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ABSTRACT Network-on-Chip (NoC) is the ideal interconnection architecture for many-core systems
due to its superior scalability and performance. An NoC must deliver critical messages from a real-time
application within specific deadlines. A violation of this requirement may compromise the entire system
operation. Therefore, a series of experiments considering worst-case scenarios must be conducted to verify if
deadlines can be satisfied. However, simulation-based experiments are time-consuming, and one alternative
is schedulability analysis. In this context, this work proposes a schedulability analysis to accelerate design
space exploration in real-time applications on NoC-based systems. The proposed worst-case analysis
estimates the maximum latency of traffic flows assuming direct and indirect blocking. Besides, we consider
the size of buffers to reduce the analysis’ pessimism. We also present an extension of the analysis, including
self-blocking. We conduct a series of experiments to evaluate the proposed analysis using a cycle-accurate
simulator. The experimental results show that the proposed solution presents tighter results and runs four
orders of magnitude faster than the simulation.

INDEX TERMS Network-on-Chip, timing analysis, design space exploration.

I. INTRODUCTION
In the early 2000s, researchers began to look for a reusable
and scalable interconnection architecture [1], [2], [3], [4], [5].
The solution is an integrated network on a single chip, named
Network-on-Chip or NoC [2]. Such architecture can support
multiple simultaneous communications, and its performance
increases with the system size, which does not occur in the
shared bus architecture.

The study of NoCs is still a current topic of interest.
Researchers in [6] suggest examining networks’ structure
and behavior linking citations, subjects, and co-authors to
understand how NoC research has developed over the past
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two decades. Some scientists are also looking into using
machine learning with NoC. In [7], the authors propose a
method that utilizes machine learning to improve the energy
efficiency and performance of NoC systems. They propose
using deep reinforcement learning to adjust the voltage and
frequency of NoC routers and links and using neural net-
works to control distributed agents. This method was tested
using real-world and simulated data and found to improve
energy and delay by 30-40% compared to non-machine
learning methods and by 8% compared to other machine
learning methods. This method can adjust and handle large
systems, making it useful for preventing issues such as
overheating.

Among the current research topics in NoCs, is energy
consumption analysis. In [8], energy-efficient scheduling
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algorithms for Multi-Processor System-on-Chip (MPSoC)-
based NoC systems are proposed. These algorithms mini-
mize execution time, energy consumption, and network load.
They are beneficial for scheduling large scientific tasks with
hundreds or thousands of subtasks. The results of the exper-
iments show that these proposed algorithms significantly
reduce the execution time. These techniques are particularly
relevant for high-performance computing systems, where
real-world scientific applications are becoming more com-
plex and demanding more time and resources. However, the
utilization-centric design approach of NoCs can raise security
concerns, such as unauthorized access or modification of
intermediate routers, due to the sharing of hardware among
all the IP (Intellectual Property) blocks. This sharing can
compromise the integrity and confidentiality of the data being
routed [9].

Just as significant as addressing security concerns, schedu-
lability analysis is crucial in assessing the timing properties
of real-time systems. It involves evaluating periodic or spo-
radic tasks, their worst-case execution time, and a schedul-
ing policy to determine if it is possible to schedule them
without missing any deadlines. Real-time (RT) applications
have specific communication requirements which depend on
the execution time of the service. All the communication
packets must reach the destination within a pre-established
time (i.e., the deadline). Even in worst-case scenarios, failure
to meet a deadline for hard RT applications can have severe
consequences [10].

In [11], the authors propose a method for enhancing
the schedulability of real-time embedded systems using an
MPSoC with an NoC communication paradigm, taking into
account the specialized architecture and routing strategy
needed by NoC to meet the strict deadlines of real-time
systems. To further improve end-to-end schedulability, the
authors consider all possible minimal paths and include dead-
lock avoidance in the routing strategy rather than relying on
fixed XY routing. In addition, NoCs must be able to provide
different levels of service for various applications in the same
network, known as Quality-of-Service (QoS) [5].

The services offered by the NoC must show predictable
behavior to provide RT communications in Systems-on-
Chip (SoCs). However, the NoC’s behavior is partially non-
deterministic, as contentions can occur due to competition for
shared resources, such as buffers and communication chan-
nels. This issue leads to delays in packet delivery and deadline
losses. To mitigate this problem, priority-based arbitration
mechanisms, flow control with support for virtual channels,
and an analytical approach to predict the fulfillment of all
timing constraints should be used [12]. The design space of
NoCs is ample and involves a set of different parameters
whose combination impacts the costs and performance of the
network and the system. Synthesis and simulation tools aid in
obtaining these metrics, but they have a high computational
cost. Therefore, the exploration of the design space of NoCs
takes time. Nonetheless, a system designer can accelerate
this exploration using an analytical approach that allows

obtaining an initial estimate of the performance of different
configurations, reducing the number of configurations to be
analyzed with synthesis and simulation tools [13].

Considering the aspects mentioned above, schedulability
analysis is particularly important for NoCs as it helps to
determine whether the traffic flows can meet their deadlines
in congestion and contention for shared resources. In addi-
tion, designers can use it to evaluate the performance of
different NoC configurations, such as the number of virtual
channels, the size of buffers, and the routing algorithm, and to
identify potential problems with meeting deadlines. Various
techniques can be used for schedulability analysis, including
exact analysis, approximate analysis, and simulation. The
detailed analysis involves analyzing the system to determine
each traffic flow’s worst-case response time. In contrast,
the approximate analysis uses simplified models to obtain
a rough estimate of the response time. Finally, simulation
involves running a model of the system to observe the behav-
ior of traffic flows under different conditions.

In this context, we present the schedulability analysis of
a wormhole switching NoC with XY routing and round-
robin arbiters, considering traffic flow interferences. The
main contribution of this work is the reduction of the analysis
pessimism by considering the size of buffers. In addition,
we present an extension to consider the self-blocking effect,
a characteristic explored by a few works in the literature.

The remainder of this paper is organized into seven sec-
tions. Section II discusses state of the art on schedulability
analysis for NoC-based systems. Section III describes the
architecture of the reference NoC, while Section IV presents
the system model and assumptions. The proposed schedula-
bility analysis is described in Section V. Section VI summa-
rizes the experimental results, and Section VII presents the
final remarks.

II. RELATED WORK
Schedulability analysis is a technique used to evaluate the
performance of computer systems in real-time environments.
Researchers have proposed various methods for conducting
schedulability analysis in NoCs using different types of arbi-
tration.

For example, in [14], the authors proposed a method for
analyzing computer systems using schedulability analysis.
Later, in [12], the authors suggested using this technique
for real-time systems with NoCs that use fixed-priority arbi-
tration. They also introduced a way to predict the network
latency caused by higher-priority traffic flows. In [15], the
authors expanded on this method to include self-blocking
contention. In [16], the researchers continued investigating
fixed-priority-based networks and presented schedulability
tests that account for each task’s end-to-end latency and
dependencies. In [17], the authors presented methods to
reduce the pessimism of schedulability analysis in fixed-
priority-based networks by only considering traffic flow
interference in specific network sections where direct and
indirect blockings occur.
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Other studies have applied schedulability analysis to NoCs
that use dynamic arbiters. For instance, in [18], the authors
used static analysis to estimate the worst-case communica-
tion latency in an NoC that uses a Hop-based arbiter. This
approach uses a weighted graph to identify the traffic flow
that causes the worst latency. In [19], the authors proposed
using an Earliest-Deadline-First (EDF) policy in NoCs with
wormhole switching. They also presented a contention anal-
ysis to estimate the worst-case latency of individual flows,
considering both direct and indirect interference. In [20],
the authors presented a schedulability analysis for real-time
communications in wormhole networks using a round-robin
arbitration scheme with multiple stages. This work was later
extended in [21] to include a best-effort NoC.

In [22], the authors proposed analytical models to esti-
mate the worst-case performance of a 2D mesh NoC with
round-robin arbiters and two routing algorithms: a deter-
ministic (XY) and an adaptive (negative-first). The model
considers the free buffer space in its contention analysis, but
the NoC does not use virtual channels and sets the buffer
size to three flits to generate worst-case situations. In [23],
the authors proposed three properties to identify worst-case
scenarios and reduce the pessimism of schedulability anal-
ysis. The first property determines the worst-case scenario
when computing the maximum blocking delay that a flow can
suffer using round-robin arbiters. The second property deter-
mines the maximum blocking delay a flow can suffer due to
unblocking. The third property determines when an indirect
flow influences the transmission delay of the analyzed flow
by taking into account the size of the buffer. However, the
study assumes only one-flit buffers and no virtual channels.

Based on the literature review summarized in Table 1,
this work proposes the schedulability analysis of a wormhole
switching NoC with XY routing, round-robin arbitration, and
virtual channels with traffic flow preemption, considering
the interference of direct and indirect blocking. In addition,
the analysis considers the size of buffers to reduce the pes-
simism and extends the models, including self-blocking. This
work offers a more comprehensive approach to schedulability
analysis for NoCs, addressing a wider range of factors and
scenarios than previous works.

III. NETWORK ARCHITECTURE
This work utilizes as reference a wormhole switching NoC
named SoCIN-Q [24], which uses a 2-D mesh topology
(Fig. 1) and wormhole switching. Each router of SoCIN-Q
has up to five communication ports named: L (Local),
N (North), E (East), S (South), and W (West). The Local port
connects a core to the network, and the others interconnect
the router with its neighbors. Each of these ports has a pair
of input and output modules (or channels) connected to a
crossbar and implements the logic necessary for packet for-
warding.

Wormhole switching is a technique used in NoCs
(Network-on-Chips) to improve the network’s performance.
It allows the transmission of data packets or flits through the

FIGURE 1. A SoCIN-Q with a 3 × 3 2D-mesh topology and the router
internal structure.

FIGURE 2. The input and output modules of SoCIN-Q router, each module
with two virtual channels (VC0 and VC1).

network in a continuous stream rather than sending each flit
individually. This approach reduces the latency and improves
the overall performance of the network.

In SoCIN, each input channel of a router has a buffer that
stores incoming data. The network uses credit-based flow
control to regulate flit-level data transfer and deal with the
limited capacity of these buffers (a flit is the piece of data
over which the flow control is done). Applying this technique,
the output channel of the sending router uses a credit counter
initialized with the capacity of the receiving router’s buffer.
This counter is decremented when a packet flit is sent and
incremented when the receiving router sends back credit.
A credit signals that a flit was forwarded and a slot was freed
in the receiving router’s input buffer. It is worth noting that
the sending router can only send a flit if the credit is greater
than 0. Limiting the amount of data that can be sent at once
helps keep the network from getting congested.

Fig. 2 depicts the internal organization of the input and
output modules, named Xin2VC and Xout2VC, where X is
the port identifier. Each module has two virtual channels
(VCs) with different priority levels. VC0 has the highest
priority and can preempt VC1 when necessary. The Xin mod-
ules are responsible for incoming flow control, memoriza-
tion, and routing. The Xout modules schedule the use of the
output channels and regulate the flow of the outgoing flits.
These modules use round-robin arbiters to perform the output
schedule.

For this study, we use a 2-D mesh wormhole NoC with
credit-based flow control, XY routing, round-robin arbitra-
tion, and two virtual channel buffers at the input modules.

IV. SYSTEM MODEL
In this work, we assume a real-time system 0 mapped
to an m × m SoCIN-Q composed of n traffic flows
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TABLE 1. Literature review summary.

0 = {τ1, τ2, . . . , τn}. A direct graph represents the NoC
with vertices and edges. Each vertex denotes a router R,
while the edge E denotes a physical link. An edge Ea,b =

{Ra → Rb} is the link from router Ra to router Rb. Each
node connected to the network generates only one traffic flow.
A set of links βi denotes the path of each traffic flow τi, and
βsize
i defines the number of links in the path. For instance,

if a traffic flow crosses routers Ra, Rb, Rc, and Rd , then
βi = {Ea,b,Eb,c,Ec,d } and βsize

i equals 3.
Each traffic flow τi is characterized by a set of attributes

{Lmax
i , pi, di, ei, vi}, where: Lmax

i is the maximum latency
(i.e. the worst-case response time), pi defines the time inter-
val between successive packets (the period), di represents
the packet deadline, ei denotes the packet service time, and
vi is the identifier of the virtual channel. We assume that
the traffic flow period pi includes the task processing time
and the delay to inject a packet into the NoC. Initially,
we consider periodic traffic flows with a deadline less or
equal to its period (di ≤ pi ∀ τi ∈ 0). Later we present an
extension of the analysis allowing di > pi and including
self-blocking interferences. The service time ei denotes the
number of cycles necessary for a packet from τi to pass
entirely through a router. Finally, v0 is the highest priority
channel.

In SoCIN-Q, the packet header experiences a constant
service timeH at each router.H is the number of clock cycles
needed to store, route, and schedule a header flit. Assuming
the NoC configuration presented in Section III, two cycles are
necessary to store the header at the input buffer and run the
routing algorithm to request an output channel. The selected
output module spends the third cycle scheduling the request
(i.e. the arbitration). The payload flits follow the header in a
pipelined way, spending one cycle per flit. Let fi denote the
packet payload size in flits, then the total service time of a τi
packet is ei = H + fi.
The minimum latency (or basic latency) occurs when a

traffic flow does not suffer any contention in the NoC. The
routing path, the packet size, and the header service time
define its value. The minimum latency LMini of a traffic flow
τi is:

Lmin
i = H × (βsize

i + 1) + fi + 1 (1)

FIGURE 3. Example of traffic flow: (a) path; and (b) time diagram.

where (βsize
i + 1) expresses the number of routers in the path

(i.e. the hop counting). An extra cycle considers the time the
destination node spends to receive the header flit. Fig. 3.a
presents an example of a traffic flow τ1 that uses a path
composed of two links (βsize

1 = 2) and three routers. The
minimum latency for a packet with a 4-flit payload (f1 = 4)
equals 14 cycles, as Fig. 3.b depicts.
A summary of the presented variables is presented in

Table 2.
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TABLE 2. Definition of variables.

FIGURE 4. Example illustrating the worst-case scenario using
Definitions 1 and 2.

V. NETWORK WORST-CASE ANALYSIS
A traffic flow packet competes for router ports while trans-
mitting through the NoC. A packet using the virtual chan-
nel with the highest priority establishes communication with
the requested output port. If another packet with the same
priority level requests the port simultaneously, a round-robin
arbiter chooses one of the requests. The round-robin principle
is that a just-served request has the lowest priority on the
next round of arbitration [24]. Because of the round-robin
non-deterministic behavior, we define properties to simplify
the Worst-Case Analysis (WCA) and reduce the number
of scenarios to be explored. Based on similar works that
used round-robin arbiters [20], [21], [23], we determine the
worst-case scenario of a flow τi in a router Rk using the
following definitions:
Definition 1: The τi request for an output port always

receives the lowest priority in the round-robin arbitration.
Definition 2: Every traffic flow τj that generates a block-

ing in τi arrives at the same time in Rk , while the other flows
arrive immediately after the release of the output port, before
the next round of arbitration.

Fig. 4 shows three traffic flows sharing the same virtual
channel. The worst-case scenario of τ1 occurs when its packet
header arrives at R2. Assuming Definition 1, τ1 receives
the lowest priority to request the output port. As stated by
Definition 2, τ2 arrives at the same time in R2 and requests the
same output port that τ1 is requesting, consequently blocking
τ1. When the output port is released, τ1 is blocked by τ3,
which arrives immediately after the τ2 transmission ends.
By considering the presented definitions, we will deter-

mine the worst-case latency considering direct blocking,

indirect blocking, and self-blocking. The following subsec-
tions cover each interference separately.

A. DIRECT BLOCKING
Direct blocking can occur when traffic flows have common
links in their paths. If βi ∩ βj ̸= ∅ and the condition vi ≥ vj
is true, then τj generates a direct blocking and τi must wait
for its transmission over the shared link. Every traffic flow
τj that fulfills these conditions belongs to the set of direct
interferences SDi of τi. In the example of Fig. 4, link E2,3 is
in the path of all traffic flows, and, therefore, direct blocking
can occur. If v1 ≥ v2, then τ2 ∈ SD1 and directly blocks τ1.
Theorem 1: Assuming only direct blocking by traffic flows

using the same virtual channel (τj ∈ SDi , vi = vj), the
maximum latency of a traffic flow τi is:

Lmin
i +

∑
∀ τj ∈ SDi ∧ vi=vj

ej (2)

Proof: According to Definition 2, each traffic flow τj ∈

SDi arrives simultaneously with τi at a router and requests the
same output port. Also, τi always receives the lowest priority
in the round-robin arbitration, as stated byDefinition 1. Then,
τi is blocked and needs to wait for the service time ej of each
τj ∈ SDi . However, traffic flows sharing the same virtual
channel (vi = vj) can only block τi once since, in this case,
there is no flow preemption.

If τj uses a virtual channel with a higher priority (vi > vj),
τi can be preempted. According to the response-time test
presented in [25], on uniprocessor systems, preemption can
occur multiple times depending on the periodicity and the
maximum execution time of the tasks. Equation (3) presents
an adapted version of the response-time test for NoCs pro-
posed in [12], where the number of preemptions interferences
Ij generated by τj is determined by its period and by the
maximum latency Lmax

i of τi.

Ij = ⌈
Lmax
i

pj
⌉ (3)

In [17], one of the approaches to reduce the pessimism
in (3) was to take into account the latency experienced in
the common edges of τi and τj instead of the maximum
latency. In this work, we proposed a simplified version of
this approach using the following theorem:
Theorem 2: The number of interferences Ij generated by

a traffic flow τj ∈ SDi using a virtual channel with higher
priority (vi > vj) is:

Ij = ⌈
sl(τi, τj) × ei + ej

pj
⌉ (4)

Proof: A traffic flow τj ∈ SDi using a higher priority
virtual channel (vi > vj) can preempt τi to request an output
port. However, τi can only be preempted while its packet
flits use links in the path of τj. The number of interference
Ij depends on the transmission time of τi through the shared
links and the period of τj. Let sl(τi, τj) be the number of shared
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FIGURE 5. Example illustrating indirect blocking.

links between τi and τj. A packet spends its service time ei
in each of those links. Also, in the worst-case scenario, τj is
already blocking τi, and ej must be considered.
Based on Theorem 1 and Theorem 2, the latency LDirecti

generated only by direct blocking is computed by:

LDirecti =

∑
∀ τj ∈ SDi ∧ vi=vj

ej +
∑

∀ τj ∈ SDi ∧ vi>vj

Ij × ej − 2 (5)

where two cycles are discounted from the delay generated by
traffic flows using higher-priority virtual channels. Since τi
does not use the same virtual channel, it is only necessary to
wait for the memorization cycles.

In summary, direct blocking occurs when two traffic flows
share a link, and the flow with the lower priority virtual
channel must wait for the flow with the higher priority to
be transmitted. The maximum latency of a traffic flow is
determined by the sum of the service time of all other flows
that directly block it. Preemption, where a flow with a higher
priority virtual channel can interrupt a flow with a lower
priority, can also occur and is determined by the period
and maximum latency of the interrupted flow. The number
of times preemption occurs is determined by the common
latency experienced by the two flows and the service time of
the preempting flow. Finally, the system can also be subject
to indirect blocking, where a flow blocks another flow indi-
rectly through a chain of interfering flows. In this case, the
maximum latency of a flow is determined by the sum of the
service time of all blocking flows.

B. INDIRECT BLOCKING
A traffic flow τi can suffer an indirect blockingwhen a flow τk
that has no links in common with τi (i.e. βi ∩βk = ∅) blocks
directly τj (τj ∈ SDi ) and vi = vj ≥ vk . In the worst case,
both τi and τj must wait for the transmission of τk . However,
indirect blocking is not limited to situations with only three
traffic flows. For instance, Fig. 5 depicts five traffic flows
using the same virtual channel in a congestion state. The
traffic flow τ1 is directly blocked by τ2 and indirectly blocked
by τ3, since β1 ∩ β2 ̸= ∅, β2 ∩ β3 ̸= ∅ and β1 ∩ β3 = ∅.
Every direct and indirect blocking affecting τ3 also indirectly
affects τ1. Then, in the worst-case scenario, τ1 suffers the
delay generated by the indirect blocking of τ4 and τ5. Such
situations are easily detected by verifying each traffic flow
blocking τ1.

In this subsection, we identify properties to reduce the
pessimism of indirect blocking and consider the size of the
buffers in the WCA.

FIGURE 6. An example where vi > vj ≥ vk and τk /∈ SI
i .

Property 1: A traffic flow τk (τk ∈ SDj , βi ∩ βk = ∅)
generates an indirect blocking in τi only if τi and τj (τj ∈ SDi )
are using the same virtual channel (vi = vj).

Proof: Assuming the scenario presented in Fig. 6, where
τj ∈ SDi and τk ∈ SDj , a direct blocking from τk in τj cannot
affect τi if vi > vj ≥ vk . In this situation, the credit-based
flow control allows a traffic flow using virtual channel 1 to
send flits when the traffic flow using virtual channel 0 has no
credits (i.e. the buffer is full). Since τk blocks τj, the buffer of
virtual channel 0 in R3 becomes full, and τj cannot send more
flits. Then τi, which uses the virtual channel 1 and a different
buffer from τj, is allowed to send flits to R3, as Fig. 6 depicts.
An indirect blocking would occur only when vi = vj, since
both traffic flows use the same buffer in R3. If the condition
vi = vj ≥ vk is true, τk indirectly interferes in τi. Every flow
τk that fulfills these conditions belongs to the set of indirect
interferences SIi of τi.
Property 2: If there are not enough buffers to store the

entire packet of τj in the path after the last router where
τi was blocked, and the router where τj is blocked by τk
(βi ∩ βk = ∅), then, τk influences τi.

Proof: The buffers depth, named FIFOdepth, and the
packet size of τj (fj + 1) directly affect the influence of an
indirect blocking generated by τk on τi. Let RLasti,j be the last
router where τj blocks τi and RBlockj,k notes the first router
where τj is blocked by τk . The flits of τj remain in the buffers
along its path while blocked. If at least one flit is in RLasti,j ,
because there is not enough buffer space in the other routers,
then τi suffers an indirect blocking from τk . The influence
value Nk of τk is determined by (6), where hops(Rx ,Ry) is a
function that returns the number of hops between two routers.
If Nk ≤ 0, there is enough buffer in the path to store the packet
of τj and τk does not influence τi. However, if Nk > 0, its value
represents how many flits of τj are blocking τi. Since there are
not enough buffers in the path to store the entire packet of τj,
τk blocks indirectly τi (τk ∈ SIi ). If R

Last
i,j = RBlockj,k , then τk is

always influent, independent of the buffer size.

Nk = fj + 1 − hops(Rlasti,j ,Rblockj,k ) × FIFOdepth (6)

Fig. 7 depicts the worst-scenario of τi in two NoC config-
urations, where vi = vj ≥ vk and the packets of each traffic
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FIGURE 7. NoC configurations with buffers with (a) 4 slots and (b) 5 slots.

flow is 9-flit long, including the header. In the configuration of
Fig. 7.a, each buffer has four slots for flits (FIFOdepth = 4).
When τj is blocked by τk at R4, its flits remain in the West
buffers of R4, R3, and R2. According to (6), Nk = 1 and
its value represents the last flit of τj stored in R2, which is
blocking τi for the duration of the τk transmission. In Fig. 7.b,
the buffer depth is incremented to 5 slots (FIFOdepth = 5).
In this configuration, the entire packet of τj is stored in
the West buffers of R3 and R4. Since the flits of τj are not
blocking the West buffer of R2, τk has no influence (Nk = −1)
over τi.

Assuming Property 1 and Property 2 to reduce the pes-
simism of the indirect blocking analysis, selecting only the
influent flows to include in SIi , the latency of indirect blocking
is computed by (7). Similar to the latency of direct blocking in
(5), the number of interferences of τk is based on Theorem 2,
since τi suffers the same delay generated by τk in τj. Based on
(1), (5), and (7), the maximum latency Lmax

i of a traffic flow
τi is computed by (8).

L indirecti =

∑
∀ τk ∈ SIi ∧ vi=vk

ek +

∑
∀ τk ∈ SIi ∧ vi>vk

Ik × ek − 2

(7)

Lmax
i = Lmin

i + Ldirecti + L indirecti (8)

Indirect blocking occurs when a traffic flow that does not
share any links with another traffic flow still causes delays for
it. This scenario can happen when the blocking traffic flow
directly blocks a flow that the impacted flow depends on, and

FIGURE 8. Busy period of traffic flow τi with multiple packets releases.

they share the same virtual channel. Properties are presented
to reduce the indirect blocking analysis’s pessimism and
consider the buffers’ size in the network-on-chip (NoC). The
properties state that an indirect blocking will only occur when
the blocking and impacted flows share the same virtual chan-
nel and that the size of the buffers in the NoC can limit the
number of indirect blockings. A worst-case analysis method
is also presented, which involves recursively identifying all
the traffic flows causing indirect blockings for a particular
flow. This method can be used to determine the maximum
latency of a flow in an NoC with indirect blocking.

C. SELF-BLOCKING ANALYSIS
A traffic flow τi with di ≤ pi does not have more than
one packet transmitted simultaneously in the NoC unless a
deadline violation occurs. If di > pi, thenmultiple traffic flow
packets can be transmitted through the NoC without missing
their deadlines. In this case, self-blocking occurs when one or
more packets block another packet of the same traffic flow.
In this subsection, we present properties to determine the
maximum latency of a traffic flowwhen self-blocking occurs.

In [15], the authors used the concept of busy period intro-
duced by [14] to carry out the self-blocking analysis. In the
context of NoCs, they defined the busy period as a contiguous
time interval during which a set of links is kept busy by traffic
flows using virtual channels with equal or higher priority
than τi. Fig. 8 presents a time diagram of τi with four packets
release (q0, q1, q2, and q3). If Lmax

i > pi, packets are
released while a previous instance qn is already in the NoC.
For instance, q1 and q2 are released before q0 is delivered to
their destination, represented by the first dotted down arrow.
Equation (9) determines the number of queued packets in the
worst-case scenario, noted by Qi.

Qi = ⌈
Lmax
i

pi
⌉ (9)

In this work, to simplify the self-blocking analysis
and determine the maximum latency of a traffic flow τi,
we assume the following additional definition:
Definition 3: A queued packet of τi suffers the delay of

every indirect blocking related to a direct blocking from a
packet of another traffic flow τj ∈ SDi that is released during
its transmission.
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A direct blocking τj and the related indirect blocking that
occurs during the transmission of a queued packet from τi
are considered a single blocking bj and belong to the set
of interferences Ssbi . This single blocking has the attributes
of τj with the extra delay of every indirect blocking τk that
started from it. Let di > pi, and assume Lmax

1 > p1 and
SI1 = {τ3, τ4, τ5} in the example shown in Fig. 5. According
to Definition 3, a queued packet from τ1 is blocked by τ2 and
indirectly blocked by τ3, τ4 and τ5 if a packet from τ2 is
released during its transmission. Then, τ2 is considered as
a single blocking b2 ∈ Ssb1 with the extra delay of τ3, τ4
and τ5.
Theorem 3: Assuming a traffic flow τi with Lmax

i > pi,
the maximum latency of the last queued packet instance,
including self-blocking, is given by:

Lsbi = Lmin
i + Qi × ei +

∑
∀ bj ∈ Ssbi

ebj × ⌈
Lsbi
pj

⌉ (10)

Proof: Let Lmax
i > pi, so more than one packet is

released during the worst-case scenario. We need to check
the last queued packet to find the maximum latency, includ-
ing self-blocking Lsbi . We assume that the last packet of the
queue is q = Qi, and each queued packet released before q
generates a self-blocking delay (Qi×ei). If a blocking bj ∈ Ssbi
occurs during any of the queued packets transmission, it also
affects the last queued packet. If Lsbi > Lmax

i and the number
of queued packets is increased with Lsbi , then a new iteration
of (10), replacing Lmax

i with Lsbi , is necessary.
Property 3: Assuming that the traffic flows are released

only after the delivery of instance q0 from τi, then a blocking
bj can only occur if its period is in Lsbi and the number of
interferences is no more than Qi − 1 if vi = vj.

Proof: We assume that the release of packets from
blocking traffic flows starts after instance q0 from τi reaches

its destination. If
Lsbi
pj

≥ 1, then a blocking bj can interfere in
τi one or more times. Multiple packet releases from bj can
occur during Lsbi and interfere in queued packets from τi.
However, if vi = vj, the maximum number of interferences
depends on the quantity of queued packets (Qi − 1) since
each packet released of bj can block packets from τi only
once.
Property 4: If Lsbi > Lmax

i and there are not enough
buffers in βi to store all queued packets, then τi reaches its
saturation point.

Proof: The value of Lsbi can increase at every iteration
of (10) and consequently the number of queued packets. The
NoC needs to have enough buffers to store every packet
released by a traffic flow. Equation (11) determines the num-
ber of flits necessary to store all queued packets from τi,
while (12) computes the total flits available in βi. New packets
are prevented from being injected in the NoC if MNeeded

i >

MTotal
i because there is a violation of the available buffer

capacity in βi. Also, the busy period of τi never ends if
Lsbi > Lmax

i , resulting in traffic flow saturation and a dead-
line violation.

Mneeded
i = Qi × (fi + 1) (11)

M total
i = (βsize

i + 1) × FIFOdepth (12)

In summary, direct blocking, indirect blocking, and
self-blocking can affect the maximum latency of a traffic flow
τi in a Network-on-Chip (NoC). Direct blocking occurs when
two traffic flows with common links in their paths request
the same output port simultaneously, and the one with the
lower priority must wait for the other to finish transmitting.
Indirect blocking occurs when a traffic flow blocks another
traffic flow, which blocks a third traffic flow. Self-blocking
occurs when a traffic flow with a period longer than its
maximum latency has multiple packets being transmitted
simultaneously in the NoC, and one or more packets block
another packet of the same traffic flow. Themaximum latency
of a traffic flow can be calculated by taking into account
the delays caused by direct and indirect blocking and self-
blocking.

D. DISCUSSION
To simplify the Worst-Case Analysis (WCA) and reduce the
number of scenarios to be explored, we define two properties:
the first states that a traffic flow’s request for an output
port always receives the lowest priority in the round-robin
arbitration, and the second states that every traffic flow that
generates a blocking in another traffic flow arrives at the same
time in a router, while the other flows arrive immediately
after the release of the output port, before the next round of
arbitration.

Then, three types of interference are considered: direct,
indirect, and self-blocking. Direct blocking occurs when traf-
fic flows have common links in their paths, and the traffic
flow with the lower priority must wait for the transmission of
the higher priority traffic flow over the shared link. Indirect
blocking occurs when a traffic flow is blocked by another
traffic flow that is not in its direct interference set but shares a
common link with a traffic flow in the direct interference set.
Self-blocking occurs when a traffic flow is blocked by itself
due to its deadline being greater than its period.

Finally, the section provides proof for each of the three
types of interference, showing how to calculate the maximum
latency for each case. The article also presents an exten-
sion of the analysis to allow for traffic flows with dead-
lines greater than their periods and includes self-blocking
interference.

VI. EXPERIMENTAL RESULTS
This section evaluates the schedulability analysis for direct,
indirect, and self-blocking. We implemented the proposed
models in C++ and compared their results with the latencies
obtained using a cycle-accurate SystemC-based NoC simula-
tor named RedScarf [26]. The number of traffic flows and
the size of the buffers varied according to the experiment.
The NoC operates at 100 MHz in all simulations with the
communication mechanisms defined according to the system
model described in Section IV.
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FIGURE 9. WCAs (a) average error and (b) maximum error.

A. PESSIMISM REDUCTION
We conducted ten experiments in a 4 × 4 NoC with 16 peri-
odic traffic flows, each sending 1000 packets. In each exper-
iment, we randomly generate the traffic flows configura-
tion. The payload size is selected from [4, 1000] flits, the
deadline is selected from [40, 10000] cycles, and it equals
its period. The traffic flows are randomly mapped onto
the NoC, with one flow per node restriction. We com-
pared the maximum latency of each traffic flow obtained
through simulation with the latency estimated by the pro-
posed WCA, considering the size of the buffers (named
bWCA). In order to evaluate the pessimism reduction, we also
applied the WCA without considering the buffers’ size
(nbWCA).We set the NoC buffers to their maximum capacity
(1024 flits).

As Fig. 9.a shows, the bWCA model presents a lower
average error than the nbWCA model in 6 out of 10 exper-
iments. In these cases, the pessimism reduction is between
11% and 53%. The same occurs with the maximum error
in experiments 3, 5, 6, 9, and 10, in which bWCA presents
from 25% to 67% error reduction, as Fig. 9.b shows. The
reason for such improvement is the Property 2 applied by
bWCA, allowing the correct detection of indirect blocking
influence. At the same time, the nbWCA model considers
every indirect blocking as influent, increasing the computed
maximum latency.

The experiments in which the average error is the same
for both WCAs present indirect blocking in fewer quantities.
In these configurations, some of the indirect blocking occurs

TABLE 3. nbWCA and bWCA execution time.

TABLE 4. Traffic flows configuration to evaluate the self-blocking
analysis.

TABLE 5. Average and maximum error of self-blocking analysis.

when Rlasti,j = Rblockj,k and the size of the buffers have no
impact in its influence. In general, bWCA presents a tighter
maximum latency with an average error of 10%, 5% less
than nbWCA.

The maximum error is above 50% in some configurations
for both WCAs. This result was obtained because the anal-
ysis assumes that the worst case always happens. Moreover,
it considers that the traffic flows do not experience the worst
case in that simulation. However, bWCA correctly detected
the whole network schedulability. On the other hand, nbWCA
is too pessimistic and could not detect the schedulability in
experiments 5 and 10.

As Table 3 shows, the execution time of the bWCA model
is higher than nbWCA in all the experiments. In the bWCA
model, every time an indirect blocking is identified, it is
necessary to check its influence using Property 2, increas-
ing the execution time. For this reason, experiments with
more indirect blocking (influent or not) present a higher
execution time. This time increase is acceptable because
it remains in milliseconds. bWCA is four orders of mag-
nitude faster than the simulation, with an average execu-
tion time of 119 ms, while the average simulation time is
2 hours.
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TABLE 6. Results from literature-related works.

FIGURE 10. Scenario to evaluate the self-blocking analysis.

B. SELF-BLOCKING ANALYSIS EVALUATION
We carried out nine simulations varying the depth of the
buffers from 4 to 1024 flits using a simple scenario to evaluate
the self-blocking analysis and the flow saturation. Fig. 10
depicts this scenario. We mapped six traffic flows, injecting
1000 packets into the NoC. Table 4 shows the configuration
of each of these flows. The deadline is set to three times its
period, allowing multiple packet releases and self-blocking.
We set τ1, τ2, and τ5 to use the lowest priority virtual chan-
nel to observe the self-blocking in those traffic flows. This
configuration allows us to evaluate the self-blocking when
several indirect blocking occurs due to traffic flows with
small packets (in the case of τ1 and τ2). These flows can
direct block each other and are indirectly blocked by τ3
and τ4. In the case of τ5, only a direct blocking by τ6 occurs.
However, in this situation, we evaluate the direct blocking
by a traffic flow with a more extensive packet during the
self-blocking.

Table 5 presents the results of the self-blocking analy-
sis. We omitted the results for buffers deeper than 128 flits
because themaximum latency remains the same. The analysis
presents a tighter estimative in configurations with 4-flit and
8-flit buffers (the average error is about 2%). The reason is

that τ1 reaches its saturation, and since the analysis can detect
it, we assume 0% error to the estimative of this traffic flow.
However, we discarded the result for the configuration with
16-flit buffers because the analysis detected a saturation that
did not occur. In the other configurations, the maximum error
increased up to 77%. The experiments demonstrated that the
detection of flow saturation is very pessimistic when indirect
blocking occurs. None of the other traffic flows saturated, and
the analysis presented accurate results, reducing the average
error to below 15%.

In this study, the performance of the proposed WCA
models for scheduling analysis in NoCs was evaluated and
compared with a cycle-accurate SystemC-based NoC simu-
lator. The results show that the bWCA model, which con-
siders the size of the buffers in the NoC, presents a lower
average error and a tighter maximum latency compared to
the nbWCA model, which does not consider the size of
the buffers. This improvement is mainly due to the correct
detection of indirect blocking influence in the bWCA model,
which reduces pessimism. The execution time of the bWCA
model is higher than the nbWCA model, but it remains in
milliseconds and is four orders of magnitude faster than the
simulation.

For comparison purposes, Table 6 presents a summary
of some related works by identifying their features, which
features of the present work they did not consider, and the
error range they obtained (when reported).

VII. CONCLUSIONS AND FUTURE WORK
This paper presented the schedulability analysis of a worm-
hole switching NoC with XY routing and round-robin
arbiters. In the proposed worst-case analysis, we assumed
a set of periodic tasks with a deadline less or equal to its
period. The analysis also considered the buffer size of each
router to determine the indirect blocking influence. In addi-
tion, we presented an extension of the analysis, including
self-blocking and assuming tasks with a deadline greater than
its period.

To evaluate the proposed WCA, we conducted a series
of experiments using a cycle-accurate SystemC-based NoC
simulator and compared its results with the ones of theWCA.
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In order to evaluate the pessimism reduction, we also used
a version of the WCA without considering the size of the
buffers. The self-blocking analysis was evaluated using a
simple scenario and varying the size of the buffers.

The experiments demonstrated that the proposed WCA
considering the size of the buffers provides a tighter esti-
mative in configurations where indirect blocking occurs in
higher quantities. A significant reduction in the average and
maximum error can also be observed. On the other hand, the
self-blocking analysis provided a tighter estimate for traffic
flows that suffer only direct blocking.

In addition, the experimental results demonstrated that the
proposed WCA could be used in design flows for NoC-
based real-time systems to evaluate the schedulability of tasks
with temporal requirements. The WCA can provide a pre-
liminary evaluation of task mappings, avoiding unnecessary
simulations of non-schedulable configurations and, conse-
quently, a reduction in the exploration time of the design
space.

In future work, we intend to use the proposed WCA as the
fitness function in a task mapping design flow, as mentioned
before, to accelerate the design space exploration. Also,
we intend to improve the self-blocking analysis to reduce its
pessimism. Furthermore, wemay adapt the proposed analysis
to an NoC with more than two virtual channels and different
communication mechanisms. Finally, we propose to expand
the model to include other network topologies (e.g., torus and
hypercube) and arbitration techniques (e.g., Static, Earliest
Deadline First, and Rate Monotonic).
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