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ABSTRACT In this paper, a task scheduling problem for a cloud computing environment is formulated
by using the M/M/n queuing model. A priority assignment algorithm is designed to employ a new data
structure named the waiting time matrix to assign priority to individual tasks upon arrival. In addition to this,
the waiting queue implements a unique concept based on the principle of the Fibonacci heap for extracting
the task with the highest priority. This work introduces a parallel algorithm for task scheduling in which the
priority assignment to task and building of heap is executed in parallel with respect to the non-preemptive
and preemptive nature of tasks. The proposed work is illustrated in a step-by-step manner with an appropriate
number of tasks. The performance of the proposed model is compared in terms of overall waiting time and
CPU time against some existing techniques like BATS, IDEA, and BATS+BAR to determine the efficacy
of our proposed algorithms. Additionally, three distinct scenarios have been considered to demonstrate the
competency of the task scheduling method in handling tasks with different priorities. Furthermore, the task
scheduling algorithm is also applied in a dynamic cloud computing environment.

INDEX TERMS Fibonacci heap, cloud computing, preemptive scheduling, priority queue, task scheduling,
virtual machine.

I. INTRODUCTION
Cloud computing refers to the provision of on-demand
computing resources, including anything from software to
storage and processing power [1]. Due to technological
improvements, a wide range of sectors is now adopting
cloud computing applications to improve and streamline their
operations. These applications are accessible from different
geographical locations at any given time. It provides diverse
services across multiple sectors, including data storage,
social networking, education, medical management, and
entertainment, among others. Cloud computing services fall
into three broad categories: Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service
(SaaS). A public cloud is made available to the general public
on a pay-as-you-go basis, while a private cloud refers to a
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company’s or organization’s internal data centers that are not
accessible to the general public.

A cloud permits workloads to be easily installed and
scaled owing to the fast provisioning of a virtual or physical
machine [2]. In a cloud computing environment, multiple
virtual machines (VMs) can share physical resources (CPU,
memory, and bandwidth) on a single physical host, and
multiple VMs can share a data center’s bandwidth using
network virtualization. As there are usually many user
requests, a significant challenge is to efficiently schedule user
requests with a minimal turnaround time for tasks related to
user demands.

Task scheduling is used to schedule tasks for optimum
resource utilization by allocating specific tasks to certain
resources at specific times. Tasks are computational activities
that may necessitate diverse processing skills and resource
requirements such as CPU, memory, number of nodes,
network bandwidth, etc. Each task may have different
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criteria, such as task priority, a deadline for completion,
an estimated execution time, and so on. The task scheduling
problem covers two categories of users: cloud providers and
consumers. Cloud consumers seek to run their tasks to solve
problems of various scales and levels of complexity, whereas
resources from cloud service providers will be used to execute
custom tasks. Cloud consumers will benefit from prudent
resource selection and aggregation, while cloud providers
will gain from optimal resource utilization. Since many users
and applications share device resources, appropriate task
scheduling is essential and crucial [7].

Task scheduling in cloud computing includes two
basic types of scheduling approaches: preemptive and
non-preemptive scheduling methods. The VM is assigned
to the tasks for a specified amount of time in preemptive
scheduling, whereas in non-preemptive scheduling, the VM
is assigned to the task until it finishes.

Task scheduling and resource management allow cloud
providers to optimize revenue and resource usage to the
maximum extent possible. The scheduling and distribution of
resources appear to be significant bottlenecks in the effective
utilization of cloud computing resources. This bottleneck in
efficient scheduling in turn inspires researchers to explore
task scheduling in cloud computing. The fundamental
principle behind task scheduling is to arrange tasks to
attenuate time loss and boost performance. Systems without
a proper task scheduling feature may exhibit a longer
waiting period and even compel the less important tasks
towards starvation. Hence, scheduling strategies must include
important parameters like the nature, size, and execution time
of tasks as well as the availability of computing resources
when calculating task priority and finalizing scheduling
decisions.

In this paper, we address a time-efficient heuristic model
for task scheduling in a cloud computing environment. The
remainder of the paper is organized as follows: Section II
gives an overview of existing approaches. Section III
describes the proposed task scheduling model. Section IV
specifies an illustration of the proposed algorithms. Section V
demonstrates the experimental results and their comparisons
with the existing algorithms, and finally, the entire paper is
concluded in Section VI.

II. RELATED WORKS
In the work [3], the task scheduling problem is designed
using an integer linear program (ILP) formulation. The work
carried out in [4] finds the most suitable task for execution
by integrating the pairwise comparison matrix technique
and the Analytic Hierarchy Process (AHP). They use these
techniques to rank the tasks for effective resource allocation.
They also use an induced matrix to enhance the consistency
among the tasks.

In the paper [5], a multi-objective optimization problem for
scheduling tasks among VMs is formulated by considering
the parameters such as execution cost, transfer time, power
consumption, and queue length. They use Multi-Objective

Particle Swarm Optimization (MOPSO) and Multi-Objective
Genetic Algorithm (MOGA) to implement their model in the
Cloudsim toolkit environment. They conclude that MOPSO
is a better method than MOGA for solving such problems.
In order to minimize the overall makespan of a set of tasks,
the model [6] uses a Dynamic Adaptive Particle Swarm
Optimization algorithm (DAPSO). They also propose a task
scheduling algorithm that incorporates both the Dynamic
Adaptive PSO (DAPSO) algorithm and the Cuckoo Search
(CS) algorithm and is called MDAPSO. According to the
simulation results provided in this paper, MDAPSO and
DAPSO perform better than PSO.

The work carried out in [7] defines a divisible task schedul-
ing problem by using a nonlinear programming approach.
A divisible load scheduling algorithm has been proposed
in this work that takes network bandwidth availability into
account. The authors [8] propose an optimal task scheduling
algorithm by using Discrete Symbiotic Organism Search
(DSOS) algorithm. This work reveals that DSOS is well
suited to handling large-scale scheduling problems as it
converges more quickly than PSO for a wide search area.

A priority-based task scheduling algorithm is presented
in [9]. The priority is assigned to different tasks as per
their classification based on the deadline and minimum
cost. The work [10] presented a fault tolerance awareness
scheduling strategy based on the dynamic clustering league
championship algorithm (DCLCA), which would reflect the
currently available resources and reduce the premature failure
of autonomous activities. The paper [11] presents a dynamic
priority-based job scheduling algorithm where the priority
is dynamically set considering CPU usage, IO usage, and
job criticality. This algorithm decreases issues related to
starvation.

The work carried out in [12] uses Orthogonal Taguchi
Based-Cat Swarm Optimization (OTB-CSO) to optimize the
overall task processing time. A Scheduling Cost Approach
(SCA) is an approach proposed in [13] that can determine
the cost of CPU, RAM, bandwidth, and storage, with tasks
being prioritized based on the user’s budget. They compared
their work with FCFS and Round Robin Scheduling and
found their work to be better than FCFS and the Round
Robin Scheduling algorithm. The performance of different
scheduling approaches is discussed in [14] considering differ-
ent parameters like resource utilization, energy consumption,
etc.

The authors [15] propose a grouped task scheduling
(GTS) algorithm for task scheduling in a cloud computing
environment. They use quality of service as the scheduling
criteria. In this work, the tasks are first grouped into
five different categories and then scheduled in increasing
order of their execution time. In [16], various scheduling
strategies have been discussed for the effective usage of
resources so to minimize the power consumption and cost of
processing.

A computational framework is proposed in [17] for cloud
service selection and evaluation. This framework is an
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integration of the Analytic Hierarchy Process (AHP) and
Technique for Order Preference having Similarity to Ideal
Solution (TOPSIS). The task scheduling algorithm presented
in [18] uses the Genetic Gray Wolf Optimization Algorithm
(GGWO), where the GGWO algorithm is a combination of
the Gray Wolf Optimizer (GWO) and Genetic Algorithm
(GA).

Four task scheduling algorithms, namely CZSN, CDSN,
CDN, and CNRSN have been proposed by [19] for
multi-cloud environments that are heterogeneous by nature.
They use normalization techniques like z-score and decimal
scaling to propose the first two algorithms, respectively, while
the other two algorithms are based on distribution scaling and
nearest radix scaling, respectively.

A multi-objective hybrid strategy, which amalgamates
the desirable features of two algorithms, the bacteria
foraging (BF) algorithm and the genetic algorithm (GA),
is proposed in [20] for task scheduling in cloud comput-
ing. In the work [21], the proposed scheduling algorithm
is an integration of four techniques, namely, the modi-
fied analytic hierarchy process (MAHP), longest expected
processing time preemption (LEPT), bandwidth aware divis-
ible scheduling(BATS)+BAR optimization and divide-and-
conquer methods. The method [22] uses a queue to store
and manage all the incoming tasks to the system. The
task allocation is performed by assigning a priority to each
task. They use Hybrid Genetic-Particle Swarm Optimization
(HGPSO) algorithm for different tasks assignment.

The work carried out in [23] applies the mean grey wolf
optimization algorithm to minimize the overall makespan
and energy consumption in cloud computing networks.
Gravitational Search and Non-dominated Sorting Genetic
Algorithm (GSA and NSGA) have been found in [24]
to select the candidate VMs. The cloudlet scheduling
problem has been solved by applying the monarch butterfly
optimization algorithm [25].

The paper [26] presents an improved version of the
Moth Search Algorithm (MSA) for solving the cloud task
scheduling problem. Similarly, the scheduling algorithm [27]
uses a modified GA algorithm integrated with greedy strategy
(MGGS). An intelligent meta-heuristic algorithm has been
presented in [29] that combines the imperialist competitive
algorithm (ICA) and the firefly algorithm (FA). Genetic
algorithm has been used in [28] for task allocation among
the VMs in cloud computing. They use the CloudSim toolkit
for simulation purposes. A new method based on the nature
of the grey wolf has been proposed in [30] to select the best
scheduling algorithm. In the proposed method [31], tasks
are prioritized considering two factors, such as consumer
preferences and pre-defined criteria, using the Best-Worst
Method (BWM) as a light Multi-Criteria Decision-
Making (MCDM) technique for task scheduling in cloud
computing.

The paper [32] proposes a new heuristic method termed
Efficient Resource Allocation with Score (ERAS) for task
scheduling in a cloud computing network. A supervised

machine learning technique has been used in [33] to select
the best scheduling algorithm for effectively allocating tasks
to VMs.

The method proposed in [34] uses the Bumble Bee Mating
Optimization (BBMO) algorithm to optimize the makespan
of the tasks. Similarly, Total Resource Execution Time Aware
Algorithm (TRETA) can be found in [35] for solving the
task scheduling problem. In the work [36], a modified
Harris Hawkes Optimization (HHO) along with the simulated
annealing (SA) algorithm are used to propose the HHSOA
approach for job scheduling in cloud computing. Game
theory has been applied in [37] to propose a task scheduling
algorithm while considering the reliability of the balanced
tasks. In the work [38], the task scheduling problem is defined
as a multi-objective optimization model, and its solution
strategy includes the whale optimization algorithm (WOA).
Further, an Improved WOA is also proposed in this paper
for cloud task scheduling (IWC). A parental prioritization
earliest finish time (PPEFT) based scheduling algorithm has
been proposed in [39] for a heterogeneous environment. The
tasks are scheduled in the parental priority queue (PPQ)
on the basis of downward rank and parental priority. The
simulated results show this algorithm outperforms HEFT and
CPOP in terms of cost and makespan of schedules. An intel-
ligent scheduling mechanism has been proposed in [40]
that uses genetic algorithm based multiphase fault tolerance
(MFTGA) to schedule tasks over VMs. This strategy works
through four phases namely, the individual phase, local phase,
global phase, and fault tolerance phase. This scheduling
strategy was compared against GA and Adoptive Incremental
Genetic Algorithm (AIGA) in terms of execution time,
memory usage, overall energy consumption, SLA violation,
and cost. This comparison reveals the proposed strategy
to have better performance than its counterpart methods
discussed above. Ajmal et al. [41] proposed a hybrid task
scheduling approach that combines genetic algorithm and
ant colony optimization for the allocation of tasks to various
VMs. This work substantially decreased both execution
time and data center cost by an amount of 64% and 11%
respectively.

The works discussed so far are summarized in Table 1.
The abbreviations used in Table 1 are P - Preemptive,
NP - Non-preemptive, TAA - Task arrival assumption,
E - Evolutionary, and NE - Non-evolutionary. This table sug-
gests the following issues and challenges in task scheduling
for a cloud infrastructure thatmust be taken into consideration
while designing an efficient task scheduling model:

1) Efficiency of priority algorithms: Priority-based
scheduling algorithms must be time-efficient to
compute the priority of tasks while taking into account
important decision criteria such as waiting time,
execution time, etc.

2) Adoption of queuing model: The queuing model has
been adopted to accommodate the tasks in the system,
but its implementation details are missing in the
literature. Further, the general queue cannot be used
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here due to the randomness and dynamic nature of the
tasks.

3) Nature of task scheduling: Most of the methods only
concentrate on the non-preemptive allocation of tasks
among the VMs. However, in reality, we require a
method that can handle both the non-preemptive and
preemptive natures of task scheduling. Preemption of
tasks can occur due to many reasons as explained
in [42] even though it may cause some overheads.
However, in terms of waiting time, preemption of tasks
occurs due to minimizing the overall waiting time of
the tasks.

The main objectives of the work carried out in this paper,
which is an attempt to resolve the above-enumerated issues,
are presented below:

1) The task scheduling problem is formulated by using the
queuing model to minimize the overall waiting time for
each task.

2) A new data structure, namely the waiting time matrix,
is defined in the proposed scheduling model.

3) Another algorithm is introduced in this work to assign
priority to each incoming task based on its size.

4) A detailed implementation of the waiting queue is
presented, which uses a Fibonacci heap data structure.

5) A new parallel algorithm is proposed for the
non-preemptive and preemptive scheduling of tasks.

III. PROPOSED TASK SCHEDULING MODEL
The proposed task scheduling model for a cloud computing
environment consists of the followingmechanisms, which are
depicted in Figure 1:

1) An algorithm to assign the priority to each task upon
their arrival in the system, i.e., Priority assignment to
tasks (PAT)

2) A priority queue is implemented using a Fibonacci heap
3) Task Scheduling Algorithms (both non-preemptive and

preemptive)
4) A virtual machine associated with a queue called FIFO.

The task scheduling problem is NP-hard and is devised in the
following sub-section so that the overall waiting time of each
task must be minimized.

A. PROBLEM FORMULATION
Let there be n number of identical virtual machines denoted
by S1, S2 · · · , Sn at one data center. Users make the requests
by sending tasks to the cloud system to get the desired output.
Let total number of tasks T1,T2, · · · ·,Tm at a particular time
be m. The time required to send a task to the cloud and
receive back the results is defined as transmission time (TT ).
Similarly, the time taken by the VM to complete the execution
of a task is called processing time (TP). Thus, the turnaround
time of the task can be defined as:

TT (Ti) = TT (Ti) + TP(Ti) (1)

If a task needs to wait before its execution, equation (1) can
be rewritten as:

TT (Ti) = TT (Ti) + TP(Ti) + TW (Ti) (2)

where TW (Ti) is the waiting time of task Ti.
In a cloud computing environment, the inter-arrival time

and service time of the tasks can be assumed to be
exponentially distributed [48] and thus followM/M/n queue
model [49]. Let α be the mean rate of arrival and β be the
mean service rate, then the probability that VMs are busy [44]
is expressed as:

PBusy =
α

n× β
(3)

The mean number of tasks in the queue can be computed by
using the following equation:

QM =

P0(α
β
)nPBusy

n!(1 − PBusy)2
(4)

where P0 is the probability that there is 0 number of tasks in
the system [44] and is expressed as:

P0 =
1∑n−1

i=0
(nPBusy)i

i! +
(nPBusy)n

n!(1−PBusy

(5)

The mean waiting time [44] in the queue can be calculated by
using equation(4) i.e.

TW =
QM
α

(6)

Thus, the turnaround time of a task can be expressed by using
equations(2) and (6) as:

TT (Ti) = TT (Ti) +
1

β(Ti)
+
QM (Ti)

α
(7)

The turnaround time of a task (Ti) can be minimized by
minimizing the mean waiting time of the task in a queue
since the transmission time and processing time of a task is
normally fixed for a task. Thus, theminimization problem can
be formulated as follows:

Minimize:
m∑
i=1

(
QM (Ti)

α
) (8)

such that the following constraints can be satisfied:

1 ≤ QM ≤ m (9)

αl ≤ α ≤ αu (10)

and

P0,PBusy < 1 (11)

The constraint (9) ensures that there must be an upper
bound(m) to the mean number of tasks present in the system.
The second constraint i.e. (10) defines a lower and upper
bound to the task arrival rate without which the system
will become highly volatile and unstable. The values of
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TABLE 1. Summary of related work.

the lower and upper bound to the task arrival rate are
system dependent [44](however, this work suggests any
value between 1 and 65 can be a profitable task arrival
rate measured per second). Both the probability terms in
constraint (11) are tightly bound by 1 otherwise it will lead to
an indefinite turnaround time.

B. PRIORITY ASSIGNMENT TO TASKS (PAT)
Every task remains in the queue after its arrival in the
system. The priority of each task must be computed for
its subsequent execution while minimizing its waiting time.
Thus, if two tasks (Ti and Tj) are waiting for VM with
priority values x and y respectively, the task Ti is executed
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FIGURE 1. Proposed scheduling model.

before Tj iff x > y to minimize overall waiting time of the
tasks i.e.
Ti ≻ Tj iff x > y, where ≻ represents the ordering of task.
The processing time is the aspect to consider when

prioritizing tasks since it depends largely on the size of
the tasks in almost all cases. The following heuristic func-
tion [47] is used to approximate the execution time of each
task:

PT (Ti) =
size(Ti) × n× 8

MIPS
(12)

where n specifies the n-bit architecture and MIPS represents
a million instructions per second.

A new data structure called a waiting time matrix is
proposed whose elements are defined below:

1) The diagonal elements are set to 1.
2) Assuming a sequential execution of the tasks as

per their arrival, the waiting time for each task is
calculated and placed in the upper part of the diagonal
of the matrix. e.g. if the ordering of the tasks is
T1 ≻ T2 ≻ T3 ≻ T4,
the waiting time for WT (T1) = 0,
WT (T2) = PT (T1),
WT (T3) = PT (T1) + PT (T2)
and WT (T4) = PT (T1) + PT (T2) + PT (T3)

1 WT (T2) WT (T3) WT (T4)
− 1 WT (T3) WT (T4)
− − 1 WT (T4)
− − − 1


3) The lower part of the diagonal of this matrix represents

the reverse ordering of the tasks and is filled with the
reciprocal value of the waiting time.

Algorithm 1 Priority_Assignment_to_Task(Task)
1: while True do
2: for each task Tk do
3: Calculate the waiting time WT (Tk )
4: end for
5: Generate the waiting matrix WM
6: Compute eigen vector (egvt) and eigen value (egv) of

WM
7: let λmax = max(egv)
8: compute consistency index (CI)= λmax−m

m−1
9: compute consistency ratio(CR)= CI

RI
10: if CR < 0.1 then
11: break
12: else
13: decrease WT (Tk ) (i.e. the task with maximum

waiting time)
14: end if
15: end while
16: for k=1 to m do
17: Priority(Tk )=1- maximum eigen value of egvt(k)
18: end for

Thus, the waiting matrix is represented as:
1 WT (T2) WT (T3) WT (T4)
1

WT (T2)
1 WT (T3) WT (T4)

1
WT (T3)

1
WT (T2)

1 WT (T4)
1

WT (T4)
1

WT (T3)
1

WT (T2)
1


Time complexity of Priority_Assignment_to_Task
The while loop (step-1) can be executed up to a number

of tasks i.e. m times in the worst case for which the
waiting time is decreased for each task. The calculation
of the waiting time of m tasks involves a worst-case time
complexity of (m2)which supersedes all other operations of
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the algorithms. Thus, the worst-case time complexity of the
proposed Priority_Assignment_to_Task algorithm is found to
be (m3).

From the above discussion, the following observation can
be made for the priority value computed for a task:
Lemma 1: The priority value for each task lies within

0 and 1.
Proof: As the priority is assigned based on the eigenvalue

and eigenvector, it must lie between 0 and 1.

C. REPRESENTATION OF THE WAITING QUEUE
The task, upon its arrival in the system, will be assigned
a priority using the algorithm and will be appended to the
queue. Since each task is assigned a certain priority, a priority
queue is preferred here over any other type of queue. This
priority queue is implemented by using a Fibonacci heap [24]
due to the following facts:

1) It has a height of hwhen it contains 2h number of nodes
and thus accommodates a very large number of tasks
(Table 2).

2) The amortized time complexity is proven to be substan-
tially more efficient than that of many other priority
queue data structures. An explanation of amortized
time complexity can be found in [46].

3) The worst case time complexity of basic operations
such as creation, insertion, and the union isO(1) while
its extraction of maximum requires O(m).

In Fibonacci heaps [45], each node x contains a pointer p[x]
to its parent, as well as a pointer child[x] to any of its children.
The children of x are connected together in the child list of x
through a circular doubly linked list. Each child y in a child
list has left[y] and right[y] pointers that point to y’s left and
right siblings, respectively. Left[y] = right[y] = y, if node y
is the only child.

Initially, when the Fibonacci heap (H) is empty, new
tasks based upon their priority values are inserted into
the Fibonacci heap by Fib_Heap_Insertion(H, element).
Fib_Heap_Union(H1,H2) performs the union operation
between two heaps (H1,H2). The extraction of the max-
imum element of the Fibonacci heap is performed by
Fib_Heap_Extraction_Max(H ). To reduce the number of
trees in the Fibonacci heap, the heap is rebuilt by using
Rebuild(H ). An example of the same is presented in Figure 2.
The details of this operation can be found in [46].

Fib_Heap_Extraction_Max(H ) is the most significant
operation in the Fibonacci heap. This process involves
removing the node from the heap that has the highest value
and readjusting the heap. This operation proceeds through the
steps illustrated in the following example.

1) Initially, the root nodes are 0.84, 0.99, and 0.96.
2) The max-pointer marks 0.99 as the maximum valued

node.
3) Fib_Heap_Extraction_Max(H ) extracts the maximum

valued node, i.e., 0.99.

FIGURE 2. Graphical representation of heap data structure used in
priority queue.

TABLE 2. Number of tasks vs the height of Fibonacci heap.

4) This extraction operation makes the child node 0.99,
i.e., 0.44, the root node.

5) The max-pointer now points to node 0.96.
6) As 0.84 and 0.44 have the same degree, they are united,

making 0.84 the root and 0.44 its child.
Thus, the final heap is built after the extract-max
operation.

These steps are repeated for each extract-max operation to
be performed subsequently.

D. PROPOSED TASK SCHEDULING ALGORITHM
When a task enters the system, its priority is computed
and added to the Heap queue. The scheduling algorithm
must allocate VM to the task with the highest priority. This
allocation is implicitly true unless any new task arrives with
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a higher priority than the currently running tasks. When it
comes to accomplishing a certain task, the former adheres
to its non-preemptive nature, whereas the latter adheres to
its preemptive nature. Moreover, both time and memory
are saved by adopting non-preemption of tasks. However,
preemption of tasks though being less efficient in terms of
CPU time and memory can not be avoided. Hence, it is
necessary to switch between these methods for efficient task
completion. However, this switching cannot be accomplished
by sequential algorithms in which priority is calculated first
and then the task is scheduled. Thus, the priority assigned to
the task along with the building of the Heap must be executed
concurrently with the scheduling algorithm. As initially there
is no task in the system, the heap must be built first and then
only the tasks can be scheduled, which in turn requires that for
the arrival of each α number of tasks, the priority assignment
and Heap construction must be accomplished while during
the next the arrival of α number of tasks, the task must be
allocated. In order to the above discussed steps, a parallel
scheduling algorithm is proposed for optimizing the overall
waiting of tasks. The algorithm uses the following operations
and data structures:

1) The status of each Si is defined as: Si.Busy() = 1 if the
VM Si is currently executing a task(Tj) else Si.Busy() =

0 indicating it is free.
2) Assign the task Tj to the VM Si, i.e., Si(Tj)
3) ts− the time stamp recorded for each task as it arrives

in the system
4) WT (Tk )− waiting time of ith task
5) WT (Si,Tk )− ith task waits for ith S, where S is the VM
6) FIFO - a queue to store the preempted tasks by a VM
7) Heap and FIFO are the global data structures

During the initial execution of the proposed algorithm,
priority is assigned to the tasks. Then, the Heap is built
in terms of the descending order of priority values of the
tasks. The building of the heap is executed concurrently with
the scheduling of the tasks (while Heap ̸= φ). The first
step of this part of the algorithm delays its execution by a
time of α ms in order to allow the building of heap of α

number of tasks. In the Parallel_Task_Scheduling_algorithm,
the assignment of priority to tasks and the building of
Heap proceeds in parallel with the scheduling of tasks.
If the arrival rate is α, α number of tasks are assigned
with priority and then Heap is built for these tasks. The
timestamp of each task(ts) is recorded. If Tj is the extracted
task from the Fibonacci heap, its ts is compared against
each TkϵHeap only when there are no free VMs. The truth
of this condition leads to task preemption and accordingly
Preemptive_task_scheduling is executed. Failing of the above
condition executes Non-preemptive_task_scheduling. The
last for loop of this algorithm is used to calculate the
waiting time of each task by considering across the VMs
(i.e. WT (Si,Tk ) if Si(Tk ) = True). The flow control of
the proposed algorithm for task scheduling is depicted in
Figure 3.

Algorithm 2 Parallel_Task_Scheduling_algorithm(Task)

do in parallel
for arrival of each α no. of tasks do

try{
Priority_Assignment_to_Task(Task) where Task=
T1,T2, . . . ,Tα

}
if Heap=NIL then

try{ Fib_Heap_Insertion(Heap,T) for each new
task(T) }
WT (Tk ) = 0 for each TkϵHeap

else
for new task(Tj) do

try{ Fib_Heap_Insertion(H ,Tj) }
WT (Tj) = 0

WT (Si,Tk ) = 0 for each TkϵH and SiϵS
try{ Fib_Heap_Union(Heap,H) }

catch()
{
report the error message
Rebuild(Heap) and Restart execution
}

while Heap ̸= φ do
delay(α ms)
try{
Tj = Fib_Heap_Extraction_Max(Heap)
}
if ts(Tj) ≥ ts(Tk ) ∀ TkϵHeap and ∀ Si = 1 and
key[Tj] > key[Si(Tk )]∀i, k then

try{ execute Preemptive_task_scheduling
}

else
try{ execute Non-preemptive_task_scheduling
}

for each VM Si do
for each task Tk do

WT (Tk ) = WT (Tk ) + WT (Si,Tk ) if
Si(Tk )=True

catch()
{
report the error message
Rebuild(Heap) and Restart execution
}

Error handling mechanism in Parallel_Task_Scheduling
algorithm-

In order to handle, the different types of errors such as task-
specific errors, heap-specific errors, running time errors, etc,
each error-sensitive step of this algorithm are embedded by
a try block. The catch block used in this algorithm is used
to report the errors, rebuild the heap, and then restart the
execution (details can be found in [42]).
Time complexity of Parallel_Task_Scheduling_ algorithm-
The worst-case time complexity of for loop is O(α).

The worst-case time complexity of the while loop is
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FIGURE 3. Flowchart of the proposed parallel task scheduling algorithm.

Algorithm 3 Non-preemptive_task_scheduling(Task)
1: bool=False
2: for each VM Si do
3: if Si.Busy() = 0 then
4: assign Si withTj=Fib_Heap_Extraction_Max(Heap)

5: bool = True
6: else if bool=True then
7: for each TkϵHeap do
8: WT (Si,Tk ) = WT (Si,Tk ) + PT (Si(Tj))
9: end for
10: end if
11: end for

O(|Heap| × n). The heap can accommodate m num-
ber of tasks in the worst-case scenario. Thereby, the
worst case time complexity of the proposed algorithm
2 i.e. Parallel_Task_Scheduling_algorithm is found to be
O(m× n).

1) NON-PREEMPTIVE TASK SCHEDULING ALGORITHM
Non-preemptive task scheduling involves steps mentioned in
Non-preemptive_task_scheduling.

In algorithm 3, the Boolean variable bool is used to
determine the waiting time of the remaining tasks (step-1).
The new task must wait if any other task is assigned to any
of the VM and their waiting time is updated accordingly.
This happens for bool=True (steps 6-9). However, for
bool=False, the tasks must also wait but their waiting
time must not be updated (since these have been updated
earlier during the assignment of the previous task to
the VM).

Time complexity of Non-preemptive_task_scheduling()
The for loop(step-2) of theNon-preemptive_task _schedul-

ing() can execute up to a maximum of n number of times
where n is the number of VMs. The nested for loopmentioned
in step-7 of this algorithm is executed up to a maximum
number of times equal to the heap size. In the worst-case
scenario, the heap can accommodate m number of tasks,
thus, the overall worst-case time complexity of the proposed
Non-preemptive_task_scheduling() algorithm is found to be
O(m× n).

2) PREEMPTIVE TASK SCHEDULING ALGORITHM
The steps involved in preemptive task scheduling are:

1) The preemption of tasks occurs when any task executed
by the processor has less priority than the tasks which
are waiting.

2) In order to ensure that no task waits for an indefinite
amount of time(i.e. starvation problem), the priority
of each task waiting for VM is updated by a small
amount (i.e. reciprocal to its size) after each preemption
operation.
Key[Tj] = Key[Tj] +

1
size[Tj]

size[Tj] is taken into account to preserve the initial
priority ordering. The heap is rebuilt to update only the
key values without any structural alteration.

Steps 4–11 of the proposed algorithm 4 are used to check
whether any task from FIFO can be allocated to the available
VM. The waiting time for each task is updated by using
steps 14–16. Steps 17-29 are used for preemption of the
running task and to assign the VM to the newly arrived
task with higher priority than the priority of the running
task.
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Algorithm 4 Preemptive_task_scheduling(Task)
1: bool=False
2: FIFO = empty
3: for each VM Si do
4: if Si.Busy() = 0 then
5: Tj = Fib_Heap_Extraction_Max(Heap)
6: assign Si = max(Tj,max(FIFO))
7: if key[Tj] is maximum then
8: for each TkϵFIFO do
9: WT (Si,Tk ) = WT (Si,Tk ) + PT (Tj)

10: end for
11: end if
12: bool=True
13: else if bool=True then
14: for each TkϵHeap do
15: WT (Si,Tk ) =WT (Si,Tk ) + PT (Si(Tj))
16: end for
17: else if Si.Busy() = 1 then
18: if key[Si(Tj)] ≤ key[Tk =

Fib_Heap_Extraction_Max(Heap)] then
19: FIFO.add(Tj)
20: assign Si with Tk
21: for each TkϵHeap do
22: WT (Si,Tk ) =WT (Si,Tk ) + PT (Si(Tj))
23: end for
24: for each TkϵFIFO do
25: WT (Si,Tk ) =WT (Si,Tk ) + PT (Si(Tj))
26: end for
27: end if
28: end if
29: end for
30: for each TkϵHeap do
31: Key[Tj] = Key[Tk ] +

1
size[Tk ]

32: Rebuild(Heap)
33: end for

Time complexity of Preemptive_task_scheduling()
The for loop(step-3) of the Preemptive_task _scheduling()

can execute up to a maximum of n number of times where
n is the number of VMs. The nested for loop mentioned
in step-14 of this algorithm is executed up to a maximum
number of times equal to the heap size. In the worst-
case scenario, the heap can accommodate m number of
tasks, thus, the overall worst-case time complexity of the
proposed Preemptive_task_scheduling() algorithm is found
to be O(m× n).

3) COMPLETENESS AND CONVERGENCE OF THE
PROPOSED PARALLEL SCHEDULING ALGORITHM
The proposed algorithm increases the priority of the waiting
tasks after every task preemption operation by a small
amount, i.e., Key[Tj] = Key[Tj]+ 1

size[Tj]
. Hence, no task will

wait for a long or indefinite time, which in turn assures the
convergence of the algorithm. Furthermore, the waiting time
of each task is considered to compute the overall waiting time,

TABLE 3. Four number of tasks with their size as per [21].

which shows that the algorithm is complete in terms of the
tasks.

IV. ILLUSTRATION
The proposed algorithms are illustrated by taking the
following four tasks (Table 3) and two VMs(S1, S2) with
configuration as per [21]:

The estimated processing time for each of the tasks is
calculated by using equation(12) and is shown in the third
column of Table 3. Comparing the actual processing time [21]
and estimated processing time, the heuristic adopted in this
work seems to be correct(except for the task1). Priority
Assignment to Task algorithm:

Step-5: The waiting matrix for the four tasks is
1 33.43 70.44 100.75

0.0299 1 70.44 100.75
0.0141 0.0299 1 100.75
0.0092 0.0141 0.0299 1


Step-6: The eigenvalue and the eigenvector are calculated

for the waiting time matrix WM. The absolute value of the
eigenvector is shown below:

0.77997646 0.77888532 0.77888532 0.77717669
0.19799301 0.20340335 0.20340335 0.21154905
0.02103499 0.02021466 0.02021466 0.01926724
0.0015625 0.00140796 0.00140796 0.00121732
1.0005669 1.00391128 1.00391128 1.00921030


Step-7: λmax = 9.3
Step-8: CI = 1.76
Step-10: SinceCR < 0.1 there is no decrease in waiting time.
Step-16:The absolute value of eigenvectors is normalized i.e.
the sum of each column equals to ≈ 1. The maximum value
of each eigenvector is extracted and is:

0.7799
0.2115
0.0210
0.0015


In order to minimize the waiting time, the priority

is calculated by subtracting each maximum value from
1(Table 4).

Task scheduling:
Step-2: Since, the Heap is initially Nil
Step-3: Fib_Heap_Insertion(Heap,T1) will insert task T1 into
Heap. Subsequently, the following task will be inserted:
Fib_Heap_Insertion(Heap,T2)
Fib_Heap_Insertion(Heap,T3)
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TABLE 4. Tasks with priority and estimated processing time.

Fib_Heap_Insertion(Heap,T4)
Step-4 or 8: The waiting time of each task is set to 0.
Step-13: The root of the Heap contains task T4 as it has the
highest priority.
Step-14: Initially, S1.busy() = 0
Step-17: Execute Non-preemptive_task_scheduling(Task)
Non-preemptive Task Scheduling:
Step-4: T4 is assigned to S1 by performing the opera-
tion Fib_Heap_Extraction_Max(Heap). Extraction of task
T4 from Heap makes T3 its root.
Task T3 is assigned to S2 as its status is 0.
Step-5: The above assignments set the variable bool=True,
which causes the tasks T2 and T1 to wait. Thus, their waiting
time is updated as follows:
Step-8: WT (S1,T1) = 0 + 30.31, WT (S2,T2) = 0 + 31.23
WT (S1,T2) = 0 + 30.31, WT (S2,T1) = 0 + 31.23
When S1 becomes free(i.e. status=0), the task T2 is assigned
to it, similarly, T1 is assigned to S2 when it will become free.
The final waiting time for each task is:
WT (T4) = 0,WT (T3) = 0,WT (T2) = 30.31 and WT (T1) =

31.23
The total waiting time amounts to WT (T ) = 61.54
Preemptive Task scheduling:
Suppose during the execution of T1 and T2 (which has already
been scheduled by a non-preemptive algorithm), a new task
(T5) with priority value (0.85) more than that of T1 and
T2 enters the system having execution time of 30. Since
the priority of the tasks is now in the order key[T5] >

key[T2] > key[T1], the preemptive algorithm preempts the
task T1 to the waiting state and assigns VM to task T5. Let
15 and 16 remaining times for completion of the task T2 and
T1 respectively.
Step-5: T5 = Fib_Heap_Extraction_Max(Heap)
Step-18: Since key[T1] < key[T5]
Step-19: FIFO.add(T1)
Step-20: Assign T5 to S2
Step-25: WT (S2,T1) = 31.23 + 30 = 61.23
Once the VM S1 completes the execution of T2, then the
scheduler checks for the priority value of the remaining tasks
present in the priority queue as well as all FIFO queues.
As there is only one task T1 which is in a waiting state, it will
be assigned to S1. So, the overall waiting time of task T1 will
be 31.23 + 30 = 61.23. Thus, the total waiting time for five
tasks is WT (T ) = WT (T1) + WT (T2) = 61.23 + 30.31 =

91.54.

V. RESULTS AND DISCUSSION
All the algorithms are simulated by Python 3.8 in anHP-Work
station with Intel Xeon W Processor(3 GHz, 10 cores,

and 20 MB Intel smart cache), 192 GB DDR4 SDRAM
(6×32 GB), and Ubuntu operating system. Virtual machines
are created by using Oracle VM Virtual box having the
configuration: 1 GB RAM, operating system - Ubuntu.

In subsection-V-A, the performance of the proposed
scheduling model in terms of the overall waiting time
is compared with some existing techniques like BATS,
IDEA, and BATS+BAR. The proposed scheduling model
is used to find the overall waiting time by considering
three distinct cases and the simulated results are discussed
in subsection-V-B. The behavior of the proposed algorithm
in a dynamic cloud computing environment is elucidated in
subsection-V-C.

A. COMPARISON
The Epigenomics tasks used in [21] have been executed by
following the Epigenomics scientific workflow. Many tasks
are executed in parallel to minimize the execution time. The
exact execution time is mentioned in Table 5 which is as
specified in [21]. However, the following are some of the
limitations of [21]:

1) In reality, there is no way to know the exact execution
time of a task before its actual execution. Hence, one
must obtain an expected execution time in order to
determine the priority to be assigned to different tasks.

2) The work done in [21] uses 20 VMs for 13 tasks, which
leads to the direct assignment of VMs to the tasks.
Hence, the tasks will not have any waiting time.

In order to compare the proposed PAT with BATS+BAR,
the VMs configuration as specified in [21] has been adopted
here,i.e., 9600 MIPS, average RAM 512 MB. The exact
execution time(ET ) and expected execution time E(ET )of
different tasks are presented in Table 5. Although the E(ET )
are not quite satisfactory when compared to their exact
execution time, still it provides a better approximation for
ranking the tasks in terms of some priority assignment.

In order to compare the total waiting time for these tasks,
8 VMs have been considered instead of 20.

The following observations can be inferred from Table 5:

1) The overall waiting time obtained by employing
BATS+BARover 13 tasks is 135.97which ismore than
that obtained by using the proposed method i.e. 134.73.

2) The expected execution time though being an approx-
imation can be effective enough to assign priority to
different tasks so as to minimize the overall waiting
time.

CPU-bound tasks are generated from [50] with size ≥

1 MB to 5 MB by using Apache-airflow 2.3.4 in a
Python environment to determine the efficiency of different
algorithms in minimizing the waiting time for large-sized
tasks.

The overall waiting time calculated by the proposed
method is compared against that obtained from BATS,
IDEA, and BATS+BAR for 25 tasks, 40 tasks, and 50 tasks
respectively (Figure 4). Figure 5 demonstrates the waiting
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TABLE 5. The priority assignment and waiting time of different tasks by BATS+BAR and Proposed PAT.

FIGURE 4. Waiting time obtained from BATS, IDEA, BATS+BAR, and
proposed method.

FIGURE 5. Waiting time obtained from BATS, IDEA, BATS+BAR and
proposed method upon arrival of five more tasks.

time obtained upon arrival of five more tasks (preemptive
scheduling). All these tasks are generated by using the
above mentioned method. 16 number of VMs are used each
with 9600 MIPS and 512 MB RAM. This figure entails
BATS+BAR to be more efficient than BATS and IDEA.
However, the proposed method outperforms BATS+BAR in
terms of the overall waiting time.

The total CPU time in millisecond to complete the
execution of all the tasks are shown for BATS, IDEA,

FIGURE 6. CPU time BATS, IDEA, BATS+BAR and proposed method.

FIGURE 7. Impact of priority of tasks on waiting time.

BATS+BAR, and the proposed method considering 30 tasks,
45 tasks, and 55 tasks respectively (Figure 6). The CPU time
of the proposed algorithm is very less as compared to the other
mentioned methods due to its parallel nature.

The impact of high-priority tasks on the waiting time of
low-priority tasks is shown in Figure 7. The low-priority
tasks such as task 14, task 11, task 24, task 16, and task 5
have at least a waiting time equal to the processing time of
high-priority tasks respectively.
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FIGURE 8. Impact of the size of tasks on waiting time of low and high
priority tasks.

FIGURE 9. Waiting time for Case-I.

Similarly, the impact of the size of tasks on the waiting
time of low and high-priority tasks is depicted in Figure 8.
The priority of each task is shown in addition to its waiting
time and size.

B. SCHEDULING OF TASKS IN CLOUD COMPUTING
ENVIRONMENT
The following three distinct cases have been taken to show
the efficiency of the proposed scheduling algorithm to assign
priority and schedule tasks while minimizing the overall
waiting time.

1) Case-I: Many tasks with low priority and few or no
ones with high priority
In order to have low-priority tasks, the very large-sized
tasks (≥ 5 MB) are generated by following the steps
mentioned earlier. The waiting time of 100 such tasks
is shown in Figure 9. This figure also makes it clear that
all the tasks are getting a fair chance for a successful
execution which in turn confirms the convergence of
the proposed algorithm to optimal solutions.

2) Case-II: Many tasks with high priority and few or no
ones with low priority
As explained above, small-sized tasks (≥ 10KB
to 1 MB) are used for this case. The waiting time for

FIGURE 10. Waiting time for Case-II.

FIGURE 11. Waiting time for Case-III.

100 tasks is depicted in Figure 10. This case also yields
results that are similar to those obtained in Case I.

3) Case-III:Many tasks with an equal number of high and
low priority tasks
Here, two categories of tasks are generated such as very
large-sized tasks (≥ 5 MB) and an equal number of
small-sized tasks (≥ 10KB to 1 MB). The behavior
of the scheduling algorithm for such tasks is shown
in Figure 11. This figure entails the fact that 50 high-
priority tasks have been executed with minimal waiting
time while rest 50 tasks contribute heavily towards the
overall waiting time of 386.25.

C. SCHEDULING OF TASKS IN DYNAMIC CLOUD
COMPUTING ENVIRONMENT
Dynamic cloud computing allocates the resources to the
tasks by automatically adapting to the changes in workload.
The proposed Task_scheduling algorithm is applied for task
scheduling in a dynamic cloud environment. Thewaiting time
for 500 tasks is shown in Figure 12. This figure depicts the
fact that initially when there are fewer tasks, only 16 VM are
considered for their execution. However, as per the increase
in the number of tasks, more number of VMs are allotted to
tasks to minimize the overall waiting time. Further, due to the
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FIGURE 12. Waiting time of 500 tasks under dynamic cloud computing
environment.

TABLE 6. 25 number of tasks scheduled by proposed model.

gradual increase in the number of allotted VMs, the waiting
time for the tasks is within the range of 0 to 60 which can be
observed in Figure 12.

D. THE VALIDATION OF THE PROPOSED SCHEDULING
ALGORITHM ON SYNTHETIC TASKS
Test case - 1

Here, 25 number of synthetically generated tasks are con-
sidered. The size of the tasks and their estimated processing
time are presented in Table 6. Each task is assigned a priority
value by using the algorithm. The non-preemptive scheduling
algorithm is used to assign each task to the VMs. The
calculated waiting time for each task is shown in Table 6.

Test case - 2
In order to validate the performance of the proposed

scheduling model in handling large number of computa-
tionally less intensive tasks, a varying number of tasks

TABLE 7. Arrival of five new tasks.

from 1000 to 10000 is generated (Table 7). The priority of
each task is calculated and then the tasks are allocated to
VMs by allowing preemption among the tasks. The number
of virtual machines is fixed to 64 in this case(however, it can
be changed as per the system configuration). The overall
waiting time ensures that the proposed scheduling model can
be applied even when the number of tasks is very huge.

VI. CONCLUSION
This paper emphasizes on task scheduling for the cloud
computing domain.We have introduced a priority assignment
algorithm built on a new data structure known as a waiting
time matrix for assigning priority to each task. The task with
the highest priority is extracted from the waiting queue by
adhering to the principle of the Fibonacci heap. We have
proposed a parallel algorithm for task scheduling where
task priority assignment and heap construction is carried
out in a parallel manner concerning the preemptive and
non-preemptive scheduling approaches. The efficiency of
the proposed algorithms has been tested using a variety of
benchmarks and synthetic data sets. The simulated results are
compared with the existing techniques like BATS, IDEA, and
BATS+BAR, and the comparison proves that our proposed
algorithms perform better in terms of optimizing the overall
waiting time as well as the CPU time consumed. Our
work also exemplifies three distinct scenarios to evaluate
the effectiveness of the proposed task scheduling approach
while dealing with tasks of different priorities. Furthermore,
a demonstration for applying a task scheduling algorithm in
a dynamic cloud computing environment is also provided
where the decision for virtual machine allocation is based on
the number of tasks in the system.
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