
https://orcid.org/0000-0001-7300-9215

M. Samir et al.: Proactive Auto-Scaling Approach of Production Applications Using an Ensemble Model

during the coming period [1]. Although most cloud platforms
and providers utilize reactive models [5], there has been
much research on predictive models based on time series
analysis, queuing theory, reinforcement learning, or control
theory [6]. Time series analysis is frequently utilized for
systems with temporal patterns to build auto-scaling tech-
niques [1]. Most of these suggestions rely on linear statistical
time-series forecasting techniques, primarily Box and Jenkins
auto-regressive models, to estimate service metrics based on
prior observations [7], [8], [9]. However, those linear models
may not adequately predict nonlinear input data, as these
service measures can show nonlinear patterns. Several other
studies used nonlinear regression models based on neural
networks. The fundamental drawback of these approaches
is the challenging task of creating an effective neural net-
work topology, in addition to the slow training of the
algorithms [1].

Due to the limitations of the previous methods and inspired
by the current trends in AI, and machine learning-based
orchestration of resources in the cloud environment [10],
[11], this work proposes a proactive scaling framework based
on an ensemble model. We implemented it on top of other
machine learning models referenced in the related work.
Our ensemble model works by operating different models in
parallel and taking their most optimal predictions. Because
the previous work only mentioned one model as its optimal
solution for proactive scaling and did not try it with multiple
applications or compare it to other models, that leaves two
questions: first, is themodel referenced in each previous work
applicable to be used on all applications? Secondly, is there
any better model in terms of accuracy?

Therefore, we compared our proposed ensemble model
against models referenced in past work and other new mod-
els like Neural Hierarchical Interpolation for Time Series
(N-Hits) [12], Temporal Fusion Transformer (TFT) [13],
Facebook Prophet [14], LightGBM [15], and CatBoost [15].
Moreover, such new models were not used in the proactive
autoscaling of resources in a cloud environment. Further-
more, This comparison was conducted on three industrial
applications from different domains.

The results illustrate that our model exceeds all those mod-
els in most cases while ranking the second or third optimal
model in a few other cases in the mean absolute error and
root mean square error measurements. Furthermore, some
models perform well on some data and applications in terms
of accuracy, and in other applications, they have high predic-
tion errors compared to our ensemble models, which have an
acceptable error margin in all situations.

This paper is structured as follows: Section II shows the
literature review, including the related work on dynamic
resource provision and research mechanisms using machine
learning forecasting techniques. Section III presents the pro-
posed proactive scaling framework’s technique. Section IV
explains our evaluation setup and its results and main find-
ings. Section V discusses the limitations. Section VI con-
cludes the work and discusses future work.

II. RELATED WORK
In this section, we discuss existing research trends in appli-
cation scaling. The current automated scaling approaches for
application resource provisioning can be mainly categorized
into Auto-scaling and Proactive Scaling.

A. REACTIVE SCALING TRENDS
Minxian Xu et al. introduced a multi-faceted scaling
approach using reinforcement learning called CoScal to learn
the scaling techniques efficiently [16]. This approach applies
a hybrid scaling technique that combines vertical, horizontal,
and brownout, making adaptive decisions via reinforcement
Learning (RL). Their results demonstrate that CoScal reduces
response time between 19% to 29% and decreases the con-
nection time of services by 16% compared to state-of-the-
art scaling techniques. However, they used simulated data
from a demo microservice application called sock shop, and
their data volume was small (only 500-minute data for eval-
uations). So there is no way to conclude that their approach
will work against larger datasets against other approaches or
even if it will ever work in a production application cloud
setup.

Aslanpour et al. investigated how to improve current
autoscaling methodologies by improving the tail of laten-
cies for users’ requests [17]. Their investigations discovered
sources of tail latencies like 1) large requests, i.e., those data-
intensive; 2) long-term scaling intervals; 3) instant analysis
of scaling parameters; 4) conservative, i.e., tight, threshold
tuning; 5) load-unaware surplus VM selection policies used
for executing a scale-down decision; 6) cooldown feature and
7) VM start-up delay. However, the results were only con-
cerned with scaling virtual machines and did not experiment
with other application resources like CPU, RAM, or network
bandwidth, so we do not know their impact on the tail of
latencies for users’ requests. Nevertheless, according to their
results, the tail may show a different behavior by improving
the average latency by auto-scaling mechanisms, which may
require a tail-aware solution that they did not discuss how to
develop.

B. PROACTIVE SCALING TRENDS
Several proactive scaling strategies have been proposed. For
example, M. Xu et al. proposed an efficient supervised
learning-based Deep Neural Network (esDNN) approach for
cloud workload prediction [18]. First, they utilized a sliding
window to convert the multivariate data into a supervised
learning time series that allows deep learning for process-
ing. Then, a revised Gated Recurrent Unit (GRU) was
applied to achieve accurate prediction. According to their
results, esDNN can significantly reduce mean square errors,
e.g., by 15%, rather than the GRU approach. However, their
data volume is small (Alibaba’s dataset was eight days’ worth
of data, and Google’s dataset was 29 days’ worth of data).
Secondly, they did not test their approach against other fea-
tures and focused only on CPU despite their data having other

VOLUME 11, 2023 25009

M. Samir et al.: Proactive Auto-Scaling Approach of Production Applications Using an Ensemble Model

features, which makes their approach questionable regarding
accurately predicting other application resources.

Lee et al. used several deep-learning-based predictive
models to predict future demands and take action based
on those predictions [3]. The utilized deep learning models
were Long Short Term Memory (LSTM), a type of recurrent
neural network (RNN), and Temporal Convolution Network
(TCN). Furthermore, XGboost is implementing the Gradient
Boosting Decision Tree algorithm oriented by the decision
tree and boosting the ensemble method. However, such work
had some limitations. For example, there was a disagreement
between the business loss metric and the model loss met-
ric, indicating contradictions in their model-building process.
Also, the utilized data was limited, with no data spikes. There-
fore, the proposed model’s ability to predict a burst increase
in the needed resources remains unknown.

Buchaca et al. used the AI4DL framework [19], [20] to
characterize workload and discover resource consumption
phases. First, the existing technology was advanced to an
incremental phase discovery method that applies to more
general ML workload types for training and inference. Next,
a time-window MultiLayer Perceptron (MLP) was used to
predict phases in containers with different types ofworkloads.
Afterward, a predictive vertical auto-scaling policy resized
the container dynamically according to phase predictions.
However, MLP was only used for prediction and was not
compared to other models. Additionally, the duration of keep-
ing the containers running was ignored, so we do not know
the volume of test data they used.

R. Moreno-Vozmediano et al. presented a novel predictive
auto-scaling mechanism based on machine learning tech-
niques for time series forecasting (moving average, linear
regression, and SVM) and queuing theory [1]. The approach
aimed to predict a distributed server’s processing load accu-
rately and estimate the appropriate number of resources that
must be provisioned to optimize the service response time.
Furthermore, fulfill the service-level agreement (SLA) con-
tracted by the user using different machine learning models
and comparing the result to reach the best model that gives the
most optimal predictions. However, their data were simulated
for a very short period (4 weeks). As a result, the data showed
a linear trend which explains the good accuracy achieved by
SVM and linear regression. However, such a linear trend is
not a realistic state for production applications. For instance,
production applications could be heavily loaded with user
requests or crash. In such cases, SVM and Linear Regression
could perform poorly.

EGRadhika et al. showed howAuto-Regressive Integrated
Moving Average (ARIMA) and Recurrent Neural Network
Long Short Term Memory (RNN-LSTM) techniques are
used for predicting the future workload [2]. Furthermore, the
RNN-LSTM deep learning approach had the lowest error
rate when evaluating the performance metrics of the two
techniques. Therefore, they concluded that it might be uti-
lized to forecast future workloads for web applications in
a private cloud. Afterward, Benifa et al. presented RLPAS

(Reinforcement Learning based Proactive Auto-Scaler) algo-
rithm [4]. Such an algorithm is based on the existing Rein-
forcement Learning (R.L.)-SARSA algorithm that learns
the environment and allocates the needed resources in par-
allel. The performance of the RLPAS algorithm is vali-
dated using simulated workloads, and it outperforms existing
auto-scaling approaches in terms of CPU utilization, response
time, and throughput. Aslanpour et al. presented a proactive
auto-scaling algorithm (PASA) with a heuristic predictor [5].
The predictor analyzes history with the help of the follow-
ing techniques: (1) double exponential smoothing - DES,
(2) weighted moving average - WMA, and (3) Fibonacci
numbers. However, all such approaches [2], [4], [5] used
simulated workloads or utilized open-source applications like
RUBiS [21], RUBBoS [22], and Olio [23], which do not
reflect actual user interaction compared to utilizing industrial
applications.

III. PROPOSED FRAMEWORK
To address the limitations of existing proactive auto-scaling
algorithms within any cloud environment, we present a
novel approach that simultaneously utilizes statistical mod-
els, machine learning models, and neural networks to provide
a better prediction for the needed resources. The proposed
approach is designed to be easily integrated into any cloud
environment. Upon integration, the approach would access
the resources’ usage logs to forecast the needed resources
in the future through an ensemble model. Such an ensemble
model supersedes previous approaches by combining several
machine learning models to provide an optimal prediction.

A. FRAMEWORK OVERVIEW
The proposed approach has been constructed in a frame-
work called ‘‘Proactive Autoscaler Framework (PAF)’’. Fig. 1
shows the usage flow of PAF by a deployment team. PAF is
utilized within a cloud environment. Such cloud environment
has deployed applications and an existing history for each
deployed application. Such history should include applica-
tion resource types like CPU and RAM, the consumption of
each resource by the application each constant period (for
example, every 13minutes), and a long resource consumption
history since Such long history is needed as training data.

Consider that it is needed to forecast resource X’s future
usage by a deployed application. The usage flow of PAF will
proceed as follows:

1) PAF Calls the cloud environment hosting the applica-
tion to fetch the application usage logs for resource X.

2) The cloud environment will respond with the inquired
application’s usage of Resource X.

3) PAFwill run its predictionmodel on the retrieved usage
data for Resource X and tries to forecast its future
usage.

4) After PAF finishes the prediction, all results, including
the forecasted values for Resource X usage and the
recommended minimum and maximum values for that

25010 VOLUME 11, 2023

M. Samir et al.: Proactive Auto-Scaling Approach of Production Applications Using an Ensemble Model

FIGURE 1. The usage flow of the proposed Proactive Autoscaler framework (PAF).

forecasted resource, are all documented and attached to
an e-mail sent to the DevOps team.

B. PREDICTION FRAMEWORK PARAMETERS
For our framework to run correctly, some configuration
parameters must be provided by the DevOps team in the
framework configuration file like:

1) The application ID. on the cloud hosting environment.
2) The resource we want to forecast.
3) The history duration that we will use as training data.
4) The duration of resource usage we want to predict.

C. ENSEMBLE MODEL
An ensemble model is a machine learning technique that
combines several base models to produce one optimal predic-
tive model. To develop a generic non-domain specific model
that fits almost all software applications (regardless of their
business domain). We propose an ensemble model, which
can forecast an application’s needed resources (i.e., CPU,
RAM) by utilizing seven models simultaneously. The pro-
posed ensemble model is built on:

1) Moving Average (MA): A statistical method for fore-
casting long-term trends. The technique represents

VOLUME 11, 2023 25011

M. Samir et al.: Proactive Auto-Scaling Approach of Production Applications Using an Ensemble Model

taking an average of a set of numbers in a given range
while moving the range.

2) WeeklyAverage (WA): A statistical method developed
by us. The idea of this model came from observing that
all applications show a similar workload pattern across
weekdays. Such seasonality is used for forecasting. For
example, to forecast next Sunday’s data, we compute
the average of all Sundays’ data in the training data.

3) Linear Regression (LR): A machine learning algo-
rithm based on supervised learning. It performs a
regression task. Regression models a target-prediction
value based on independent variables. It is mainly used
for finding out the relationship between variables and
forecasting.

4) Polynomial Support Vector Machine (SVM Poly):
a supervised machine learning algorithm that can be
used for classification and regression problems. The
SVM regression can approximate the value of the time
series at time t, using the following function: ŷt = b+∑M

m=1 wm×K (xi, xm) where b is a constant (bias term);
wm are the weight factors (W = {w1,w2, . . . ,wM } is
the weight vector); xt is the time series data window
at time t, and K is the Polynomial kernel function.
K (x, x′) = (x.x′+ 1)P, where x.x′ is the dot product of
feature vectors x and x′, and p ∈ N is the exponent of
the kernel chosen by the user.

5) Radial Basis Support Vector Machine (SVM RBF):
A supervised machine learning algorithm that can be
used for classification and regression problems. The
SVM regression can approximate the value of the time
series at time t, using the following function: ŷt = b+∑M

m=1 wm×K (xi, xm) where b is a constant (bias term);
wm are the weight factors (W = {w1,w2, . . . ,wM }is
the weight vector); xt is the time series data window at
time t, and K is the Radial kernel function. K (x, x′) =
e−γ ||x−x′||2 , where ||x − x′||2 represent the Euclidean
distance between feature vectors x and x′, and γ ∈ R is
a user-defined parameter.

6) Facebook Prophet: A machine learning algorithm for
forecasting time series data based on an additive model
where nonlinear trends fit with yearly, weekly, and
daily seasonality, plus holiday effects, It works best
with time series with strong seasonal effects and several
seasons of historical data. Prophet is robust to missing
data and shifts in the trend and typically handles out-
liers well [14].

7) Long short-termmemory (LSTM): A recurrent Neu-
ral Network used for time series forecasting [9].Unlike
standard feedforward neural networks, LSTM has
feedback connections. Such a recurrent neural net-
work (RNN) can process not only single data points
(such as images), but also entire sequences of data
(such as speech or video) [14].

8) Neural Hierarchical Interpolation for Time Series
(N-Hits): is an extension of the Neural Basis Expansion
Analysis for Interpretable Time Series (N-BEATS)

model that improves the accuracy of the predictions
and reduces the computational cost. This is achieved by
sampling the time series at different rates. That way, the
model can learn short-term and long-term effects in the
series. Then, generating the predictions will combine
the forecasts made at different time scales, considering
both long-term and short-term effects. This is called
hierarchical interpolation [12].

9) Temporal Fusion Transformer (TFT): is a
Transformer-based model that leverages self-attention
to capture the complex temporal dynamics of multiple
time sequences [13].

10) LightGBM: is a gradient-boosting framework that
uses tree-based learning algorithms. It uses two novel
techniques: Gradient-based One Side Sampling and
Exclusive Feature Bundling (EFB), which fulfills the
limitations of the histogram-based algorithm that is pri-
marily used in all GBDT (Gradient Boosting Decision
Tree) frameworks [15].

11) XGBoost: is an optimized distributed gradient boosting
library designed to be highly efficient, flexible and
portable. It implements machine learning algorithms
under the Gradient Boosting framework. XGBoost pro-
vides a parallel tree boosting (also known as GBDT,
GBM) that solve many data science problems in a
fast and accurate way. The same code runs on major
distributed environment (Hadoop, SGE, MPI) [15].

12) CatBoost: CatBoost is an algorithm for gradient boost-
ing on decision trees. It is developed by Yandex
researchers and engineers, and is used for search, rec-
ommendation systems, personal assistant, self-driving
cars, weather prediction and many other tasks at Yan-
dex and in other companies, including CERN, Cloud-
flare, Careem taxi [15].

All the models mentioned above, except for N-Hits, TFT,
Facebook Prophet, LightGBM, and CatBoost, were used
in previous work. As previous work tested the models on
open-source data with linear trends, we tried to address such
limitations by (a) utilizing applications with nonlinear trends
and (b) adding facebook prophet and LSTM since they can
predict data with nonlinear trends.

Algorithm 1 shows the steps of the ensemble model. It first
trains all the models used in its implementation (Moving
average, Weekly Average, Linear Regression, Support Vector
Machine, Facebook Prophet, LSTM, N-Hits, TFT, Light-
GBM, XGBoost, and CatBoost) with all the training data in
the (trainArray) array. Afterward, such models are stored in
the (models_array) variable.

Afterward, the ensemblemodel picks any randommodel of
those to start predicting the first (forwardWindow) records in
the first iteration (lines 1-3). Then in the second iteration, the
ensemble model will look back at the last (backwardWindow)
records and try to predict it with other models not selected in
the last iteration (lines 5-21).

Suppose any of those models proves to have better accu-
racy than the already chosen model in the last iteration

25012 VOLUME 11, 2023

M. Samir et al.: Proactive Auto-Scaling Approach of Production Applications Using an Ensemble Model

Algorithm 1 Ensemble Model Algorithm
Input: trainArray, testArray, backWindow, forwardWindow
Output: bestPredicitions
Steps

1: currentPredictionModel ← models_array.getRandomModel()
2: currentTestRecords← trainArray.get(trainArray.size− forwardWindow, trainArray.size)
3: bestPredicitions← currentPredictionModel.predict(currentTestRecords)
4: idx ← forwardWindow
5: while idx < Test.length do
6: previousPredictedRecords← bestPredicitions.get(idx − backWindow, idx)
7: actualResultsRecords← testArray.get(idx − backWindow, idx)
8: bestMAE, bestRMSE ← getAccuarcyMeasures(previousPredictedRecords, actualResultsRecords)
9: for each model in models_array do

10: prediction← model.predict(actualResultsRecords)
11: MAE,RMSE ← getAccuarcyMeasures(prediction, actualResultsRecords)
12: if (MAE < bestMAE) or (RMSE < bestRMSE) then
13: currentPredictionModel ← model
14: bestMAE ← MAE
15: bestRMSE ← RMSE
16: end if
17: end for
18: currentTestRecords = testArray.get(idx, idx + forwardWindow)
19: bestPredicitions← bestPredicitions+ currentPredictionModel.predict(currentTestRecords)
20: idx ← idx + forwardWindow
21: end while

(line 12). In that case, the ensemble model will switch to that
model and use it to predict the following (forwardWindow)
records in this iteration (lines 13-15).

All iteration results are accumulated in an array called
(bestPredicitions).

The (forwardWindow) and (backwardWindow) are config-
uration parameters that are set by the user of the proactive
prediction framework

IV. EVALUATION
A. DATASET
We tested our Framework against three real production appli-
cations hosted on Cegedim Cloud Hosting Environment. Fur-
thermore, we chose three applications from three different
business domains since each application will differ in size and
configuration. Such configuration was deliberately chosen to
prove that no single machine learning model would properly
provide correct predictions for all applications, unlike the
Ensemble model, which combines several models to produce
one optimal predictive model.

The input data chosen to train the forecasting model and
evaluate our proposal were obtained from production appli-
cations by scrapping the virtual machines(VM) hosting each
application for resource usage.

1) Application [A] is one of the most prominent appli-
cations used by thousands of users to communicate
and schedule visits with their doctors. This applica-
tion follows microservice architecture, and the entire

application is scaled across twelve VM on the cloud
environment

2) Application [B] is a pharmaceutical application used
by thousands of users to order prescriptions and han-
dle pharmacy management and sales. This applica-
tion follows microservice architecture, and the entire
application is scaled across eight VM on the cloud
environment

3) Application [C] is also used for human resources
administrations by many users. This application fol-
lows monolithic architecture, and the entire applica-
tion is scaled across two VM on a cegedim cloud
environment.

TABLE 1. Used applications background.

The resource allocation of each application was collected
across nine months for our research purposes. A link to the
data set can be found here.

Table 1 summarizes all applications used in our study,
including details about user count, application size in kilo
lines of code (KLOC), collected data size and content, the

VOLUME 11, 2023 25013

M. Samir et al.: Proactive Auto-Scaling Approach of Production Applications Using an Ensemble Model

period between data points, and the duration of the extracted
data.

B. FORECAST ACCURACY MEASURES
Different error measures can be used to evaluate the accuracy
of the forecasting models. Some of the most common error
measures that we used are Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE):

MAE = 1
n

∑n
i=1 |yi − ŷi| [9]

RMSE =
√

1
n

∑n
i=1 |yi − ŷi| [7]

We apply these accuracy measures to the forecast data within
the forecasting horizon; assuming we know the real-time
series values for this period, we obtain the real prediction
error made by the forecasting model [1].

C. PARAMETER SELECTION
While tuning the ensemble model’s parameters, we faced a
problem as the applications of interest differ in the develop-
ment technologies they are built with, the business domain
they serve, and, most importantly, their deployment configu-
ration on the cloud. Given that a model to predict the optimal
result for a dataset, it will need to be parameter tunned, but
since all applications differ in its model’s parameters. Hence,
parameter tuning was made to reach common parameters that
suit all applications under study.
• Forecasting model #1 (Moving average): After multiple
regressions on all three applications, the optimal result
for this model was yielded by the moving average (MA)
of order two (i.e., an MA (p) model, with p = 2).

• Forecasting model #2 (Weekly average): No tunning
parameter is needed since all it does is get the average
of all previous points.

• Forecasting model #3 (Linear regression): After mul-
tiple regressions on all three applications, the optimal
result for this model was yielded by an autoregres-
sive (AR) model with a lag period of 24 h (i.e., an AR
(p) model with p = 24)

• Forecasting model #4 (SVM with a polynomial ker-
nel): After multiple regressions on all three applications,
the optimal result for this model was yielded by SVM
regression with a polynomial kernel of order p = 2.

• Forecastingmodels #5 (SVMwith an RBF kernel): After
multiple regressions on all three applications, the opti-
mal result for this model was yielded by SVM regression
with an RBF kernel With a γ parameter of 1.0

• Forecasting models #6 (Facebook Prophet): After mul-
tiple regressions on all three applications, the optimal
result was yielded by its default parameters (because
of the many optimization functions that he runs in his
implementation)

• Forecasting models #7 (LSTM): After multiple regres-
sions on all three applications, 14 steps,200 epochs, and
0.1 dropout yielded the optimal result for this model, and
we empirically tested with a higher step count. Still, they

offered no better results than the order of 14 steps and
took more time to execute.

• Forecasting models #8 (N-Hits): After multiple regres-
sions on all three applications, 14 input chunk size, 1 out-
put chunk size,56 batch size,200 epochs, and 0.1 dropout
yielded the optimal result for this model.

• Forecastingmodels #9 (TFT): After multiple regressions
on all three applications, 14 input chunk size, 1 output
chunk size,4 lstm layers, 56 batch size,300 epochs, and
0.1 dropout yielded the optimal result for this model.

• Forecasting models #10 (LightGBM): After multiple
regressions on all three applications, 1 lags, 1 output
chunk size, and poisson likelihood yielded the optimal
result for this model.

• Forecasting models #11 (XGBoost): After multiple
regressions on all three applications, 1 lags, 1 output
chunk size, and poisson likelihood yielded the optimal
result for this model.

• Forecasting models #12 (CatBoost): After multiple
regressions on all three applications, 1 lags, 1 output
chunk size, and poisson likelihood yielded the optimal
result for this model.

• Forecasting models #13 (Ensemble Model): After mul-
tiple regressions on all three applications, 14 steps back-
ward and 1 step forward, yielded the optimal result for
this model; we empirically tested with a higher step
count, but they offered no better results than the order
14 steps, and 1 step forward and took more time to
execute.

TABLE 2. Each forecasting model with its optimal parameter(s).

Table 2 summarizes all models used in our study, including
parameters used for eachmodel during its operation under our
ensemble model.

D. RESULTS
The prediction models presented in this work forecast the
CPU and RAM resources, using the parameters specified in

25014 VOLUME 11, 2023

M. Samir et al.: Proactive Auto-Scaling Approach of Production Applications Using an Ensemble Model

Section III-B. the reported results were produced by running
each model with its perspective parameters on each month
separately with a ratio of 75% training and 25% for testing.

When reporting the results, we will be reporting the results
of Application [A] and Application [B] within the same fig-
ures, and Application [C] results will be reported in separate
figures due to the variance in the used scale between those
applications. Such variance is attributed to the difference in
the data size between those applications. For instance, the
application [A] data set is of size 5.7 megabytes due to its
being a medical system, whereas the dataset of application
[C] is of size 1.60 megabytes due to its being an HR system.

In those sections, we will explore the error variance results
of the ensemble model and compare its accuracy to the
accuracy of the models that the ensemble model is built on,
in terms of MAE and RMSE, applying each of the different
models individually to the same dataset.

1) CPU PREDICTION ERROR VARIANCE RESULTS
Fig. 2 shows the CPU MAE results for Applications [A] and
[B], whereas Fig. 3 shows the CPUMAE results for Applica-
tion [C]. For application [B], our ensemble model performed
better than all the other models, while for applications [A]
and [C], our model scored second place with a very small
difference from the first place.

FIGURE 2. CPU MAE results for application [A] and application [B].

Fig. 4 shows the CPU RMSE results for Applications [A]
and [B], whereas Fig. 5 shows the CPU RMSE results for
Application [C]. For application [B], our ensemble model
performed better than all the other models, while for appli-
cations [A] and [C], our model scored second place with a
very small difference from the first place.

FIGURE 3. CPU MAE results for application [C].

FIGURE 4. CPU RMSE results for application [A] and application [B].

2) RAM PREDICTION ERROR VARIANCE RESULTS
Fig. 6 shows the RAMMAE results for Applications [A] and
[B], whereas Fig. 7 shows the RAM MAE results for Appli-
cation [C]. Our ensemble model came second for application
[A], third for Application [B], and first for application [C].

Fig. 8 shows the RAM RMSE results for Applications
[A] and [B], whereas Fig. 9 shows the RAM RMSE results
for Application [C]. Our ensemble model came second for

VOLUME 11, 2023 25015

M. Samir et al.: Proactive Auto-Scaling Approach of Production Applications Using an Ensemble Model

FIGURE 5. CPU RMSE results for application [C].

FIGURE 6. RAM MAE results for application [A] and application [B].

application [A], fifth for Application [B], and second for
application [C].

3) PREDICTION SAMPLE
Table 3 and Table 4 show an example of running the ensemble
model on Application [A] CPU data and Application [C]
RAM data. As can be seen in Table 3, the difference between
the predicted usage for CPU for Application [A] and actual

FIGURE 7. RAM MAE results for application [C].

FIGURE 8. RAM RMSE results for application [A] and application [B].

usage is minimal (less than 0.2 core) for the first bolded
row in the table, which is quite acceptable for a production
environment like Cegedim, which scales its cores by 2 cores
minimum for each request.

The Same pattern holds for Table 4, as the difference
between the predicted usage for RAM For Application [C]
and actual usage is very small (less than 33 Megabytes) for
the first bolded row in the table, which is quite acceptable

25016 VOLUME 11, 2023

M. Samir et al.: Proactive Auto-Scaling Approach of Production Applications Using an Ensemble Model

TABLE 3. CPU prediction results by PAF for application [A] on January 2022 across its 5 VMs from A [1], [2], [3], [4], [5] in CPU Cores.

TABLE 4. RAM prediction results by PAF for application [C] on December 2021 across its 2 VMs from C [1], [2] in Giga RAM.

FIGURE 9. RAM RMSE results for application [C].

for a production environment like Cegedim, which scales its
RAM by 2 Gigabyte minimum for each scaling request.

V. LIMITATIONS
Our framework was intended to hook into a cloud environ-
ment, read the application of interest resources logs, and scale
the resources automatically on the cloud environment without
human intervention according to the ensemble model’s pre-
diction. However, unfortunately, the IT department rejected
such an approach as they did not want to automate resource
allocation, especially on costly production apps. So they
advised that the predictions are sent to them by e-mail each
week so they can choose to scale or not.

VI. CONCLUSION AND FUTURE WORK
From the above results, we can conclude that:
• Forecasting resources for production applications as an
idea is quite feasible, given that the errormargin between
the prediction and the actual result of resource utilization
is very low compared to the smallest scaling unit for a
production environment like the cegedim cloud hosting
service.

• Using state-of-the-art machine learning models and neu-
ral networks only is not a good approach to solving
the proactive auto-scaling problem, as the N-Hits and
TFT may have good accuracy in predicting the resource
demand for application [B] and application [C], but had

VOLUME 11, 2023 25017

M. Samir et al.: Proactive Auto-Scaling Approach of Production Applications Using an Ensemble Model

a lousy accuracy in predicting the resource demand for
application [A] compared to oldermodels like SVMAnd
LSTM. That is why combining all models (old and new)
under one ensemble model provided a proper resource
prediction for all three applications.

• No optimal model can predict all cloud resources,
as seen from the above results. For example, application
[A] best model for Ram Prediction in terms of MAE is
the Moving average, while for application [B], it was
LSTM, but in all cases, our Ensemble model ranked
second or third best accurate model in prediction and
sometimes ranked the best accurate model as the case for
application [B] CPU and application [C] RAM. More-
over, that is the beauty of ensemble models that always
try to be near optimum.

• Since deep learning models like LSTM, Facebook
prophet, N-Hits, and TFT take a long time to run in
comparison to statistical models like Moving Average
and gradient boosting Models like XGboost that take
few seconds, And given that the margin of error between
deep learning models and statistical and gradient boost-
ing models is not that large. Owners of the prediction
models may be persuaded to switch off deep learn-
ing models and make the ensemble model work with
only statistical and gradient boosting models to have a
quicker prediction and performance from the proactive
framework.

Our work has many future research directions inspired by
current AI trends [10], [11]:
• Proactive Load Balancer: Our framework has the poten-
tial to predict the needed number of containers or VMS
needed by the applications. If we research how to inte-
grate it into a load balancer, we can create a proac-
tive load balancer that scales the application before the
demand arises.

• Operation Plan Proactive Scaler framework: Our frame-
work can be modified to forecast other application
resources like network, physical memory, and even the
number of containers or VMS needed by the applica-
tion at any given time; accordingly, we can utilize our
framework to scale multiple resources at any given time
to achieve an operation plan made by the cloud operator,
for instance, the cloud provider may require some appli-
cation to provide high availability, low cost, or support
energy saving mode. In such a case, our framework
could have an operation plan proactive autoscaler may
analyze and execute some scaling according to such a
plan.

• Faster Proactive Auto Scaler framework: Integrating
a Machine Learning-based optimization engine might
increase the overall performance of the proactive auto
scaler framework since it builds specific ML models
for workload characterization and performance analysis
based on analysis of monitoring data and system logs.

• Autonomous Proactive Auto Scaler: currently, our
framework only provides scaling predictions to the

DevOps team, and the DevOps team decides to scale.
In the future, we need to investigate what will hap-
pen to the applications given that the framework makes
the scaling decisions without the interventions of the
DevOps team and if, in such scenarios, any problems
arise to the applications that might cause violations of
the application SLA agreement.

AVAILABILITY OF DATA AND MATERIALS
The input data chosen to train and evaluate the ensemble
model proposed in this work were obtained from real pro-
duction applications hosted on cegedim cloud environment.

These input and test data sets are available as supplemen-
tary material to this manuscript and at link.

The link for the implemented proactive scaling framework
in this manuscript is also available as on open source project
at this link.

ACKNOWLEDGMENT
Cegedim for providing the production data and support while
development is greatly acknowledged.

REFERENCES
[1] R. Moreno-Vozmediano, R. S. Montero, E. Huedo, and I. M. Llorente,

‘‘Efficient resource provisioning for elastic cloud services based on
machine learning techniques,’’ J. Cloud Comput., vol. 8, no. 1, Dec. 2019.

[2] E. G. Radhika, G. S. Sadasivam, and J. F. Naomi, ‘‘An efficient predictive
technique to autoscale the resources for web applications in private cloud,’’
in Proc. 4th Int. Conf. Adv. Electr., Electron., Inf., Commun. Bio-Inform.
(AEEICB), Feb. 2018.

[3] C.-H. Lee, Z. He, Z. Li, X. Lu, J. Wang, and C. Wu, ‘‘A comparison of
machine learning algorithms for automatic cloud resource scaling on a
multi-tenant platform,’’ J. Phys., Conf. Ser., vol. 1828, no. 1, Feb. 2021,
Art. no. 012039.

[4] J. V. B. Benifa and D. Dejey, ‘‘RLPAS: Reinforcement learning-based
proactive auto-scaler for resource provisioning in cloud environment,’’
Mobile Netw. Appl., vol. 24, no. 4, pp. 1348–1363, Aug. 2019.

[5] M. S. Aslanpour and S. E. Dashti, ‘‘Proactive auto-scaling algorithm
(PASA) for cloud application,’’ Int. J. Grid High Perform. Comput., vol. 9,
no. 3, pp. 1–16, Jul. 2017.

[6] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, ‘‘A review of auto-
scaling techniques for elastic applications in cloud environments,’’ J. Grid
Comput., vol. 12, no. 4, pp. 559–592, Dec. 2014.

[7] G. Box, ‘‘Box and Jenkins: Time series analysis, forecasting and control,’’
in A Very British Affair, 2013, pp. 161–215.

[8] J. Jiang, J. Lu, G. Zhang, and G. Long, ‘‘Optimal cloud resource auto-
scaling for web applications,’’ in Proc. 13th IEEE/ACM Int. Symp. Cluster,
Cloud, Grid Comput., May 2013.

[9] N. Roy, A. Dubey, and A. Gokhale, ‘‘Efficient autoscaling in the cloud
using predictive models for workload forecasting,’’ in Proc. IEEE 4th Int.
Conf. Cloud Comput., Jul. 2011.

[10] S. S. Gill et al., ‘‘AI for next generation computing: Emerging trends and
future directions,’’ Internet Things, vol. 19, Aug. 2022, Art. no. 100514.

[11] Z. Zhong, M. Xu, M. A. Rodriguez, C. Xu, and R. Buyya, ‘‘Machine
learning-based orchestration of containers: A taxonomy and future direc-
tions,’’ ACM Comput. Surv., vol. 54, no. 10, pp. 1–35, Jan. 2022.

[12] C. Challu, K. G. Olivares, B. N. Oreshkin, F. Garza, M. Mergenthaler-
Canseco, and A. Dubrawski, ‘‘N-HiTS: Neural hierarchical interpolation
for time series forecasting,’’ 2022, arXiv:2201.12886.

[13] B. Lim, S. Ö. Arık, N. Loeff, and T. Pfister, ‘‘Temporal fusion transformers
for interpretable multi-horizon time series forecasting,’’ Int. J. Forecasting,
vol. 37, no. 4, pp. 1748–1764, Oct. 2021.

[14] T. Toharudin, R. S. Pontoh, R. E. Caraka, S. Zahroh, Y. Lee, and
R. C. Chen, ‘‘Employing long short-term memory and Facebook prophet
model in air temperature forecasting,’’ Commun. Statist.-Simul. Comput.,
vol. 52, no. 2, pp. 1–24, 2021.

25018 VOLUME 11, 2023

M. Samir et al.: Proactive Auto-Scaling Approach of Production Applications Using an Ensemble Model

[15] Z. M. Omer and H. Shareef, ‘‘Comparison of decision tree based ensemble
methods for prediction of photovoltaic maximum current,’’ Energy Con-
vers. Manage., X, vol. 16, Dec. 2022, Art. no. 100333.

[16] M. Xu, C. Song, S. Ilager, S. S. Gill, J. Zhao, K. Ye, and C. Xu, ‘‘CoScal:
Multifaceted scaling of microservices with reinforcement learning,’’ IEEE
Trans. Netw. Service Manage., vol. 19, no. 4, pp. 3995–4009, Dec. 2022.

[17] M. S. Aslanpour, A. N. Toosi, R. Gaire, and M. A. Cheema, ‘‘Auto-
scaling of web applications in clouds: A tail latency evaluation,’’ in Proc.
IEEE/ACM 13th Int. Conf. Utility Cloud Comput. (UCC), Dec. 2020.

[18] M. Xu, C. Song, H. Wu, S. S. Gill, K. Ye, and C. Xu, ‘‘EsDNN: Deep
neural network based multivariate workload prediction in cloud computing
environments,’’ ACM Trans. Internet Technol., vol. 22, no. 3, pp. 1–24,
Aug. 2022.

[19] D. Buchaca, J. L. Berral, C. Wang, and A. Youssef, ‘‘Proactive container
auto-scaling for cloud native machine learning services,’’ in Proc. IEEE
13th Int. Conf. Cloud Comput. (CLOUD), Oct. 2020.

[20] J. L. Berral, C. Wang, and A. Youssef. (Aug. 29, 2020). AI4DL:
Mining Behaviors of Deep Learning Workloads for Resource Man-
agement. USENIX. Accessed: Sep. 5, 2022. [Online]. Available:
https://www.usenix.org/conference/hotcloud20/presentation/berral

[21] OW2. Rubis. OW2 Projects—RUBiS. Accessed: Sep. 5, 2022. [Online].
Available: https://projects.ow2.org/view/rubis/

[22] OW2. Rubbos. OW2 Projects—RUBBoS. Accessed: Sep. 5, 2022.
[Online]. Available: https://projects.ow2.org/view/rubbos/

[23] The Apache Software Foundation Incubator.Olio. Accessed: Sep. 5, 2022.
[Online]. Available: https://incubator.apache.org/projects/olio.html

MOHAMED SAMIR received the B.Sc. degree in
computer science from the Faculty of Computers
and Information, Cairo University, in 2017, where
he is currently pursuing the M.Sc. degree in soft-
ware engineering with the Faculty of Computers
and Information.

He is also a Senior Software Engineer with
Cegedim, a health technology company-based
in Boulogne-Billancourt, France, in 1969. His
research interests include software evolution,
software architecture, and software testing.

KHALED T. WASSIF received the B.Sc. degree
(Hons.) in accounting from the Faculty of Com-
merce, Cairo University, in 1983, the Diploma
(master’s) degree in computer and information
science from the Institute of Statistical Studies
and Research, Cairo University, in 1986, and the
master’s and Ph.D. degrees in artificial intelli-
gence from Cairo University, in 1991 and 1998,
respectively.

He is currently a Professor with the Faculty of
Computers and Artificial Intelligence, Cairo University. He has supervised
or co-supervised 12 students on their Ph.D. dissertations and M.S. theses.
He has published 30 research papers in international journals and conference
proceedings. His research interests include machine learning, data mining,
web mining, case-based reasoning, big data, and knowledge engineering.
He is a Reviewer of the international Egyptian Informatics Journal and the
Egyptian Computer Science Journal.

SOHA H. MAKADY received the B.Sc. and M.Sc.
degrees (Hons.) in computer science from the Fac-
ulty of Computers and Information, Cairo Univer-
sity, Egypt, in 2002 and 2005, respectively, and
the Ph.D. degree in software engineering from the
University of Calgary, Canada, in 2015.

She is currently an Assistant Professor with the
Faculty of Computers and Artificial Intelligence,
Cairo University. She has supervised two M.Sc.
students and one Ph.D. student. She is also super-

vising three Ph.D. students and three M.Sc. students. She has ten refereed
research papers in international journals and conference proceedings. Her
research interests include software evolution, software architecture, and
software testing.

VOLUME 11, 2023 25019

