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ABSTRACT Prognostics and Health Management (PHM) concerns predicting machines’ behavior to
support maintenance decisions through failure modes diagnosis and prognosis. Diagnosis is broadly applied
in the context of rotating machines’ state classification using several traditional Machine Learning (ML) and
Deep Learning (DL) methods. Recently, Quantum Computing (QC), a new and expanding research field,
has contributed to different purposes and contexts, such as optimization, artificial intelligence, simulation,
cybersecurity, pharmaceutics, and the energy sector. Despite the current limitations in terms of hardware,
QC has been studied as an alternative for improving models’ speed and computational efficiency. Specif-
ically, this paper proposes a Quantum Machine Learning (QML) approach to diagnose rolling bearings,
which are essential components in rotating machinery, based on vibration signals. We apply hybrid models
involving the encoding and construction of parameterized quantum circuits (PQC) connected to a classical
neural network, the Multi-Layer Perceptron (MLP). We consider combinations of the Variational Quantum
Eigensolver (VQE) framework with rotation gates and different entanglement (two-qubits) gates (CNOT,
CZ and iSWAP). For each PQC configuration, we assess the impact of the number of layers (1, 5 and 10).
We use two databases of different complexity levels not previously explored with QML, namely CWRU and
JNU, with 10 and 12 failure modes, respectivel. For CWRU, all QMLmodels presented higher accuracy than
the classical MLP. For JNU, all QML models were superior to classical MLP as well. These results suggest
that, despite the current limitations of quantum environments, QMLmodels are promising tools to be further
investigated in PHM.

INDEX TERMS Quantum machine learning, prognostic and health management, fault diagnosis, vibration
signal.

I. INTRODUCTION
Traditionally, policies based on corrective or preventive
approaches have been used for reliability and maintenance

The associate editor coordinating the review of this manuscript and
approving it for publication was Yu Zhang.

management. Corrective maintenance deals with unsched-
uled repairs, which may be time-consuming and expensive,
while preventive maintenance does not consider variables
that may change over time, such as environmental factors.
Alternatively, condition-based maintenance (CBM) [1] is
related to predictive maintenance, in which monitoring and
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analysis of equipment conditions are constantly performed,
and decisions are taken when there is a tendency to fail [2].
For example, the Prognostic and HealthManagement (PHM),
applied in the context of maintenance of in-use equipment,
aims to avoid system failures and shutdowns [3], [4], [5].
The PHM approach uses a set of raw data obtained on the
monitored device and it is within CBM. These data are actual
health indicators, and extrapolating them over time enables
the definition of decision support for maintenance or the
prevention of a severe collapse. We can analyze the models
of deterioration progression and forecast the system’s status
and future operation by utilizing the data.

Rotating machines are essential engineering systems of
contemporary and are used in different contexts, such as
in the Oil & Gas [6], Aerospacial [7], and Automotive [8]
industries. The performance and operational efficiency of
rotating machines are significantly impacted by bearings,
which account for about 40% of electrical motor failure
incidents [9]. Vibrational analysis has become the industry
standard for assessing the condition of roller bearings and
other rotating machinery. Equipment and components can
be better shielded from breaking if bearing issues can be
recognized quickly and precisely [10], [11].

Traditional intelligent diagnosis methods include feature
extraction using signal processing methods and fault classi-
fication by adopting machine learning (ML), and deep learn-
ing (DL) approaches [7], [11], [12], [13], [14], [15]. Those
methods enable computers to solve problems without explic-
itly programming a specific problem-oriented algorithm and
instead learn from data [8], [16], [17].

For example, Liu et al. [18] used Variational Autoencoder
to diagnose failure modes of rotating machinery components.
For the same type of equipment, Zhao et al. [11] present
a benchmark study with different DL models applied to
different databases available in the literature. Among the
techniques, multi-layer perceptron (MLP), autoencoder (AE),
convolutional neural networks (CNN), recurrent neural net-
works (RNN), and deep belief networks (DBN) are used.

Recently, important research interest has emerged in the
tremendous potential of parallelism offered by Quantum
Computing (QC) and related quantum technologies [19].
Quantum algorithms aim to find ways to speed up the solu-
tion of computational problems by using a quantum com-
puter [20]. A quantum machine characterizes and computes
the quantum characteristic of an atom in a molecule, which
is computationally exceedingly challenging even for a super-
computer to handle. This significantly impacts drug research,
healthcare, and big data processing [21].

Machine learning and QC are both likely to play a role
in how society deals with information in the future, so it
is logical to wonder how they could be merged [21], [22],
mainly because QC’s prospects are increasing faster in hard-
ware performance. For example, it is possible to evaluate
several states simultaneously because quantum computations
are based on the idea that subatomic particles can exist
simultaneously in several states. It may lead to significant

speedups [23], conferring, then, a possibility to improve the
classic ML [24], since for many scenarios, as the amount of
data grows, aligned with the complexity of the information,
the training process becomes slower [11]. In this context,
ML models with quantum properties have been recently
proposed for classification goals [24], [25], [26], [27]. It is
one of the many applications that could profit from quantum
devices [28]. ML applications incorporating quantum tech-
niques are known as Quantum Machine Learning (QML).
QML models are based on QC techniques to develop new
algorithms and improve existing ones [25], [26]. Indeed,
QC and ML are the two key areas in engineering science as
technology is developing quickly [26], [29].

In this paper, we explore the applicability of QML models
to diagnose failure modes of different components. Although
the subject is promising and has increased its recognition,
the research is still limited, among other factors, because
of the size of the problems, given the amount of quantum
bits (qubits) available in simulators and computers [30]. Note
that a qubit is the smallest unit of information in a quantum
computer and can be either 0 or 1 or a superposition of these
two.

Therefore, we focus on proof of concepts and comparison
of the QML with classical techniques evaluated on rotating
machine components subjected to vibration as a stressor,
common in different industries [6], [31]. To the best of our
understanding, this is the first work to present the application
of a QMLmodel in the context of PHM classifying more than
three health states.Moreover, besides rotation gates, we apply
entanglement gates (CNOT, CZ, and iSWAP) andmore layers
in the Parameterized Quantum Circuit (PQC) to observe the
effect of such model variations. In addition, our study will be
applied to two complex databases available in the literature
that have not yet been explored in the context of QML. Those
are bearing datasets: (1) Case Western Reserve University
(CWRU) [32] and (2) Jiangnan University (JNU) [33]. The
results obtained from the application of these models aim to
indicate the QML’s usability and importance in supporting
decision-making related to maintenance.

The remainder of this article is organized as follows.
In Section II, there is an overview of the related works. In Sec-
tion III, we focus on the main concepts of QC. Section IV
presents the structured methodology for this work, including
the framework used for the QML models, as well as the
description of the databases and features used. Section V
shows the applications and results. Finally, Section V-C sum-
marizes the main findings of the work and provides some
concluding remarks.

II. RELATED WORKS
QC is frequently referred to as an interdisciplinary research
frontier involving disciplines as diverse as computer science,
physics, chemistry, and engineering. The excitement relies
on the hypothesis that quantum information will eventually
result in a new wave of technological advancements in infor-
mation, computation, and communication [34].
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QML is a new field of study that emerged by exploiting
quantum systems to process classical data using ML tech-
niques. Information processing could be accelerated far
beyond current classical speeds [23].

Despite novelty in the context of Reliability Engineering,
QML has a growing interest in the academy, with expanding
application in recent years. Fig. 1, extracted from Web of
Science (WoS), provides the number of articles using ‘‘Quan-
tum Machine Learning’’ as a keyword. The first publication
appeared in 2014 and, since then, this number has been
increasing significantly. The year 2022 has the peak of pub-
lications, with 130 in total, despite the search was conducted
until October 2022.

FIGURE 1. ‘‘Quantum machine learning’’ publications in web of science.

The research community has shown interest in two QML
strategies. In the first, PQC, a quantum circuit made up of
parametric gates is considered a trainable model, with the
parameters being updated to minimize a specified objective
function. PQC enables researchers to draw obvious similar-
ities and parallels with classic neural networks The second
strategy is related to quantum kernel techniques, which can
be employed for prediction and tasks like clustering or dimen-
sionality reduction, [26], [27].

Although these combined algorithms have theoretically
demonstrated performance gains, their scalability is still in
question because current Quantum Processing Units (QPUs)
are unable to dependably execute the operations necessary
to evaluate these methods on actual data. This is because
qubits are still scarce resources and the connectivity between
them is constrained [21], [35]. Nevertheless, we can exam-
ine the effects of incorporating quantum circuits as building
blocks by employing small, parameterized quantum circuits
that are easily operated on real hardware or simulated in
classical computers. In a sense, this procedure is compa-
rable to what happened with DL models in the wake of
ML models’ natural progression toward greater scalability
around 2010 [25], [26], [36].

In a literature review, when searching by keywords in
WoS, the combinations ‘‘Quantum Machine Learning’’ and
‘‘PHM’’ or ‘‘Fault Detection’’ only returned one article.
The authors applied quantum kernel methods to wind tur-
bine fault detection [27]. Extending the search to Google
Scholar, we found one more article that explores rotating
machines [26]. In QML models, the quantum part aims to

provide trial states for the algorithm. The PQC, or ansatz
circuit, generates these states according to a set of control
parameters that are managed by the classical part of the
algorithm [37].

PQC has been applied in the PHM context to catego-
rize health states in rotating machinery with performance
comparable to conventional ML methods [26]. Nevertheless,
in this case, only rotation gates were used. The latter are
single qubit parametric gates, whose effect can be externally
controlled [27].

Hence, it is necessary to observe the effect of operations
such as superposition and entanglement to emphasize the
quantum contribution of the model [21], [38]. The ability to
be in superposition is one of the qualities that distinguish a
qubit from a conventional bit. One way to conceptualize a
quantum state in superposition is as a linear combination of
other unique quantum states. The core idea is that a search
algorithm can tunnel through energetic barriers to escape
local minima because quantum superposition and tunneling
enable direct transitions between states even when there is a
high energy barrier between them [39].

Entanglement is the phenomenon where two particles can
be connected independent of the distance [21]. The hypoth-
esis is that the time and computing power needed will be
reduced since one qubit can provide information about the
other unit to which it is related [23]. In this sense, there are
two-qubit gates, such as CNOT and CZ [27].

Faced with the different ways of schematizing PQCs, there
are algorithms that combine different types of gates, such
as the Variational Quantum Eigensolver (VQE), that can
combine the single-qubit and two-qubit, as well as the param-
eterized and non-parameterized gates [37], [40]. For exam-
ple, Rasmussen and Zinner [37] used VQE with both single
(rotation gates) and two-qubit (CNOT, CZ, and iSWAP) gates
with angles to be parameterized during training. Meanwhile,
Sim et al. [41] performed several combinations with different
rotation gates, in x, y, and z, and entanglement gates (CNOT
and CZ), forming 19 different circuit types for testing. Schuld
and Petruccione [42] also add other circuit schematization
possibilities, such as those based on the Quantum Approxi-
mate Optimization Algorithm (QAOA) architecture.

III. QUANTUM COMPUTING
If the ability to simulate classical computers were the
only feature of quantum computers, there would be little
point in going to all the trouble of exploiting quantum
effects. The advantage of QC is that much more power-
ful functions may be computed using qubits and quantum
gates [43].

The performance mechanisms in resolving important
industrial problems are highlighted by the distinctions
between classical computing and QC. The QCmechanics use
fundamental quantum properties like superposition, entangle-
ment, and the measurement paradox to find the best answers
to challenging issues [43], [44].
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Eq. (1) provides the qubit state representation [43],
[45], [46]:

| ψ⟩ = α | 0⟩ + β|1⟩ (1)

where α and β are complex numbers that represent ampli-
tudes, and they satisfy the relation |α|

2
+ |β|

2
= 1; thus, |α|

2

and |β|
2 are the probabilities of a qubit collapsing to states

‘‘0’’ or ‘‘1,’’ respectively, after a measurement. Eq. (1) can be
rewritten as Eq. (2), in which the parameters θ , φ, and γ are
real numbers [25], [39], [43]:

| ψ⟩ = eiγ (cos
θ

2
|0⟩ + eiφ sin

θ

2
| 1⟩) (2)

The Bloch Sphere (Fig. 2) is a geometric representation of
the pure state space of a two-level quantum mechanical sys-
tem. It is used in quantum mechanics and computation [47].
In Fig. 2, the angles θ and φ correspond to spherical coordi-
nates that represent a point describing a single qubit state [43].
The | ψ⟩ can be defined as a Hilbert Space vector coming
from the origin to the sphere’s surface. This vector has a R3

dimension with the following configuration: [sin(θ)cos(φ),
sin(θ )sin(φ), cos(φ)] [42].

FIGURE 2. Bloch sphere which represents the qubit [43].

Also, the Bloch sphere provides a visual representation of
quantum states operations. Rotations on the sphere represent
unitary transformations, while projections onto one of the
poles depict measurements. The Bloch sphere’s utility lies in
its ability to show the impact of quantum gates, which form
the foundation of quantum circuits. This makes it a valuable
tool for creating and examining quantum algorithms and error
correction techniques [35], [47]. Finally, The Bloch sphere
viually represents entangled states between two quantum
systems. When two systems are entangled, their combined
state cannot be described by a single point on the sphere but
by a region of it [41].

In Fig. 3, one can see a representation of a quantum circuit.
The circuit is a QC paradigm comparable to classical circuits,
in which a computation is made up of a series of qubit
initializations, quantum gates, and measurements to translate
the quantum information to classical values. The circuit is
read from left to right. For example, following the horizontal
lines in Fig. 3, |0⟩ represent the input qubits in state ‘‘0.’’ Next

are logic gates, such as single-qubit blocks Hadamard (H),
X and Z gates, and two-qubit gates as CNOT. In summary,
the measurement operation at the end of the line translates
the quantum result into a classical one [48].

FIGURE 3. A quantum circuit example [48].

A qubit is unusable except if one is able to use it to conduct
a quantum computation. These quantum operations are done
according to a series of foundational operations called quan-
tum logic gates. They are the building blocks behind all quan-
tum algorithms [20], [36]. The following sections present
some of these gates, namely, superposition, controlled, and
rotation gates.

A. THE HADAMARD GATE
A new quantum state is created by this superposi-
tion [34], [39]. A qubit can be forced into a superposition state
using the Hadamard gate. When applied over | ψ⟩ = | 0⟩, its
output is a qubit with an equal chance of going from a |0⟩ or
|1⟩ state following a measurement [26], [49].

H =
1

√
2

[
1 1
1 −1

]
(3)

B. CONTROLLED GATES
Entanglement is another important quantummechanics prop-
erty that is leveraged in QC for constructing dependencies
between qubits [27]. Among the entanglement gates, we can
cite CNOT, CZ, and iSWAP as examples [37].
Two inputs and two outputs make up the CNOT gate.

If both qubits are in their absolute basal states, which are
either |0⟩ or |1⟩, then the first qubit serves as the control qubit
and the second acts as the controlled qubit. If the first qubit
is |0⟩, then the CNOT gate does not affect the system; if
it is |1⟩, the second qubit is inverted to the opposite state.
That is if the second qubit was |0⟩ it becomes |1⟩; if it was
|1⟩, it becomes |0⟩ [26], [27].
Target and controlled gates make up the CZ gate. If the

controlled gate is 1, a Z gate is applied to the qubit on the
target gate. A symmetric gate, the iSWAP switches two-qubit
states and define the amplitudes of | 01⟩ and | 10⟩ by i [37],
[48]. Equations (4)-III-C present the matrices corresponding
to these gates.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (4)
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FIGURE 4. Hybrid quantum machine learning scheme to perform health state diagnosis.

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (5)

iSWAP =


1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

 (6)

C. ROTATION GATES
Since the Hadamard and C-NOT gates work directly on
qubits without requiring the definition of external parameters,
they can be categorized as non-parametric gates. Rotation
gates, on the other hand, can have their impact on a qubit
fine-tuned externally, making them single qubit parametric
gates [26], [27], [46].

The effect of the rotational gate operation can be simply
understood due to the Bloch Sphere depiction. Each opera-
tion rotates the qubit by a specific number of radians deter-
mined by the external parameter. This rotation is around the
considered axis. Eq. (7)-(9) provide the matrices for these
gates [26], [27], [46].

Rx (ξ) =

 cos
ξ

2
−isin

ξ

2

−isin
ξ

2
cos

ξ

2

 (7)

Ry (ξ) =

 cos
ξ

2
−sin

ξ

2

sin
ξ

2
cos

ξ

2

 (8)

Rz (ξ) =

 e−i ξ2 0

0 ei
ξ
2

 (9)

IV. METHODOLOGY
A. QML FRAMEWORK
The step-by-step framework application of QML models is
presented in Fig. 4. This is a framework based on different
studies that use the PQC logic in QML models [21], [22],
[26]. However, in our case, several modifications were imple-
mented regarding the neural network used, PQC settings, and
health status diagnosis. In fact, the applications we present in
Section V involve a more complex problem for which more
than ten different health states are possible for the machinery
diagnosis. Moreover, while in other studies only rotation
gates were used [26], [50], we aggregate two-qubit gates –
CNOT, CZ, and iSWAP – to observe the impact of quan-
tum effects arising from entanglement on the performance
of the QML models. In terms of application, we used the
Python® programming language along with the TensorFlow
Quantum (TFQ) library [22]. Each stage of Fig. 4 is described
below:

• Prepare Quantum Dataset: consists of pre-processing
the classical data. For example, normalization, dimension-
ality reductions, and feature extraction can be performed.
X̂1, X̂2, . . . , X̂n are vectors or multidimensional matrices,
with a certain number of features monitored. Then, the
data is encoded into qubits. A circuit is generated which
takes as input N qubits defined in a |0⟩ state and an
N -dimensional real-valued vector, whose values lie in a range
(e.g., [0, 1]). Encoding schemas are a hot active debated
topic that straddles the line between quantum hardware and
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software [23]. Various methods could be utilized, such as
amplitude encoding and angle encoding. We employed angle
encoding. The data processing capabilities of quantum neural
networks can directly benefit from this encoding method.
This encoding’s key advantage is that it is extremely effective
in terms of operations because, regardless of the many data
values to be encoded, just a fixed number of parallel processes
are required [22]. Eq. (10) summarizes the angle encoding
method, in which ⊗ represents the tensor product between
the vector spaces S:

x⃗ → |ψ⟩ = S(x0) ⊗ S(x1) ⊗ . . .⊗ S(xN−1) (10)

In Eq. (10), S represents the following operation performed
for each element of the classical vector:

S (xi) = cos
(π
2
xi
)

|0⟩ + sin
(π
2
xi
)

|1⟩ (11)

• Evaluate quantum model: after encoding the data, PQC
is created. PQC consists of one or several logic gates where
the parameters of the gates (e.g., an angle θ of a rotation
Y ) are free parameters to be adjusted/optimized depending
on the error propagated from outside to inside the circuit.
In this study, we tested different PQC schemes. The first one
consists only of rotation gates in y, x, and z, for each qubit (qi),
as shown in Fig. 5. Note that a, b and c are the angles of each
gate to be parameterized.

FIGURE 5. PQC defined by y, x and z rotation gates.

In addition, we considered the circuit configuration used
in the VQE quantum algorithm based on the study by
Rasmussen and Zinner [37]. First, an Euler rotation is
performed on each qubit, followed by a nearest-neighbor
coupling using the given entangling gate. Here, we apply
the two-qubit gates C-NOT, CZ, and iSWAP as shown in
Fig. 6. PQCs were built with different numbers of layers,
namely, 1, 5, and 10.

FIGURE 6. PQC defined VQE with generic two-qubit gates visualization
that in this study can be CNOT, CZ, or iSWAP.

• Sample or Average: measurements are performed, return-
ing the processed quantum data to classical data. For this

work, a measurement operation was defined through the Pauli
Z-gate (Eq. (12)) in each of the qubits. Pauli measurements
are a generalization of computational basis measurements
that cover measurements in other bases and of equality
between several qubits. A measurement in the Pauli Z basis
projects the state onto one of the eigenstates | 0⟩ or | 1⟩ of this
matrix [48]:

Z =

[
1 0
0 −1

]
(12)

• Evaluate classical model: the classical model is a neural
network. Features extracted from the database and encoded
are inserted into the neural network. In this process, back-
propagation is flowed through the weights of the neural net-
work and into the PQC.

B. ROTATING MACHINERY DATABASES
With their widespread use and research in industrial appli-
cations, rolling bearings are a crucial and vital part of rotat-
ing equipment [18]. Information is acquired using a vari-
ety of techniques, which can be roughly categorized based
on the measurements made: temperature, wear debris anal-
ysis, vibration, and acoustic measures [6]. Due to their
easy-to-measure signals and convincing analysis, vibration
measurements are among those that are frequently uti-
lized in the condition monitoring and diagnosis of rotating
machinery [7], [51], [52].

In this context, public datasets are available for intelligent
diagnosis. Indeed, assembling several types of representa-
tive datasets is crucial for complete performance compar-
isons [11]. In this study, the performance of the models is
analyzed using two datasets: CWRU and JNU.

1) CWRU DATASET
The Bearing Data Center dataset from Case Western Reserve
University (CWRU) [32] is well-known in the PHM literature
and is used here to assess the proposed methodology. The set
includes signals from mechanical vibration series obtained
from an induction electric motor with engine load starting
from 0 to 3 HP. Data were obtained from two accelerometers
mounted on top of the motor and connected by magnetic
bases, one of which was collected at the drive end (DE),
and the other was collected nearby the bearing fan end
(FE). The collections of the two accelerometers are precisely
coordinated.

These faults, which can occur in the rearing rolling element
(RE), the inner raceway (IR), and the outer raceway (OR),
are intentionally introduced by an electro-discharge machine
This operation is applied at different motor rotation rates. The
faults generated have different diameters [32].

Table 1 shows the different failure modes, diameters and
proportion of each class in the data set. The vibration data are
collected at a rate of 12k samples per second from accelerom-
eters connected to the equipment at two points: the upper and
lower turbine of the device. For our application, we consider
the case of 1797 rpm and 0 HP.
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TABLE 1. Description of failure modes of the CWRU [11], [32].

2) JNU DATASET
Jiangnan Universit’s (JNU) [11], [33], [53] bearing datasets
is also freely available and are made up of three vibration
datasets with three different rotating speeds (600, 800, and
1000 rpm), all of which were gathered at 50 kHz. One health
condition and three failure modes are displayed in the JNU
datasets (IR, OR, and RE). All states were measured at the
same locations as the CWRU base. As a result, the total
working conditions classes are twelve, as shown in Table 2
with the respective proportions for each state.

TABLE 2. Description of failure modes of the JNU [11].

C. FEATURE EXTRACTION
Standard vibration-based metrics like mean, variance, root
mean square (RMS), variance, kurtosis, as well as higher-
order statistics, are frequently employed for machinery diag-
nostics. In this study, we use eight different features, which
are described below.

• Variance and Mean: the statistical dispersion of a signal
is measured by variance [54]. The impacts in a spalled
bearing should increase the signal’s variability. The vari-
ance for a time series si with length L is:

σ 2
=

1
L

L∑
i=1

(si − s̄)2 (13)

where the populationmean, i.e., the average of the signal
values [55], [56], is:

s̄ =
1
L

L∑
i=1

si (14)

• RMS: it is the square root of the mean square, i.e.,
the arithmetic mean of the squares of the data. Also,
it represents the residual signal energy [57], [58]:

RMS =

√√√√ 1
L

L∑
i=1

s2i (15)

• Skewness (SKW): it describes a distortion or asymmetry
in a set of data that departs from the normal distribution.
The curve is said to be skewed if it is displaced to the
left or right [59]. It can be calculated as follows [56]:

SKW =

1
L

L∑
i=1

|si − s̄|3(√
1
L

L∑
i=1

|si − s̄|2
)3 (16)

• Kurtosis: is frequently used as an indicator for quantify-
ing vibration signal impulses [60]. It represents how far
the distribution’s tails diverge from the normal distribu-
tion’s tails [61], [62]. Kurtosis is defined as follows:

Kurtosis =
(L − 1)

∑L
t−1 (s (t)− s̄)4(∑L

t−1 (s(s (t)− s̄) − s̄)2
)2 (17)

• Peak-to-peak (PP): is the difference between a wave-
form’s maximum positive and maximum negative
amplitudes [57], and it is calculated according to:

PP = smax − smin (18)

• Maximum Amplitude: is the maximum displacement or
distance moved by a point on a vibrating body or wave
measured from its equilibrium position [9]. The notation
for this feature is:

MaxAmp = smax (19)

• Crest Factor: is the ratio of the peak vibration level to
the RMS and is frequently used to detect changes in
signal patterns caused by impulse vibration sources that
are not normally captured by RMS analysis alone. Under
normal circumstances, its value ranges between 2 and 6.
It is determined as follows:

Crest Factor =
Peak Level

RMS
(20)

V. APPLICATION AND RESULTS
A. CWRU RESULTS
The first data configuration developed for this study encom-
passes five features: (i) mean, (ii) variance, (iii) maximum
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amplitude, (iv) peak-to-peak, and (v) RMS. The second struc-
ture used the features from (i)-(v) in addition to: (vi) crest
factor, (vii) kurtosis, and (viii) skewness.

The vibration signals were divided into segments of length
equal to 1,024 points. The extension of the database resulted
in 1,305 samples with the number of columns corresponding
to the number of features.

The data was divided into 70% for training, while the
remaining 30% were used for testing. Then, angle encoding
was performed. The output of this step is a set of objects
generated for reading and operation in the quantum circuits.
These objects have a bijective relationship with the data
points (i.e., each data point has exactly one circuit represen-
tation). Fig. 7 shows one example of a database vector with
its respective encoding results.

In the end, the traditional neural network recieves as input
the classical information obtained from the quantum mea-
surement step. The processing was structured with three lay-
ers: the first one consists of the input units that depends of
the number of the model features (5 or 8); the second has
100 neurons; and, finally, the output layer has the number of
neurons equivalent to the number of classes (10 and 12 to
CWRU and JNU, respectively). The SoftMax activation func-
tion computes the scores for each class. Thus, the model
provides the prediction of the corresponding failure mode.

FIGURE 7. Vector with angle encoding.

TABLE 3. Neural network setup.

The cross-entropy categorical function is used to measure
the models’ losses. The default backpropagation operation
of TFQ considers the PQC as a black box. It uses the finite
difference method to compute the gradient approximation
corresponding to the free parameters (rotation gates angles to
parameterized: a, b, and c). Adam optimizer was used, with a
learning rate of 0.01. We ran the training for 300 epochs, with
the patience of 30 epochs for an early stop. The above config-
uration is summarized in Table 3. For comparison purposes,
the same structure was considered to represent the classical
model (i.e., MLP).

Table 4 shows the accuracy, precision, recall, and F1-score
results obtained when running the classic ML and QML
models. Initially, the lowest accuracy presented is for MLP,
resulting in 95.40% and 91.95% for five and eight features,
respectively. Among the QML models with five features, the
best accuracy (98.08%) is presented in three scenarios: only
rotation gates with one layer; and VQE with the CZ gate
having one and five circuit layers. However, observing the
other metrics, the CZ with five layers had a better-weighted
precision than the others.

Considering the first type of QML model (Ry, Rx, Rz),
the behavior of the four metrics has better performances on
circuits with only one layer and worse ones with ten layers.
Thus, showing a decreasing pattern as the number of layers
increases. The PQC with CNOT has the lowest accuracy of
the QMLmodels when applied to ten circuit layers (95.79%).
Increasing this number to 1 peaks the performance to 96.55%.
As observed, this result does not improve when increasing
the number of layers. The PQC with CZ as the two-qubit gate
has its worst result with ten layers and the best with 5 when
considering mainly the precision. Finally, the iSWAP has
similar behavior to CZ, i.e., the worst result for ten layers.
However, best with one and intermediate with ten.

Still, in Table 4, we can observe the results for the model
with eight features. In this scenario, MLP also has the worst
accuracy (91.95%). The best result consists of the config-
uration of PQC with CZ and five layers (98.47%), which
is approximately six percentage points greater than MLP.
Results with eight features were better than those with five
features in only six of 13 scenarios.

Table 5 shows all the CWRU confusion matrices (CM) and
accuracy curves. In the CMs, for the five features QMLmod-
els with only rotation gates (Fig. 8a), with CNOT (Fig. 8b),
and with CZ (Fig. 8c), the three with one layer, the most
severe diagnostic problems were in label 2: IR with 0.014
inches. The worst classification for iSWAP (Fig. 8d), with
one layer, was in label 5 (RE2).

The graphs of accuracy in Table 5 show the number of
epochs for each model to achieve its best result, according
to the stopping criterion used (patience of 30 epochs). Fig. 9
summarizes some of these graphics.

For the circuits with only one layer, one observes that
the model with only rotations (Fig. 9a) needed 48 epochs
to reach its peak accuracy. The other configurations, on the
other hand, varied around 80 epochs. In this case, CNOT
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TABLE 4. CWRU: ML and QML Accuracy, Precision, Recall and F1-Score results. Performances change on a color scale from shades of green for the best
results, to red for the worst.

FIGURE 8. CWRU confusion matrices for one layer PQCs for the following configurations: (a) Ry, Rx, Rz; (b) Ry, Rx,
Rz + CNOT; (c) Ry, Rx, Rz + CZ; (d) Ry, Rx, Rz + iSWAP.

with 81 (Fig. 9b), CZ with 80 (Fig. 9c), and iSWAP
with 76 (Fig. 9c). Regarding the circuit repetition, not

necessarily more layers need more epochs, as it was not true
for the four tested configurations.
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TABLE 5. CWRU dataset: confusion matrix and model accuracy graph with five and eight features.
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TABLE 5. (Continued.) CWRU dataset: confusion matrix and model accuracy graph with five and eight features.

B. JNU DATASET
The settings used for training this database are similar to those
of the CWRU. However, this larger database resulted in a
sample size of 8,790 rows and 12 health states. Indeed, JNU
is a more complex database than CWRU. In a study dealing
with seven different databases from the rotating machinery
components literature, the authors state that JNU is at 3 out
of 4 levels of difficulty, while CWRU is at 1 out of 4 (see
Zhao et al. [11]).

Table 6 presents the accuracy, precision, recall, and
F1-score results obtained from the Classic MLP and QML
models. With five features, the lowest accuracy was obtained
for the MLP, resulting in 61.59% of the test data, followed by
VQE with CZ with ten layers (62.19%). The best accuracy

was in the PQC with the two-qubit gate CZ and one-layer
circuit with an accuracy of 70.49%, followed by rotation gates
and with iSWAP, both with one layer, that hit 70.31% and
70.27%, respectively. However, whenwe look at the precision
metric, the order of best performance goes first to iSWAP
(68.63%), then to VQE with CZ (67.74%), and lastly to just
rotation gates (67.70%). For all metrics, the model with the
CNOT two-qubit gate is the only one with just intermediate
to low values since it does not have any green highlights
in Table 6.

With eight features, the worst accuracy was obtai-
ned by the same configuration of five features:
MLP (62.57%). The second place belongs to the VQE with
CNOT with one layer (63.44%). The other metrics follow
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FIGURE 9. CWRU accuracy curves for one layer PQCs for the following configurations: (a) Ry, Rx, Rz; (b) Ry, Rx, Rz + CNOT;
(c) Ry, Rx, Rz + CZ; (d) Ry, Rx, Rz + iSWAP.

TABLE 6. JNU: ML and QML Accuracy, Precision, Recall and F1-Score results. Performances change on a color scale from shades of green for the best
results, to red for the worst.

the same order. The best accuracy was obtained with the
iSWAP (one layer) with an accuracy of 70.19%, followed
by rotation gates (Ry, Rx, Rz) with one and five layers,
corresponding to 70.04% and 69.93%, respectively. However,
the accuracy of rotation gates with five layers (68.06%)
is better than rotation gates with one layer and iSWAP
(one layer). The latter two configurations have accuracy

in the order previously written, with 67.98% and 67.47%,
respectively.

Note that the best precision is approximately 11 per-
centage points greater than the Classic MLP. In addition,
with eight features, increasing metrics performance behavior
by adding the layers only happened in the configuration
with CNOT.
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TABLE 7. JNU dataset: confusion matrix and model accuracy graph with five and eight features.
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TABLE 7. (Continued.) JNU dataset: confusion matrix and model accuracy graph with five and eight features.

Table 7 presents the JNU confusion matrices and accuracy
curves. Concerning the CMs, for the five features QMLmod-
els with only rotation gates (Fig. 10a) and iSWAP (Fig. 10d),
bothwith one layer, themost severe diagnostic problemswere
in label 7: rolling Element 2 at 800 rpm. For CNOT (Fig. 10b)
and CZ (Fig. 10c), it was, respectively, label 4 (inner ring at
800 rpm) and label 3 (rolling element at 600 rpm).

The accuracy graphs in Table 7 display the number of
epochs required by each model to produce its best out-
come. The more layers in PQCs using iSWAP (Fig. 11d),
the more epochs are required. However, for only rota-
tion gates (Fig. 11a), VQE with CNOT (Fig. 11b), and
VQE with CZ (Fig. 11c), we did not observe such a
behavior.

C. DISCUSSION
Here we outline more general considerations of the obtained
results presented for each database regarding the trained
structures. Note that we base our observations on the content
of Tables 4 and 6.

We varied our models in three aspects: (1) the number of
features; (2) PQC quantum operations structure; and (3) the
number of circuit layers. In (1), since the quantum simulator
used cannot process the complete signal, given the limitation
of qubits, extracting features is a way to test the QC models.
We use these two types of inputs, 5 and 8 features, to infer if
a larger amount would yield better metric results.

In the classical model (MLP), different behaviors occurred
in the two databases: the results with five features were better
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FIGURE 10. JNU confunsion matrices for one layer PQCs for the following configurations: (a) Ry, Rx, Rz; (b) Ry, Rx,
Rz + CNOT; (c) Ry, Rx, Rz + CZ; (d) Ry, Rx, Rz + iSWAP.

in all metrics for CWRU, while in JNU, it was the opposite.
For the quantummodels, on the other hand, this varied. In the
CWRU, when considering the precision metric, the results
with five features were better than the eight features results
since they were successful in 58.33% of the cases. For JNU,
in turn, results with eight features were the ones that obtained
this percentage. But when observing the recall, for example,
in CWRU, in six out of 12 scenarios, the results with eight
features were better, and in one of them, the results were
equal. In JNU, five features came out on top, with seven out
of 12 results.

For the analysis of quantum operations, merging points (2)
and (3) is interesting. We can clearly identify in Tables 4
that the model with the CZ entanglement gate and five
layers has the greenest results in CWRU in all calcu-
lated metrics. The frameworks that followed it involved
only rotations in a single layer and the CZ itself with one
layer.

Zooming in on each of the models, starting with just rota-
tion gates, one sees that with five features, the behavior of
the results is decreasing. With eight features, this varies a

bit, but generally, the best performances are with only one
layer.

The model with CNOT is one of the worst overall; the
results mostly vary from yellow to reddish, with no green
points. As said before, the entanglement gate gains promi-
nence, especially in the scenario with five layers. And its
worst results are in the increase to 10 layers. Finally, iSWAP
shows average results with some highlights, mainlywith eight
features.

In JNU, Table 6, the highlights in green are divided
between just rotations, followed by iSWAP, CZ, and again,
lastly, CNOT. In most cases with just rotations, the behavior
when varying the layers is also mostly decreasing, i.e., the
best results remain in the first layer as in CWRU. The same
is true for CZ and iSWAP. In CNOT, however, this changes
somewhat, as the negative highlights this time are in the first
layer.

Thus, overall, the scenario with the rotation gates did
relatively well for the two databases. CZ got the best accu-
racy values, but at some points, especially for JNU, it had
very reddish values. It is seen that CNOT did not manage
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FIGURE 11. JNU accuracy curves for 1 layer PQCs for the following configurations: (a) Ry, Rx, Rz; (b) Ry, Rx,
Rz + CNOT; (c) Ry, Rx, Rz + CZ; (d) Ry, Rx, Rz + iSWAP.

to be outstanding, and we can indicate it as the structure
with entanglement presenting the worst performance for both
databases.

Finally, it is possible to affirm that, when using the quan-
tum simulator, there was no pattern regarding the increase in
the number of layers and the improvement of the metrics. The
results were generally better with up to five layers, decreasing
when composing the circuit with ten layers. But there were
cases where the inverse also happened.

Therefore, based on all findings, QML models outper-
formed MLP in the calculated metrics. However, many other
ML model configurations could be compared. Furthermore,
it is important to note that here we are not comparing
QML with DL methods. Thus, in this study, it is not possi-
ble to judge whether the higher complexity DL algorithms
are better than those of QML. Some studies in the liter-
ature apply DL methods that can achieve 100% accuracy,
as in [11], but differently from our case, they use the full
signal and have no input size limitations. We emphasize that
the main focus is to show the applicability of these QML
methods – on the rise in the literature [24], [28], [63] – in
Reliability Engineering and to encourage their exploration
in different machinery, sectors, and contexts that demand
PHM activities, which are valuable to support maintenance
decisions.

Finally, Table 8 shows the computational times, measured
in seconds, required to train the models for the two databases
(CWRU and JNU). The first point is that the classical MLP
model achieves significantly less training time than the QML

TABLE 8. CWRU and JNU run times in seconds by model.

ones. The reason for this is that the models were trained on
a simulator. Actual quantum hardware would likely achieve
more agile times than those presented here.

When comparing the quantum models with each other, the
fewer layers in the circuit, the faster the training becomes
since the number of operations is smaller. It occurs in all
scenarios.
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The training time of JNU is significantly longer than that of
CWRU due to the complexity of the former. Lastly, we note
that due to the early stopping inserted in training, some
processes have more epochs than others, as presented in
Fig. 11. Consequently, some training takes longer than others
as well. Also, models with eight features, in most cases, have
longer processing times than those with five features. That is,
possibly the increase in the number of qubits also influences
the longer processing time.’’

VI. CONCLUSION
The main objective of this work was to develop a QML-
based methodology for the PHM with applications to equip-
ment through vibration signals. We bring results regarding
bearing data available in the literature. The framework of
QML models was based on an existing structure, but they
have different combinations in the quantum part itself. That
is, the proposed PQCs have other configurations in addition
to rotation’s gates. These are: the increment of the VQE
algorithm combined with different two-qubit gates (CNOT,
CZ and iSWAP). Moreover, additional layers of these circuits
were used to identify if the increment of quantum opera-
tions, such as entanglement, would bring improvements in the
results.

Regarding the CWRU, the model with CZ and 5 layers
presented higher accuracy in the test data. Therefore, the
effectiveness of a hybrid-quantum model for the diagnosis
of failure modes for this type of equipment can be attested
to in the scope of this study. Also, it was observed that when
compared to theMLPmodel that has the same neural network
configuration used for the quantum models, the QML results
were better overall.

Concerning JNU, the best model in terms of accuracy
was the VQE with CZ entanglement gates with 1 cir-
cuit layer. In this database, the model with the low-
est accuracy was the MLP in both features configura-
tion (5 and 8).

The contributions of this work are outlined in the following
aspects: (1) exploration of two databases in the literature not
yet analyzed in the QML framework; (2) performance of the
diagnosis of a larger number of failure modes, compared to
what has already been done in the literature; (3) delineation
of the limitations of this study that can be a start kick
for improvements and execution of new studies that cover
the gaps of this one, as will be described throughout this
conclusion; and, (4) to conduct a proof of concept that new
quantum computing technologies can be used in Reliability
Engineering problems, specifically in the diagnosis of failure
modes of rotating machinery components, which are widely
used in different sectors, such as in the O&G industry. Inter-
ested organizations may also be able to follow QC trends to
modernize actions to help develop maintenance policies that
are key points for the success of productive operations and
safety.

It must be emphasized that, so far, there are many limi-
tations in terms of the computational capacity of quantum

programs. However, this is a promising path that tends to
gain popularity in academia and companies. QC has received
growing investments in terms of hardware in order to enable
the resolution of problems with larger instances in a more
efficient way.

Despite the promising results presented in this work, the
QML models, given the framework we are using, are limited
to the maximum number of qubits that the quantum library,
Tensorflow quantum simulator, can handle. Thus, using a
more extensive set of features is currently infeasible, and
one must reduce the dimensionality to only a limited number
of features, potentially losing information. Also, as we used
simulators, we did not consider some real quantum hardware
issues, such as the generated noises. Moreover, another limi-
tation refers to the number of layers used in the circuit. Due to
the computational capacity, applying more than 10 layers was
not possible. We also observed that increasing the number
of layers may enhance the QML models’ performances due
to increased quantum properties’ effects, such as entangle-
ment. However, not all tested QML models presented such a
behavior.

The outcomes from this work support the notion that
the proposed QML models constitute a promising strat-
egy for handling features extracted from times series from
multi-sensor suites for complex systems’ health state diag-
nosis. The good performance of the models is competitive
for reliability engineering studies, corroborating what was
presented by Silva and Droguett [26]. Therefore, for future
studies in this application area, it is suggested to explore dif-
ferent equipment besides rotatingmachines and analyze other
stressors besides vibration, such as temperature. We also
suggest the application of other configurations of quan-
tum circuits, such as the QAOA and the combination of
quantum circuits with other classical ML models. Addition-
ally, another suggestion is to test different backpropagation
methods besides the one used in this work, such as the
parameter-shift rule. Finally, exploring different backpropa-
gation methods in addition to the finite difference technique
used in this work, such as the parameter-shift rule, could bring
valuable insights.
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