
Received 27 January 2023, accepted 20 February 2023, date of publication 10 March 2023, date of current version 4 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3255402

A Novel and Lightweight Real-Time Continuous
Motion Gesture Recognition Algorithm for
Smartphones
FARHAN SUFYAN 1, SUBHASH SAGAR 2, ZUBAIR ASHRAF 3, SHOAIB NAYEL4,
MOHD SAMEEN CHISHTI 1, AND AMIT BANERJEE 5, (Member, IEEE)
1School of Computing Science and Engineering, Galgotias University, Greater Noida, Uttar Pradesh 203201, India
2School of Information Technology, Deakin University, Melbourne, VIC 3125, Australia
3Department of Computer Engineering and Applications, GLA University, Mathura, Uttar Pradesh 281406, India
4International Organization for Migration (IOM), Kabul 1004, Afghanistan
5Department of Computer Science, South Asian University, New Delhi 110068, India

Corresponding author: Shoaib Nayel (snayel@iom.int)

ABSTRACT Advancement in smartphones has facilitated the investigation of new modalities of human-
machine interaction, including communication through touch, voice, and gestures. In-depth, the researchers
examined the problem of recognizing distinct gestures (surface, hand, and motion). However, the gesture
recognition algorithm pitches discontinuity while the user performs the subsequent continuous gesture. The
discontinuity may occur due to the selection of a delimiter to differentiate between successive motions or
the employment of a complex algorithm to boost the accuracy of gesture detection, which takes significant
time to recognize the gesture before a user may enter the next gesture. Further, gesture recognition based
on template matching, machine learning models, and neural networks requires a lot of storage space,
processing resources, or both, which are resource-intensive for smartphones. This research proposes a novel
Axis-Point ContinuousMotion Gesture (APCMG) recognition algorithm that uses accelerometer sensor data
to recognizes continuous motion gestures in real time. The algorithm has low computational complexity and
easily implemented on resource-constrained devices with minimal computing cost, memory, and energy.
The prime objective of the APCMG is to find the start and end of a gesture from a continuous stream of
accelerometer sensor data and recognize the gesture in real-time. To demonstrate the APCMG efficacy, the
experimental simulation of the Android application for dialing a phone number is considered. The App
acknowledges 12 continuous gestures corresponding to 0 to 9 number, delete, and calls termination. The
experimental simulations collected 7500 gestures samples from the 25 volunteers. The algorithm efficiently
recognizes isolated and continuous gestures with 95% and 94% accuracy, respectively. The proposed
algorithm efficiently recognizes isolated and continuous gestures with minimal energy consumption.

INDEX TERMS Accelerometer, axis point, gesture recognition, continuous motion gesture (CMG).

I. INTRODUCTION
A. BACKGROUND
Smartphones equipped with sophisticated sensors are usher-
ing humans into a new paradigm of human-machine interac-
tion (HMI), which is user-friendly and natural. Smartphones
have a variety of inbuilt sensors, such as camera,

The associate editor coordinating the review of this manuscript and

approving it for publication was Michail Kiziroglou .

microphones, accelerometer, and gyroscopes. In HMI, sen-
sors capture human gestures, specifically voice, speech, and
movement, which are an alternative way of communication
with smartphones [1]. Human gestures are employed for a
variety of purposes, like biometric authentication [2], hands-
free interaction [3], visually blind persons [4], activity recog-
nition [5], and fall detection [6].

Gestures are meaningful physical movements of the fin-
gers, hands, arms, head, and face – i.e., communicative body

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 42725

https://orcid.org/0000-0002-5094-1103
https://orcid.org/0000-0001-8713-624X
https://orcid.org/0000-0001-7122-2856
https://orcid.org/0000-0003-3977-8488
https://orcid.org/0000-0002-0473-0823
https://orcid.org/0000-0002-0165-2508

F. Sufyan et al.: Novel and Lightweight Real-Time Continuous Motion Gesture Recognition Algorithm for Smartphones

movements [1]. Tracking various bodily movements and
positions is highly valuable for controlling the input param-
eters of the system. The process through which the system
becomes aware of a user’s gestures is called gesture recog-
nition [7]. Gesture recognition utilizes the readings from
sensors to capture the change of position, orientation, speech,
and expressions and then applies mathematical algorithms
to interpret the gestures as a command to the system [8].
The two most essential components of a gesture recognition
algorithm are gesture reading and gesture identification. The
gesture reading phase captures input information from the
sensors when the user performs the gesture. In the gesture
identification phase, the collected data is analyzed using the
mathematical approach to interpret the gestures performed by
the user [9].

Gestures are broadly classified as 1D, 2D, and 3D ges-
tures. 1D gesture refers to the touch buttons or taps used for
dialing and increasing/decreasing volume [10]. 2D gestures
are related to the touch-sensitive screen of a smartphone
and are mainly two types: surface gesture (e.g., swipe) [11],
and image-based gesture (e.g., fingerprint scan) [12]. 3D
gestures are utilized to identify the rotation and movements
of smartphones. 3D gestures are further classified as hand,
motion, and air gestures [13]. In hand gestures, the inbuilt
video camera of the device captures the hand movement and
analyzes it using image processing, and computer vision [14].
Motion gesture refers to the direction of hand-held devices
in physical space [15]. However, air gesture (or handwriting
gesture) is a special case of motion gesture associated with
alphabets, numerals, and symbols written in the air [16], [17].
The accelerometer, orientation, and gyroscope sensors realize
the user’s physical movement of the smartphone [18]. Special
hardware, such as the Leap Motion Controller [19] and the
Hand Data Glove [20], are used to collect 3D gesture input.
In the context of the Internet of Things (IoT), gestures can
be used to communicate with connected devices in a wide
variety of applications [21], [22]. Gestures are particularly
effective when conventional input methods, such as buttons
and keyboards, are impractical or inconvenient [23]. Ges-
ture recognition technology has the potential to significantly
improve the usability of Internet of Things (IoT) devices,
making them more accessible and convenient [24].

The challenges associated with gesture recognition has
been extensively explored by researcher worldwide [1], [5],
[25]. Techniques like template matching [26], [27], statis-
tical models [28], machine learning [29], and deep neural
networks [30] are actively engaged in developing efficient
methodologies and increasing the accuracy of gesture recog-
nition algorithms. The emergence of embedded technology
shifted the preference from desktop to mobile computing.
This transition makes the smartphone a default candidate
for the users to perform different types of gestures (motion,
surface, or voice) while interacting with various applications
rather than using specialized hardware in a limited environ-
ment. Due to the advancement in hardware technology, smart-
phones are becoming more resourceful in terms of processing

capability, memory, and battery [31]. However, despite such
improvements, smartphones are insufficient for supporting
computation-intensive or delay-sensitive applications and are
still considered resource-constrained smart devices [32]. It is
to be noted that the readings from the embedded sensor in
smartphones are continuous in nature. However, the gesture
recognition algorithm suffers from discontinuity [33], [34]
mainly due to (a) delimiters and (b) complex gesture iden-
tification algorithms.

A delimiter is used to differentiate between two gesture
inputs. The most commonly used delimiters are time-
gap [35], [36] and specific gesture [15]. The time-gap delim-
iter between two gestures provides a break in the input stream
from the sensors, which helps the gesture identification algo-
rithm to analyze the input for two distinct gestures. For
example, in FIGURE 1a, a user draws the gesture pattern
‘‘Gesture 1’’ and provides a time gap before entering the
following input ‘‘Gesture 2’’. Hence, there is a discontinuity
between the two gestures. In this case, if a user is entering
‘‘Gesture 1’’, the system must have some threshold limit to
allow the user to complete the gesture. The pause above the
threshold limit acts as a delimiter and initiates the recognition
algorithm to analyze the input gesture. On the other hand,
a specific gesture is used as a delimiter when hand pausing
between consecutive gestures is impossible, for instance, in
the case of handwriting and air gestures [16]. The extra
delimiters break the continuity to perform specific gestures
immediately after, e.g., in FIGURE 1b, the time gap delimiter
is removed between Gesture 1 and Gesture 2. Still, a specific
gesture delimiter is performed to differentiate between the
two gestures from the continuous stream of sensor input data.
Another reason for discontinuity in the gesture recognition
algorithm is due to the inefficiency of the identification phase
in interpreting the gesture immediately [37]. However, the
discontinuity caused by the time gap and specific gesture
delimiter is eliminated. The user must wait for the iden-
tification phase to complete before entering the following
gestural input. For example, in FIGURE 1c, while the Gesture
1 reading phase is completed, the identification phase for
Gesture 1 is started. However, the time duration to identify
Gesture 1 is significant, which creates discontinuity, and the
user has to wait to input Gesture 2.

B. RELATED WORK
Salalmi et al. [35] proposed a Tesla-Rapture gesture recog-
nition using Tesla, a message-passing neural network graph
convolution method for mmWave radar point clouds. The
model exceeds the accuracy while lowering computational
complexity and execution time. Moreover, idle frames were
used to distinguish between the gestures in which no sig-
nificant movement was noticed. Weng et al. [38] proposed
a FaceSight, a computer vision-based hand-to-facial gesture
recognition technique for augmented reality glasses. In their
model, an infrared camerawas used to bridge augmented real-
ity glasses for enhanced sensing of the lower face and hand
movements. The algorithm separates facial areas, detects

42726 VOLUME 11, 2023

F. Sufyan et al.: Novel and Lightweight Real-Time Continuous Motion Gesture Recognition Algorithm for Smartphones

FIGURE 1. Discontinuity in gesture recognition algorithms.

hand-to-face contact, and trains convolutional neural network
models to categorize hand-to-face gestures. However, it was
found that participants were instructed to remove their hands
from their faces before initiating the next hand-to-face ges-
ture, which caused discontinuity. Momotaz and Billah [36]
proposed a deep-learning approach for finger gesture recog-
nition that enables tilt-to-pan gestures as a single-handed
alternative to inbuilt panning gestures for smartphone users
with low vision. The model requires users to rest one finger
on the screen to trigger tilt motion with a threshold time of
800 ms, which causes discontinuity.

A customizable motion gesture delimiter that distinguishes
irrelevant wrist motion from smartwatch gesture input was
developed by Kerber et al. [39]. The model gathered accel-
eration data from smartwatches and deployed the dynamic
time-warping gesture identification to recognize potential
motions from a stream of accelerometer readings. However,
the continuity breaks between the two motion gestures by
a specific movement because one must rotate the wrist out-
wards and back inwards with the lower arm. Ruiz and Li [15]
and Dachselt and Buchholz [40] proposed the idea of specific
motion gestures for delimiter for separating gestural input
from normal motion. Ruiz & Li designed a DoubleFlip,
and Dachselt & Buchholz employed a Throw gesture, which
requires a user to move the smartphone back and forth while
facing the screen to serve as a specific motion gesture for
delimiter in motion-basedmobile interaction. DoubleFlip and
Throw gestures create delimiters that are highly resistant to
false positive situations while maintaining a high detection
rate, yet, suffer from discontinuity while performing two or
more motion gestures. Angelini et al. [41] presented a touch-
and-hold gesture for delimiter for tangible gesture interactive
systems. In touch-and-hold, the user has to tap and hold the
smartphone’s screen while performing a particular motion

and release the tap when the gesture is completed. The pro-
cess needs to repeat when the user is performing the next
gesture. Thus, the tapping and release of the screen for every
gesture causes discontinuity between the gestures.

Template matching is perhaps the simplest way to recog-
nize gesture movements [27]. The matching of raw sensor
input data to the stored template is determined by a match-
ing function that measures the similarity between the stored
template and the input. In general, a similarity threshold
exists below which the input is discarded for not belonging
to any potential gestures or being too distant from the nearest
template in a joint space. These strategies are simple to
create and computationally straightforward. However, there
are theoretical issues with the usage of templates, such as
whether they should be constructed based on instances of
gestures and how they should be adapted to the demands of
specific users regardless of sensor calibration [42]. Template
matching lacks the formal approach to training employed
by neural networks and statistical classifiers. The success
of neural networks and machine learning in gesture detec-
tion has garnered much interest [43]. However, thousands
of labeled examples are required to train the network for
accurate recognition. Too many samples will overtrain the
model and force it to disregard previously learned patterns.
In addition, an insufficient training data set or other issues,
such as the orthogonality of the training vectors, prevent the
model from becoming convergent [42]. The learning strate-
gies typically need enormous storage space, labeling sam-
ples, computing power, and offloading [44]. Thus, executing
such gesture recognition algorithms on resource-constrained
smartphones is challenging [45].

C. MOTIVATION AND CONTRIBUTION
Inappropriate selection of delimiters, such as time-gap, spe-
cific gesture, and implementation of computation and storage
expansive algorithms on resource-restricted smartphones, all
contribute to the discontinuity issue in detecting continu-
ous gestures. The aforementioned limitations motivate us to
emphasize the development of a lightweight gesture recog-
nition algorithm in terms of storage and processing power
that can recognize continuous gestures in real-time. This
paper proposes a novel axis-point continuous motion gesture
(APCMG) recognition algorithm to identify the continuous
motion gesture (CMG) in real time. The primary purpose of
APCMG is to present a lightweight computation approach
that allows efficient smartphone performance and requires no
external resources to process the CMG. The proposed algo-
rithm uses the concept of axis points, which are the specific
positions in 3D space that indicate substantial changes in
the trajectory of smartphone movement. CMGs’ templates
are stored within smartphones in terms of these axis points,
saving storage rather than keeping the whole trajectory as a
template. APCMG algorithm recognizes the CMG by spot-
ting the axis points from the input stream and approximating
them with the stored axis points ensuring a low computation

VOLUME 11, 2023 42727

F. Sufyan et al.: Novel and Lightweight Real-Time Continuous Motion Gesture Recognition Algorithm for Smartphones

time in recognition of gestures. The significant contributions
of this paper are summarized as follows:

• Introduces a new algorithm called APCMG, which uses
smartphone tri-axis accelerometer data to identify con-
tinuous motion gestures (CMG).

• The delimiter used in APCMG allows for continuous
gesture recognition without interruptions or the need for
specific delimiting gestures.

• APCMG has low processing overhead and can be used
for real-time gesture recognition on smartphones.

• APCMG has a high accuracy rate, with an average
recognition rate of 95% for isolated gestures and 94%
for continuous gestures.

• APCMG does not propagate errors, i.e., the algorithm
confines the inaccuracy, so it does not interfere with the
identification of the upcoming gestures.

• APCMG is energy-efficient, making it suitable for use
on smartphones.

The rest of this paper is organized in the following manner.
Section II discusses the proposed APCG algorithms and the
main contributions of this work. The implementation details
and analysis of essential characteristics of the proposed algo-
rithm are explained in section III and section IV, respectively.
Section V discusses performance evaluation by adopting an
appropriate smartphone application. Finally, section VI con-
cludes the paper with the future directions.

II. PROPOSED METHOD
This section discusses the proposed axis-point continuous
motion gesture (APCMG) algorithm. The flow diagram of the
proposed APCMG algorithm is shown in FIGURE 2, and the
significant steps as are as follows:

1) Motion Detection: The accelerometer sensor is used for
recognizing the motion of the smartphone in 3D space.
It measures the acceleration due to gravity or changes
in gravitational acceleration of the smartphones around
the x, y &, z-axis, which is approximately 9.8 m/s2,
as shown in Figure 3.

2) Data preparation: While moving the smartphone in
3D space, we can define an axis-point as a precise
smartphone orientation on the accelerometer axis. Axis-
point occurs when the smartphone’s orientation overlaps
or coincides with any (±x, ±y, or ±z) axis of the
accelerometer. Thus, an axis-point coinciding with x-
axis, y-axis, and z-axis of the accelerometer is repre-
sented by a 3D co-ordinate (±x, 0 ± δ, 0 ± δ), (0 ± δ,
±y, 0±δ) and (0±δ, 0±δ,±z), respectively, where δ is
the epistemic constant. The purpose of representing the
axis-points as (±x,±y,±z) is because the data received
by the accelerometer is expressed via the acceleration
along axes. Pictorial demonstrations of the axis-points
in APCMG are shown in FIGURE 4. In FIGURE 4a,
when the smartphone coincides with the x-axis, the
accelerometer readings are considered axis-point. Simi-
larly, in FIGURE 4b, when the smartphone moves from

FIGURE 2. Flowchart of proposed APCMG algorithm.

FIGURE 3. Accelerometer sensor.

the x-axis and coincides with the y-axis, a smartphone is
said to change its position and move to a new axis point,
i.e., y-axis.

3) Read gesture: In the APCMG algorithm, in order to
read a gesture, there should be at least a single change-
of-axis. Change-of-axis is the movement of the smart-
phone from one axis-point to another. The movements
can be performed multiple times. Graphical demos of
the change-of-axis of the smartphone are illustrated
in FIGURE 5. A single change-of-axis is shown in
FIGURE 5a, where the smartphone is rotated from
(+y → +x)-axis. Similarly, in FIGURE 5b shows two
change-of-axes where the smartphone is rotated from
(+y→+x)-axis and then (+x →+z)-axis.

42728 VOLUME 11, 2023

F. Sufyan et al.: Novel and Lightweight Real-Time Continuous Motion Gesture Recognition Algorithm for Smartphones

FIGURE 4. Pictorial demonstrations of Axis-Points of the smartphone.

FIGURE 5. Illustration of the change-of-axis.

4) Gesture identification: The APCMG algorithm uses a
delimiter to distinguish between two consecutive ges-
tures. A delimiter’s selection is crucial to maintain the
continuity between the gestures. Hence, we introduce
the concept of reference point in 3D space, from where
a gesture starts and ends. We also select the reference
point as our delimiter because the algorithm can iden-
tify two gestures when the user passes the smartphone
from the reference point position. The accelerometer’s
sensitivity is very high, and it captures the changes in
the position of the smartphones in real-time; hence the
user is not required to place or hold their smartphone on
the axis-point position to identify the end of a gesture.

5) Gesture recognition: The identification phase identifies
the change-of-axes by the smartphone in 3D space and
maintains a dynamic list for the same. As the smart-
phone passes through the subsequent reference point, the
gesture is completed and the axis-points in the list are
compared with the template of pre-recorded gestures in
the table. Further, the assigned task is executed for every
valid gesture. The process continues until the user stops
performing the gestures.

III. IMPLEMENTATION OF APCMG ALGORITHM
The implementation of the proposed APCMG algorithm is
divided into twomodules, referred to as the Read and Identify
modules, see FIGURE 6. The Read module runs on separate
threads and receives the continuous stream of data from the
accelerometer sensor. Data received from the accelerometer
is in the form of float values, each corresponding to x, y, and
z-axis. The task of the Read module is to store the continuous

FIGURE 6. Block diagram of APCMG algorithm.

FIGURE 7. Natural way of holding smartphone.

values received from the accelerometer sensor into separate
Java ArrayList corresponding to each axis. The identify mod-
ule, running on a independent thread, consists of two func-
tions, namely pointIdentification() and executeTask(). The
pointIdentification() function determines the current position
of the smartphone from the accelerometer data. If the smart-
phone is tantamount to any axis, an axis-point is identified
and stored in a separate List (L). In our implementation,
we have assumed the reference point as+y-axis, as shown in
FIGURE 7, which is a natural way of holding the smartphone.

In APCMG, a gesture is a list of the axis-points between
two reference points. If the smartphone lies at the reference
point (y-axis), it is added to the list; otherwise, the function
waits for the smartphone to move to the reference point,
discarding the previous values and points. Hence, starting
any gesture, there is only a single entry in the list, i.e., L =
{+y}. A gesture consists of n axis-points in L where n ≥
2 denotes the least one or more change-of-axes to perform
a complete gesture. For example, the accelerometer value is
(0± δ,+9.8± δ,0± δ), if the smartphone is at+y-axis. Sup-
pose the smartphone starts moving toward +x-axis then the
accelerometer value of +y-axis starts decreasing and the value
of+x-axis increase that is (0±δ,+9.8±δ,0±δ)→(+9.8±δ,
0 ± δ,0 ± δ). Hence, the list of the state is transformed
from {+y} to {+y,+x}. Similarly, suppose the smartphone
reverts to the reference point; the list changes to+y,+x,+y.
The subsequent reference point invokes the executeTask()
function. The executeTask() matches the axis-points in the L
with the pre-recorded gestures stored in the SQLite database
and executes the assigned task for the gesture, provided
it must be a valid gesture. The process continues until
the user stops moving the smartphone. The correspondence

VOLUME 11, 2023 42729

F. Sufyan et al.: Novel and Lightweight Real-Time Continuous Motion Gesture Recognition Algorithm for Smartphones

between task and gesture is application dependent and must
be pre-initialized by the user. For this, we replace the exe-
cuteTask() method with the record() method in Algorithm 1.
The record function assigns a task to the gesture in list L and
stores it in the SQLite database of the smartphone.
Algorithm 1 illustrates the recognition module of the

APCMG algorithm. In Algorithm 1, the current orientation
of the smartphone is identified by passing the data to axis-
Change() function as described in Algorithm 2. To change
an axis, the user must completely bend the smartphone to 90◦

and align the smartphone to the corresponding axis. However,
the perfect 90◦ of smartphone rotation may not always be
possible for the user. Thus, the acceleration values need to
be adjusted using a threshold (th) parameter, as in Algorithm
2. The th parameter significantly improves the efficiency of
the APCMG algorithm in recognizing gestures. The th value
can be adjusted according to the requirement of an applica-
tion and the user’s comfort. By analyzing the accelerometer
readings, if a user rotates the smartphone around 80◦, the
accelerometer reading corresponds to the rotating axis is
around 9m/s2 and the values of the other two axes lie around
1 m/s2. Thus, by setting the th = ±1, we can incorporate
80◦−100◦ rotation of smartphone as a gesture. On increasing
the value of th, say ±5 or ±6, the axisChange() function
becomes too sensitive and identifies even a slight smartphone
rotation as a gesture.

IV. ANALYSIS OF APCMG ALGORITHM
In this section, we undertake a comprehensive examination
of the characteristics of the APCMG algorithm. Specifi-
cally, we analyze error propagation, mathematical and com-
putational complexities. The key features of the proposed
APCMG algorithm are as follows:
• The delimiter employed to distinguish between two ges-
tures must not result in any interruptions in the input
stream of data from the sensors. A detailed analysis of
this aspect can be found in Section IV-D.

• The algorithm must detect gestures in real-time, with
minimal delay in the execution of the identification
phase. Further elaboration on this point can be found in
section IV-E.

Trecognition = 1

A. MATHEMATICAL ANALYSIS
Suppose X ,Y ,Z are the axes on a 3D-plane and let {xn},
{yn}, {zn} are the sequences of numbers on X, Y & Z respec-
tively. By experiment (Table 1), we observed that

|xn| + |yn| + |zn| = gn, n ∈ R (1)

If the user holds the smartphone in static condition. Then,
the value of |gn| is around 9.81 m/sec2. While on the other
hand when mobile is in dynamic state, the value of |gn| for
every n ∈ R lie between [10, 13].

Algorithm 1 Continuous Gesture Recognition
1: L = NULL ▷ List of axis points
2: prevaxis = NULL ▷ Previous axis point
3: while true do
4: P← axisChange(x, y, z)
5: ▷ +y-axis
6: if (P == Start/ReferencePoint && sizeOf (L) ==

NULL) then
7: L ← appendToList(P)
8: prevaxis← P
9: end if
10: ▷ Add next axis point
11: if (sizeOf (L) && P ! = prevaxis) then
12: prevaxis = P
13: ▷ Gesture Completed
14: if (P == Delimeter(+y− axis)) then
15: executeTask(L)
16: Clear : L
17: end if
18: L← appendToList(P)
19: end if
20: end while

Algorithm 2 axisChange() Function
1: Input : xn, yn, zn
2: th = 1 ▷ User dependent threshold.
3: if +xn ≤ |0 ± δ ∓ th| && +yn ≥ |9.8 ± δ ± th| &&
+zn ≤ |0± δ ∓ th| then

4: return + y
5: end if
6: if . . . then ▷ similar cases to identify other 5 axes.
7: end if

Let xn, yn, zn are the arbitrary numbers at the nth iteration.
Then, by our experimental setup, three conditions are possible

• If xn is ≥ 9 then, 0 ≤ yn, zn ≤ 3 and mobile phone lies
on x-axis.

• If yn is ≥ 9 then, 0 ≤ xn, zn ≤ 3 and mobile phone lies
on y-axis.

• If zn is ≥ 9 then, 0 ≤ yn, xn ≤ 3 and mobile phone lies
on z-axis.

B. NUMBER OF POSSIBLE GESTURES
A n axis-point gesture can be formed by adding an extra
axis-point to the previous (n − 1) axis-point gesture. In gen-
eral, for every additional axis-point included in the gesture,
the number of gestures increases by the factor of 2. Thus, the
total numbers of gestures that can be formed up to n axis-point
are:

n∑
i=2

2i = 4(2n−1 − 1), ∀ n ≥ 2

42730 VOLUME 11, 2023

F. Sufyan et al.: Novel and Lightweight Real-Time Continuous Motion Gesture Recognition Algorithm for Smartphones

TABLE 1. Readings of accelerometer data along different axes while
performing 2D axis-point {+y,+x} gesture.

C. ANALYSIS OF ERROR PROPAGATION
1) CASE-1: IF AN AXIS-POINT IS NOT APPROPRIATELY
RECOGNIZED:
In this case, if a particular gesture whose axis-point other than
the delimiter is not appropriately recognized, the error will
result in two possibilities:
(a) No gesture is identified because the list of recognized

axis-points did not match the recorded gestures list.
(b) A wrong gesture is executed if the recognized

axis-points in the list corresponds to a stored gesture list
in the database.

For example, suppose a 2D axis-point gesture {+y,+x}; if
+x-axis is not recognized correctly, no gesture is identified.

2) CASE-2: IF THE DELIMITER IS NOT APPROPRIATELY
RECOGNIZED
In this case, if the adjacent gestures on either side of the
delimiter are affected. Then, axis-points of adjacent gestures
are combined and will match with the recorded gesture or
wrong gesture executed. For example, suppose two continu-
ous 2D axis-point gestures in the given list {+y,+x,+y,+z};
if the third element i.e., +y is not recognized, then the list is
reduced to {+y,+x,+z}, which identifies as a 3D axis-point
gesture, then a wrong gesture is performed.

From the above cases, if the error mentioned above occurs,
then at least one and at most two gestures are affected.
Hence, we can say that the error is localized in the proposed
algorithm and does not propagate and affect the upcoming
gestures.

D. CONTINUOUS MOTION GESTURE RECOGNITION
ANALYSIS
As previously mentioned in section IV, one of the criteria
for the algorithm to recognize the gesture in real-time is that
the delimiter between two gestures should not interrupt the
input stream of data from the sensors. We start this proof
by first defining the context-free grammar (CFG) of the
APCMG algorithm that can accept n axis-point gesture input.
The grammar accepts and specifies any gesture that can be
performed using the axis-method. The constructed grammar
is right linear grammar which is also regular.

S −> +yAS1 | +yBS_2

FIGURE 8. DFA of APCMG for 2D and 3D axis point gesture sequence.

S1 −> BS2 | +y
S2 −> AS1 | +y
A −> +x | −x
B −> +z | −z

Now, we built Deterministic state finite automata (DFA)
using the above regular grammar for 2D and 3D axis-point
gestures, as shown in FIGURE 8. A DFA is a type of abstract
machine that is used to recognize patterns within the input.
The machine reads the input symbols one at a time and
transitions from one state to another based on the transition
function. If the machine ends up in an acceptable state after
reading the input, it is said to have recognized the pattern.

The constructed DFA shows continuity within a gesture
by showing a path from one state to another for the valid
axis inputs. Also, there is no epsilon (ϵ) transition in the
DFA that changes the state of the smartphone to another axis
without consuming any input. In addition, the constructed
DFA has the same initial and final states, showing that a
particular gesture starts and finishes in the same location.
The final state becomes the initial state for the following
gesture input. Thus, these characteristics provide evidence
of the absence of discontinuity within a particular gesture or
between consecutive gestures.

E. COMPUTATIONAL AND SPACE COMPLEXITY
The proposed APCMG algorithm is specifically engineered
for smartphones, enabling continuous and real-time identifi-
cation of motion gestures. The algorithm addresses the lim-
itation of space requirements by storing gestures in terms of
axis-points rather than entire templates. During recognition,
data received from the accelerometer is parsed to extract the
axis-points, which are then compared to the recorded gesture
to execute the assigned task.

From the above discussion, we can infer that the algorithm
can recognize gestures of any length in a deterministic time.
Thus the solution to the problem lies in the P class. The

VOLUME 11, 2023 42731

F. Sufyan et al.: Novel and Lightweight Real-Time Continuous Motion Gesture Recognition Algorithm for Smartphones

TABLE 2. Digits associated with different gestures in android application.

computational complexity of the identification phase for a
single gesture is equal to the number of accelerometer read-
ings between two reference points of the gesture, represented
as ci. In Algorithm 1, each input reading is processed to
determine the axis-point. From the experiment, we found
that the number of data points in a single change-of-axis lies
within the range of [35− 50]. Therefore, the total number of
operations required for reading N gestures is N ∗ c, where
c = max(ci), where i are the maximum number of data
points from the accelerometer in each change-of-axis. As a
result, the amortized cost analysis of the APCMG algorithm
is constant, i.e., O(1), allowing for real-time gesture identi-
fication. Amortized cost analysis is a method of determining
the average cost of an operation over a sequence of operations
rather than just the cost of a single operation [46].

V. PERFORMANCE EVALUATION
To estimate the effectiveness of the APCMG algorithm, the
experimental simulation of the android-based application for
dialing a phone number is considered. The application rec-
ognizes twelve continuous gestures; each corresponds to a
number (0− 9), and the remaining two are for delete and call
terminate (see Table 2). The proximity sensor is used to dial
the number when the user places the phone in its ear. Next,
we present a graphical representation of accelerometer data
along all three axes for each 2D and 3D axis-point gesture.
Further, we explain the working of the APCMG algorithm
with a real-time experiment setup and the performance of
detecting axis-points as the smartphone changes its orienta-
tion around different axes, as discussed previously.

A. TYPES OF GESTURES
In the APCMG algorithm, the relationships between the
axis-points and types of gestures are discussed as follows:

1) 2D AXIS-POINT GESTURE
A 2D axis-point gesture is the movement of a smart-
phone from the reference point (+y) to any other axis. The
axis-points of a 2D axis-point gesture is {+y, p}, where
p = {+x,−x,+z,−z,−y}. Therefore, the total number of
2D axis-point gestures are 5. Here, we ignore the (−y)-axis
because the combination {+y,−y} is not possible. (+y ↔
−y), (+x ↔ −x) and (+z ↔ −z), directly without crossing
another axis. Hence, out of five, there are only four possible
2D axis-point gestures. The movement of smartphone from

(+y→ +x)-axis and the accelerometer data received during
the movement is given in FIGURE 9a. Graph depicted in
FIGURE9a shows that the smartphone is initially static on the
reference point, i.e., +y-axis. Hence, the acceleration along
the +y-axis is close to +10 m/s2 and readings of x-axis and
z-axis is close to 0 m/s2. As the smartphone moves towards
x-axis, the acceleration on +y-axis decreases and the accel-
eration on x-axis starts increasing, simultaneously. When the
smartphone is completely rotated to x-axis, the acceleration
on the x-axis is close to 10 m/s2 and acceleration on other
two axes is close to 0m/s2. The solid line in the middle shows
the change-of-axis from (+y→ +x)-axis. Similarly, mobile
reverts to the reference point, acceleration on x-axis decreases
and +y-axis increases. Algorithms 1 identify the y-axis as
a delimiter to mark the end of the 2D axis-point gesture.
Remaining 2D axis-point gestures and their corresponding
graphs are given in FIGURE 9.

2) 3D AXIS-POINT GESTURES
A 3D axis-point can be expressed as {+y, p, q}. It is formed
by moving the smartphone from the reference point to an
axis p = {+x,−x,+z,−z}, i.e., as in the 2D gesture. Then,
change the orientation to any of the remaining two axes to
complete the 3D axis-point gestures. For example, to perform
a 3D axis-point, the smartphone first moves from the+y-axis
to any axis in p, say the+x-axis. After reaching the+x-axis,
a user can either move towards +z or −z-axis to complete a
3D gesture. Hence, for every 2D axis-point gesture user has
two options for selecting the third point. So, there are eight
3D gestures. FIGURE 10 shows themovement of smartphone
from (+y → +x → +z)-axis, forming a 3D axis-point
gesture. The 3D axis-point gesture recognition is similar to
the 2D axis-point gesture with two motions. The rest of the
3D gestures and their corresponding graphs are shown in
FIGURE 10b-10h.

B. EXPERIMENTAL SETUP
To test our APCMG algorithm, we evaluate the smart-
phone application from various manufacturers with in-built
accelerometer sensors. For our experiment, we recruited
25 volunteers from our university’s campus, consisting of
twenty males and five female postgraduate and research
scholars from various disciplines in the age group 22 −
28 years. Three volunteers are left-handed, and the remain-
ing are right-handed. We installed Android application on
the volunteer’s devices to test the application on different
smartphones. The result discuss below shows the average
performance of each experiment.

C. RESULT EVALUATIONS AND DISCUSSION
The experimental evaluation is divided into two parts.
We begin by evaluating the performance of isolated 2D axis-
point and 3D axis-point gestures. We installed our android
application on the volunteer’s devices to test the application
on different smartphones. We assess each gesture’s perfor-
mance, which makes volunteers familiar with the gestures

42732 VOLUME 11, 2023

F. Sufyan et al.: Novel and Lightweight Real-Time Continuous Motion Gesture Recognition Algorithm for Smartphones

FIGURE 9. 2D axis-point demonstration of gesture recognition with their accelerometer data.

TABLE 3. Experimental results: 2D axis point gestures using APCMG
algorithm.

and allows us to test the user’s comfortableness with different
gestures. The second part of our evaluation consists of contin-
uous gestures where we verify the recognition of the numeric
string of different lengths entered by the volunteers.

1) RESULTS OF 2D AND 3D AXIS-POINT ISLOATED
GESTURES
For 2D axis-point gesture evaluation, we demonstrated four
2D axis-point gestures (see FIGURE 9) to the volunteers

and gave them 2 − 3 minutes to get acquainted. Then the
participants are asked to repeat each 2D axis-point gesture
25 times, in different permutations. Since there are four 2D
axis-point gestures, eachmember performs a total of 4×25 =
100 gestures. The time required for the data collection task
lasted approximately 8−10 min for an individual participant.
The application transfers this data to a remote server for
evaluation. In total, a data set comprising of 2500 gestures is
collected from all 25 participants and the total time spent for
this experiment is around 3.5 hours. The experimental result
shows that the APCMG algorithm successful recognition rate
of 2D axis-point gestures is around 98%, as shown in Table 3.
Such a high accuracy was achieved because of only four
2D axis-point gestures, which can be easily remembered and
performed by the user.

Further, we used the same volunteers for evaluating iso-
lated 3D axis-point gestures, as shown in FIGURE 10.
As before, we demonstrate eight 3D axis-point gestures
and allowed them to get familiar with them. Again every
participant is asked to repeat each 3D axis-point gesture
25 times, in different permutations. The experiment took
approximately 10−15minutes and produced a dataset of 25×
8 = 200 gestures for each participant. In total, we collected a
dataset comprising of 5000 gestures from 25 participants; the
total time required for the experiment was around 6 hours.
Table 4 presents the experimental result for 3D axis-point
gestures while indicating a successful recognition rate of
around 94%.

2) RESULTS OF 2D AND 3D AXIS-POINT CONTINUOUS
GESTURE
The isolated gesture experiment is designed with the intent to
make the volunteers familiar and comfortable with 2D axis-
point and 3D axis-point gestures. Now, volunteers are asked
to input three increasing-length numerical strings, comprising
both 2D axis-point and 3D axis-point gestures. The three

VOLUME 11, 2023 42733

F. Sufyan et al.: Novel and Lightweight Real-Time Continuous Motion Gesture Recognition Algorithm for Smartphones

FIGURE 10. 3D axis-point demonstration of gesture recognition with their accelerometer data.

strings are (a) 0187 (b) 340752 (c) volunteer’s mobile number
(10 digit number). Also, volunteers are asked to continuously
carry out the gesture corresponding to the character until the
application ultimately recognizes the complete string; this
may include the wrong input or not successfully recognized
gestures.

Figure. 11a shows the average number of gestures required
by the volunteers to input the given two strings and their
mobile number. The average time taken by the users to input
the strings is shown in Figure 11b. The results depict that
the average number of gestures and average time increases
with increasing string size. Strings (a), (b) and (c) requires
an average of 5, 7 and 12, gestures and an average time of 5,
8 and 15 seconds. The overall recognition rate of continuous
gesture is 94%, which is calculated by successful gestures out

of total gestures performed. The result suggests that volun-
teers can easily learn and memorize the digits associated with
the different gestures and can comfortably input the given
strings and their mobile number in a relatively quick time.

D. RESULTS OF POWER CONSUMPTION
To recognize gestures within the smartphones, the gesture
recognition algorithm should be lightweight and not consume
too much battery life. Otherwise, if the application drains the
battery life, it is not wise to install it on the smartphones
for gesture recognition. To measure the performance of the
APCMG algorithm, we install our android application on
various smartphones from different configurations and man-
ufacturers. During the experiment, the smartphone was fully

42734 VOLUME 11, 2023

F. Sufyan et al.: Novel and Lightweight Real-Time Continuous Motion Gesture Recognition Algorithm for Smartphones

TABLE 4. Experimental results: 3D axis point gestures using APCMG algorithm.

FIGURE 11. Average number of gestures and time graph in continuous
gesture evaluation experiment.

charged, and the display was on; we found that the total
battery consumption by the application on different devices
was around 6%− 8%. Hence, the algorithm does not gobble
battery of smartphones; indeed, it is a power effective method

as well, so the user can perform various tasks using the
APCMG algorithm by recognizing CMG for an extended
period of time.

VI. CONCLUSION AND FUTURE WORK
This paper proposes a novel axis-point continuous motion
gesture (APCMG) recognition algorithm using axis-points
from the accelerometer sensor of the smartphone in real-time.
The two effective procedures of the APCMG algorithm are
the read and the recognition process. The read process reads
the gesture from the smartphone’s orientation, and the recog-
nition process identifies the gesture. The APCMG algorithm
is designed explicitly for resource-constrained devices with
low computational complexity; the amortized cost analysis is
constant, i.e., O(1). Further, storage requirements and energy
consumption are also minimal for the APCMG algorithm.
The mathematical and empirical analysis of the algorithm
evidence that it did not allow a particular gesture’s discon-
tinuity and error propagation to affect subsequent gestures’
recognition while receiving continuous input data from the
sensor. The experimental study was conducted by designing
an Android App for the APCMG recognition algorithm of
dialing phone numbers using hand-held smartphone move-
ment with in-built accelerometer sensors. The application
recognizes twelve continuous gestures corresponding to num-
bers 0−9, delete, and call terminate. A team of 25 volunteers
has formed, and the outcomes reveal that users can easily
remember both 2D and 3D gestures. The APCMG algorithm
has a high recognition rate of 98% and 94% for the isolated
2D and 3D gestures and 94% for continuous 2D and 3D
gestures as well. However, one of the major limitations for
the user is remembering the axis rotation as the number of

VOLUME 11, 2023 42735

F. Sufyan et al.: Novel and Lightweight Real-Time Continuous Motion Gesture Recognition Algorithm for Smartphones

axis-points increases in a given gesture, i.e., 4D, 5D axis-
point or 6D axis-point gestures, etc. Hence, in the future,
we intend to reduce the complexity of remembering the points
in a gesture for the user. In addition, we also include the
analysis of the confusion matrix for true acceptance rate and
false acceptance rate, analysis of the equal error rate from
the receiver operating characteristics curve, and other results
depending on the application under consideration.

REFERENCES
[1] N. Mohamed, M. B. Mustafa, and N. Jomhari, ‘‘A review of the hand

gesture recognition system: Current progress and future directions,’’ IEEE
Access, vol. 9, pp. 157422–157436, 2021.

[2] X. Jiang, X. Liu, J. Fan, X. Ye, C. Dai, E. A. Clancy, D. Farina, and
W. Chen, ‘‘Enhancing IoT security via cancelable HD-sEMG-based bio-
metric authentication password, encoded by gesture,’’ IEEE Internet
Things J., vol. 8, no. 22, pp. 16535–16547, Nov. 2021.

[3] K.-B. Park, S. H. Choi, J. Y. Lee, Y. Ghasemi, M. Mohammed, and
H. Jeong, ‘‘Hands-free human–robot interaction using multimodal ges-
tures and deep learning in wearable mixed reality,’’ IEEE Access, vol. 9,
pp. 55448–55464, 2021.

[4] S. M. Aslam and S. Samreen, ‘‘Gesture recognition algorithm for visually
blind touch interaction optimization using crow search method,’’ IEEE
Access, vol. 8, pp. 127560–127568, 2020.

[5] B. van Amsterdam, M. J. Clarkson, and D. Stoyanov, ‘‘Gesture recognition
in robotic surgery: A review,’’ IEEE Trans. Biomed. Eng., vol. 68, no. 6,
pp. 2021–2035, Jun. 2021.

[6] P.-Y. Tsai, Y.-C. Yang, Y.-J. Shih, and H.-Y. Kung, ‘‘Gesture-aware fall
detection system: Design and implementation,’’ in Proc. IEEE 5th Int.
Conf. Consum. Electron.-Berlin (ICCE-Berlin), Sep. 2015, pp. 88–92.

[7] L. Jiashan and L. Zhonghua, ‘‘Dynamic gesture recognition algorithm
combining global gesture motion and local finger motion for interactive
teaching,’’ IEEE Access, early access, Mar. 12, 2021, doi: 10.1109/AC-
CESS.2021.3065849.

[8] G. Li, H. Wu, G. Jiang, S. Xu, and H. Liu, ‘‘Dynamic gesture recognition
in the Internet of Things,’’ IEEE Access, vol. 7, pp. 23713–23724, 2018.

[9] H. A. Jaber, M. T. Rashid, and L. Fortuna, ‘‘Robust hand gesture identifica-
tion using envelope of HD-sEMG signal,’’ in Proc. Int. Conf. Inf. Commun.
Technol., New York, NY, USA, Apr. 2019, pp. 203–209.

[10] H. Shin, J.-M. Lim, C. Oh, M. Kim, H.-T. Jeong, and J. Son, ‘‘Performance
comparison of tap gestures on small-screen touch devices,’’ in Proc. IEEE
Int. Conf. Consum. Electron. (ICCE), Jan. 2015, pp. 120–121.

[11] N. Magrofuoco, P. Roselli, and J. Vanderdonckt, ‘‘Two-dimensional stroke
gesture recognition: A survey,’’ ACM Comput. Surv., vol. 54, no. 7,
pp. 1–36, Jul. 2021.

[12] Y. Meng, D. S. Wong, R. Schlegel, and L.-F. Kwok, ‘‘Touch gestures
based biometric authentication scheme for touchscreen mobile phones,’’ in
Information Security and Cryptology, M. Kutyłowski and M. Yung, Eds.
Berlin, Germany: Springer 2013, pp. 331–350.

[13] Y. Wang, S. Wang, M. Zhou, Q. Jiang, and Z. Tian, ‘‘TS-I3D based
hand gesture recognition method with radar sensor,’’ IEEE Access, vol. 7,
pp. 22902–22913, 2019.

[14] S. Zhang and S. Zhang, ‘‘A novel human-3DTV interaction system based
on free hand gestures and a touch-based virtual interface,’’ IEEE Access,
vol. 7, pp. 165961–165973, 2019.

[15] J. Ruiz and Y. Li, ‘‘DoubleFlip: A motion gesture delimiter for mobile
interaction,’’ in Proc. SIGCHI Conf. Hum. Factors Comput. Syst.,
New York, NY, USA, 2011, pp. 2717–2720.

[16] J. Zhang, Y. Li, H. Xiong, D. Dou, C. Miao, and D. Zhang, ‘‘HandGest:
Hierarchical sensing for robust-in-the-air handwriting recognition with
commodity WiFi devices,’’ IEEE Internet Things J., vol. 9, no. 19,
pp. 19529–19544, Oct. 2022.

[17] G. Li and H. Sato, ‘‘Sensing in-air signature motions using smartwatch:
A high-precision approach of behavioral authentication,’’ IEEE Access,
vol. 10, pp. 57865–57879, 2022.

[18] H. P. Gupta, H. S. Chudgar, S. Mukherjee, T. Dutta, and K. Sharma,
‘‘A continuous hand gestures recognition technique for human-machine
interaction using accelerometer and gyroscope sensors,’’ IEEE Sensors J.,
vol. 16, no. 16, pp. 6425–6432, Aug. 2016.

[19] K. Rasheed, S. Saad, L. Shahzad, S. Ammad, A. Ali, and I. Badshah,
‘‘Application of gesture data recognition in a human-interactive leap
motion sensor chair,’’ in Proc. Int. Conf. Data Anal. Bus. Ind. (ICDABI),
Oct. 2021, pp. 567–571.

[20] M. Lee and J. Bae, ‘‘Deep learning based real-time recognition of
dynamic finger gestures using a data glove,’’ IEEE Access, vol. 8,
pp. 219923–219933, 2020.

[21] D. Wu, Y. Zeng, R. Gao, S. Li, Y. Li, R. C. Shah, H. Lu, and
D. Zhang, ‘‘WiTraj: Robust indoor motion tracking with WiFi sig-
nals,’’ IEEE Trans. Mobile Comput., early access, Dec. 9, 2021, doi:
10.1109/TMC.2021.3133114.

[22] R. Gao, M. Zhang, J. Zhang, Y. Li, E. Yi, D. Wu, L. Wang, and D. Zhang,
‘‘Towards position-independent sensing for gesture recognition with Wi-
Fi,’’ Proc. ACM Interact., Mobile, Wearable Ubiquitous Technol., vol. 5,
no. 2, pp. 1–28, Jun. 2021.

[23] R. Kang, A. Guo, G. Laput, Y. Li, and X. Chen, ‘‘Minuet: Multimodal
interaction with an Internet of Things,’’ in Proc. Symp. Spatial User
Interact., New York, NY, USA, Oct. 2019, pp. 1–10.

[24] S. He, A. Zhang, and M. Yan, ‘‘Voice and motion-based control system:
Proof-of-concept implementation on robotics via Internet-of-Things tech-
nologies,’’ in Proc. ACM Southeast Conf., New York, NY, USA, 2019,
pp. 102–108.

[25] K. Kudrinko, E. Flavin, X. Zhu, and Q. Li, ‘‘Wearable sensor-based sign
language recognition: A comprehensive review,’’ IEEE Rev. Biomed. Eng.,
vol. 14, pp. 82–97, 2021.

[26] J. Zhang, Y. Li, W. Xiao, and Z. Zhang, ‘‘Online spatiotemporal modeling
for robust and lightweight device-free localization in nonstationary envi-
ronments,’’ IEEE Trans. Ind. Informat., early access, Nov. 2, 2022, doi:
10.1109/TII.2022.3218666.

[27] M. Okawa, ‘‘Template matching using time-series averaging and DTW
with dependent warping for online signature verification,’’ IEEE Access,
vol. 7, pp. 81010–81019, 2019.

[28] A. Calado, P. Roselli, V. Errico, N. Magrofuoco, J. Vanderdonckt, and
G. Saggio, ‘‘A geometric model-based approach to hand gesture recog-
nition,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 52, no. 10,
pp. 6151–6161, Oct. 2022.

[29] J. Li, S. Ray, V. Rajanna, and T. Hammond, ‘‘Evaluating the performance
ofmachine learning algorithms in gaze gesture recognition systems,’’ IEEE
Access, vol. 10, pp. 1020–1035, 2022.

[30] M. Chmurski, M. Zubert, K. Bierzynski, and A. Santra, ‘‘Analysis of edge-
optimized deep learning classifiers for radar-based gesture recognition,’’
IEEE Access, vol. 9, pp. 74406–74421, 2021.

[31] A. Banerjee, F. Sufyanf, M. S. Nayel, and S. Sagar, ‘‘Centralized frame-
work for controlling heterogeneous appliances in a smart home environ-
ment,’’ in Proc. Int. Conf. Inf. Comput. Technol. (ICICT), Mar. 2018,
pp. 78–82.

[32] F. Sufyan andA. Banerjee, ‘‘Computation offloading for distributedmobile
edge computing network: A multiobjective approach,’’ IEEE Access,
vol. 8, pp. 149915–149930, 2020.

[33] H. Zhao, S. Wang, G. Zhou, and D. Zhang, ‘‘Ultigesture: A wristband-
based platform for continuous gesture control in healthcare,’’ Smart
Health, vol. 11, pp. 45–65, Jan. 2019.

[34] Y. Zhao, Y. Zhao, H. Tu, Q. Huang, W. Zhao, and W. Jiang, ‘‘Motion
gesture delimiters for smartwatch interaction,’’Wireless Commun. Mobile
Comput., vol. 2022, Jul. 2022, Art. no. 6879206.

[35] D. Salami, R. Hasibi, S. Palipana, P. Popovski, T. Michoel, and S. Sigg,
‘‘Tesla-rapture: A lightweight gesture recognition system from mmWave
radar sparse point clouds,’’ IEEE Trans. Mobile Comput., early access,
Feb. 23, 2022, doi: 10.1109/TMC.2022.3153717.

[36] F. Momotaz and S. M. Billah, ‘‘Tilt-explore: Making tilt gestures usable
for low-vision smartphone users,’’ in Proc. 34th Annu. ACM Symp. User
Interface Softw. Technol., New York, NY, USA, Oct. 2021, pp. 1154–1168.

[37] P. Zhao, ‘‘A review on machine learning and gesture recognition,’’ in Proc.
Int. Conf. Comput. Data Sci. (CDS), Aug. 2020, pp. 425–428.

[38] Y. Weng, C. Yu, Y. Shi, Y. Zhao, Y. Yan, and Y. Shi, ‘‘FaceSight:
Enabling hand-to-face gesture interaction on AR glasses with a downward-
facing camera vision,’’ in Proc. CHI Conf. Hum. Factors Comput. Syst.,
New York, NY, USA, May 2021, pp. 1–14.

[39] F. Kerber, P. Schardt, and M. Löchtefeld, ‘‘WristRotate: A personal-
ized motion gesture delimiter for wrist-worn devices,’’ in Proc. MUM,
New York, NY, USA, 2015, pp. 218–222.

42736 VOLUME 11, 2023

http://dx.doi.org/10.1109/ACCESS.2021.3065849
http://dx.doi.org/10.1109/ACCESS.2021.3065849
http://dx.doi.org/10.1109/TMC.2021.3133114
http://dx.doi.org/10.1109/TII.2022.3218666
http://dx.doi.org/10.1109/TMC.2022.3153717

F. Sufyan et al.: Novel and Lightweight Real-Time Continuous Motion Gesture Recognition Algorithm for Smartphones

[40] R. Dachselt and R. Buchholz, ‘‘Natural throw and tilt interaction between
mobile phones and distant displays,’’ in Proc. CHI Extended Abstr. Hum.
Factors Comput. Syst., New York, NY, USA, Apr. 2009, pp. 3253–3258.

[41] L. Angelini, D. Lalanne, E. Hoven, O. Khaled, and E. Mugellini, ‘‘Move,
hold and touch: A framework for tangible gesture interactive systems,’’
Machines, vol. 3, no. 3, pp. 173–207, Aug. 2015.

[42] R. Watson, ‘‘A survey of gesture recognition techniques,’’ Dept. Com-
put. Sci., Trinity College Dublin, Dublin, Ireland, Tech. Rep. TCD-CS-
93-11, 1993. [Online]. Available: https://www.scss.tcd.ie/publications/
tech-reports/tr-index.93.php

[43] D. E. Alonso-Blas and S. Genaim, ‘‘On the limits of the classical approach
to cost analysis,’’ in Proc. 19th Int. Static Anal. Symp. Berlin, Germany:
Springer-Verlag, 2012, pp. 405–421.

[44] A. Jaramillo-Yánez, M. E. Benalcázar, and E. Mena-Maldonado, ‘‘Real-
time hand gesture recognition using surface electromyography and
machine learning: A systematic literature review,’’ Sensors, vol. 20, no. 9,
p. 2467, Apr. 2020.

[45] F. Sufyan and A. Banerjee, ‘‘Computation offloading for smart devices in
fog-cloud queuing system,’’ IETE J. Res., vol. 69, no. 3, pp. 1509–1521,
2023, doi: 10.1080/03772063.2020.1870876.

[46] R. E. Tarjan, ‘‘Amortized computational complexity,’’ SIAM J. Algebr.
Discrete Methods, vol. 6, no. 2, pp. 306–318, Apr. 1985.

FARHAN SUFYAN received the Ph.D. degree in
computer science from South Asian University
(SAU), NewDelhi, India. He is currently an Assis-
tant Professor with the Department of Computer
Applications, School of Computing Science and
Engineering, Galgotias University, Uttar Pradesh,
India. His research interests include the Internet
of Things, cloud computing, edge computing, and
blockchain.

SUBHASH SAGAR received the Ph.D. degree
from the School of Computing, Macquarie Uni-
versity, Sydney, in 2022. He is currently work-
ing as an Associate Research Fellow with the
School of Information Technology, Deakin Uni-
versity, Melbourne. Before moving to Macquarie
University, he was worked as a Faculty Mem-
ber with the Department of Computer Science,
National University of Computer and Emerging
Sciences, Karachi, Pakistan, from 2017 to 2019.

He has published a number of papers in conferences and journals including
IEEE TNSM, SenSys, ICC, and GLOBECOM. His current research interests
include the Social Internet of Things, Trust Management, and Cybersecurity
for Federated Learning. He is a member of ACM.

ZUBAIR ASHRAF received the Ph.D. degree in
computer science from South Asian University,
New Delhi, India, in February 2020. He is cur-
rently an Assistant Professor with the Depart-
ment of Computer Engineering and Applications,
GLAUniversity, Uttar Pradesh, India. His research
interests include multi-criteria decision making,
evolutionary optimization, nature-inspired intelli-
gent computation, deep learning, and fuzzy sys-
tems. He is the IEEE Young Professional and an

ActiveMember of several societies, including the IEEEComputational Intel-
ligence Society and EUSFLAT. He is also an Active Reviewer of journals
such as IEEE TRANSACTIONS ON FUZZY SYSTEM, Soft Computing, Applied Soft
Computing, Journal of Applied Mathematics, and the International Journal
of Intelligent Systems.

SHOAIB NAYEL received the master’s degree in
computer science from the SouthAsianUniversity,
India. He is currently with the International Orga-
nization for Migration (IOM) as a Data Analyst.
He has a strong passion for utilizing data, applied
mixed-method research, and contextual knowl-
edge to make a positive impact on the lives of
people in need, particularly in the field of humani-
tarian migration. His work has contributed signifi-
cantly to improving the effectiveness of programs,

policies, and interventions for vulnerable populations affected by forced
displacement, conflict, and natural disasters. He has published research
articles in peer-reviewed journals and a sought-after speaker on topics related
to the Internet of Things (IoT) and machine learning. He is also an Active
Member of the research community and also committed to staying up-to-date
with the latest developments in his field.

MOHD SAMEEN CHISHTI received the Ph.D.
degree in computer science from South Asian
University (SAU), New Delhi, India. He is cur-
rently an Assistant Professor with the Department
of Computer Applications, School of Computing
Science and Engineering, Galgotias University,
Uttar Pradesh, India. His research interests include
blockchain, web 3.0, and metaverse.

AMIT BANERJEE (Member, IEEE) received the
Ph.D. degree in computer science from National
Tsing Hua University, Hsinchu, Taiwan, in 2009.
After that, he worked for two years as an Engi-
neer with SoCTechnology Center, Industrial Tech-
nology Research Institute (ITRI), Taiwan. He is
currently an Assistant Professor with the Depart-
ment of Computer Science, South Asian Univer-
sity (SAU), New Delhi, India. He has authored or
coauthored papers in peer-reviewed journals and

conferences, including IEEE TRANSACTIONS. His current research interests
include distributed computing, the Internet of Things, and edge computing.

VOLUME 11, 2023 42737

http://dx.doi.org/10.1080/03772063.2020.1870876

