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ABSTRACT The increase in air traffic in the recent years has motivated the development of technologies
to monitor air space and warn about possible collisions by predicting the trajectories that will be followed
by aircraft. In this field, neural networks have become prominent thanks to their potential to learn to predict
maneuvers without providing aspects that are difficult to model such as atmospheric conditions, or detailed
aircraft parameters. A variety of models have been proposed; however, these are often tested in very limited
setups, leaving many unanswered questions about how they perform in certain conditions, or whether or
not their accuracy can be improved by training models for specific trajectories, using additional features,
predicting more distant points directly, etc. This may be problematic for researchers or developers of these
systems, who have no way of knowing what strategies will yield the best results. We have identified ten
open research questions that have not been answered through in-depth testing. This motivated us to carry
out a novel experimental study that performs aircraft trajectory prediction with several dozens configuration
variants to answer the aforementioned questions by means of a much more complete evaluation. Some of
the conclusions of our study stand in contrast with some popular practices in the state of the art, which casts
some doubts on the simplicity of their application; for example, differential features are crucial for proper
performance but are not mentioned by most studies, while complex, more elaborate models may lead to
worse results than simple ones. Other important insights include the benefit from specialized models in more
challenging scenarios, the influence of the known trajectory length in said scenarios, the step degradation of
predictions when predicting further into the future, or the detrimental effect of adding additional features.
These insights should help guide future research about the application of neural networks when it comes to

aircraft trajectory prediction and their eventual inclusion in final systems.

INDEX TERMS Aircraft, neural networks, trajectory prediction.

I. INTRODUCTION

In the recent years there has been a pronounced development
and increased presence of the air transport industry, resulting
in increased air traffic [1]. This has led to a higher necessity of
systems that can assist controllers in making decisions related
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to the flight, e.g. detecting aircraft faults [2], monitoring the
air space to warn about possible collisions [3], [4] or even
apply changes in the trajectory [5]. These systems usually
involve forecasting the state of aircraft in the airspace for
safety purposes [6]. The knowledge of the airspace (position
and movement of the aircraft in an area) is possible thanks to
the adoption of technologies such as Automatic Dependent
Surveillance-Broadcast (ADS-B) and Mode S, which provide
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FIGURE 1. Flight example.

aircraft information over publicly accessible radio channels
that can be accessed by other aircraft or ground stations.
These technologies involve the periodical emission of signals
hat either include precise location information about the
aircraft, typically determined by a Global Navigation Satellite
System, or that can be used to determine the location through
multilateration.

The usefulness of trajectory prediction for monitoring
systems is evidenced by the recent development of FLARM
(““Flight Alarm”) messages [7], which transmit a prediction
of the trajectory of the aircraft in the next 20 seconds
produced by some independent algorithm. It is therefore
reasonable that a significant amount of research has focused
on developing techniques for the prediction of aircraft
trajectories [8], that is the prediction of the three-dimensional
position of a plane in future time instants. Among the existing
techniques to aid in this process, a modern approach is
the application of neural networks, which can potentially
learn complex aircraft flight patterns without needing to be
fed explicit knowledge about maneuvers, pilot intentions,
or route information. While many trajectories are trivial to
predict, some parts of the flight, specially during the ascent or
descent of the aircraft, and at turning points, become irregular.
For example, Figure 1 shows the trajectory of a flight from
Frankfurt to Berlin in which the most irregular parts can be
observed during takeoff and landing. Neural networks could
be able to learn to a certain point the factors that govern
the movement of the aircraft, which would otherwise require
complex, explicit modelling: area geography, atmospheric
conditions, flight phase, etc. For example, it may be typical
for flights to turn towards an airport when flying over a certain
geographical area.

While the aforementioned factors and expert knowl-
edge are fundamental parts of a final prediction model,
neural networks may provide additional information or
corrections in challenging scenarios in which trajectory
dynamics are harder to model, little information is available,
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or computational methods are too expensive. The promising
performance of neural networks, along with the availability
of large amounts of data required for their training have
motivated many authors to study the application of neural
networks for aircraft trajectory prediction [8]. However, such
studies usually involve the evaluation under a single, simple
configuration, such as using a fixed number of former points
for the prediction, or only predicting the immediate next
point of the trajectory. This offers little insight that may
be actually useful to someone who wants to implement an
aircraft trajectory prediction system in a real-world context,
since questions like the following arise: does it make a
significant difference to use more former points for a
trajectory? How much do sequential predictions degrade as
we make them based on previous ones? Are results better
when using specialised models? Do more complex models
actually achieve better performance?

To shed more light on these issues and properly study
the performance of neural networks to aircraft trajectory
prediction we have carried out a comprehensive experimental
study that tests the performance of trajectory prediction
under several dozens of different configurations to answer
ten open research questions of significant importance when
it comes to the application of neural networks in real-world
scenarios: 1) Do more complex architectures really achieve
a significantly better performance? 2) Do neural networks
achieve better performance than simpler baselines that do not
require training? 3) To what extent does the length of the
input trajectory impact performance? 4) When performing
multi-step trajectory prediction, how does the prediction
accuracy degenerate as we make more sequential predictions
from the former ones? 5) To predict a distant position, is it
better to perform multi-step prediction or delayed prediction?
6) Is it better to use differential or absolute features? 7) How
do models perform when trained with (and applied to)
specific flight phases? 8) How do models perform when
trained with (and applied to) trajectories with less regular
movement (more turns)? 9) Does performance improve if
additional trajectory-wide features related to the position of
the plane in the flight are added? 10) Does performance
improve if we use extra state vector features in addition to
positional ones (latitude, longitude, and altitude)?

Our experiments have been structured in six scenarios,
in each of which a comparison is performed to help answer
one or several questions. Our contribution to the state of
the art can therefore be summarized as follows: we present
the results and conclusions of an in-depth exploratory study
aimed at evaluating the capabilities of neural networks when
used to predict aircraft trajectories in isolation (that is,
without using information beyond the available state vectors
describing the trajectory). This study should provide useful
information about what strategies are more promising and
under what circumstances they struggle to even broadly
predict trajectories.

The next section describes concepts necessary to properly
understand the rest of our work. Section III describes the
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related work on aircraft trajectory prediction with a focus
on how neural networks have not been properly evaluated
in-depth. Section IV describes the motivation and scope of
our research. Section V contains our experimental study,
including the open questions we have identified, the network
architectures we have considered, the experimental setup,
and discussion about the results. Section VI summarizes our
contributions and the results of our study.

Il. PRELIMINARIES
In this Section, we describe terms that are relevant to the
problem of trajectory prediction.

« Flight A flight is the movement of an aircraft from an
origin airport to a destination airport. The three main
phases of a flight are takeoff, cruise, and landing, cor-
responding to the ascent from the origin, the movement
at relatively constant height, and the descent into the
destination.

« State vector A state vector is a collection of features
describing the state of an aircraft at a given instant during
a flight. Said features can include the position of the
aircraft (latitude, longitude, and altitude), its identifier,
the movement angle, etc. We denote the value of feature
f for a state vector v as v.f, so for example v.time refers
to the instant corresponding to the state vector, and v.lat
to the latitude of the aircraft at said instant.

« Trajectory A trajectory is a sequence of n equally dis-
tant state vectors ((e.g. a state vector every 30 seconds)
corresponding to the flight of an aircraft during a period
of time. Said state vectors should include, at the very
least, the position of the aircraft. We denote the n state
vectors of a trajectory ¢ as t = {vi,Vva2,...,v}|vi €
V. We refer to the amount of time between state
vectors as the period of the trajectory, denoted by p(¢).
Trajectories are used as inputs for trajectory prediction.
A longer trajectory means, independently of the duration
of the flight, how much information is available about
past points of the aircraft, be it because observations
include a larger amount of time, or because the temporal
resolution is higher. Figure 2 depicts how a trajectory of
length n = 4 is used to make predictions.

« Differential features A differential feature is a derived
featured computed as the increment of a numerical
feature with respect to its value in the former state
vector of the trajectory. We denote them as v;.Af =
vif — vi—1f. The first state vector of a trajectory
has no differential features since a former vector
is needed to compute the difference. These features
provide information about the evolution of features in
a more explicit way. Figure 8 shows how the three
positional features (latitude, longitude, and altitude) are
transformed into differential features.

o Trajectory-wide features A trajectory-wide feature is
a feature associated to an entire trajectory rather than a
single state vector. For example, information about the
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FIGURE 2. Prediction types.

physical properties of the aircraft, the weather, or the
position of the destination.

Single-step trajectory prediction Single-step trajec-
tory prediction (Figure 2a) consists in predicting the
next state vector of an aircraft (the one after a single
period), including at the very least its position, from
a given trajectory of n > 0 state vectors. v,4| =
ssp({v1, va, ..., vy}), where ssp(t) denotes the function
that performs single step prediction for trajectory ¢,
corresponding to the state of the aircraft at time
Vn+1.time = vy.time + p(t). The predicted state vector
does not necessarily have to include the same features as
the original ones, but the latitude, longitude, and altitude
of the aircraft are essential.

Multi-step trajectory prediction Multi-step trajectory
prediction (Figure 2b) consists in repeatedly applying
single-step prediction to predict several state vectors
from a trajectory, allowing the prediction of the air-
craft position an arbitrary amount of time into the
future. Once v,y has been predicted, then v, =
ssp(va, v3, ..., pt1), that is, the first state vector is
discarded and the new one is appended at the end of the
trajectory. Note that in order for multi-step prediction to
be feasible, the predicted state vectors must contain all
the features included in the input in order to be usable as
part of the next input.

Delayed trajectory prediction Delayed trajectory pre-
diction (Figure 2c) consists in predicting the state vector
of an aircraft after several periods from a given trajectory
of n state vectors. We refer to the amount of periods
into the future as the offset 0. For example, we would
express the prediction of the 5th following state vector
as vyys = dp({vi, va, ..., vy}, 5), where dp(t, 0)lo >
1 denotes the function that performs delayed prediction
for trajectory ¢ with offset o > 0, corresponding to
the state of the aircraft at time v, ,.time = vy.time +
p(t) x o. A limitation of delayed trajectory prediction is
that it makes it impossible to directly perform multi-step
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predictions from the output, since the intermediary state
vectors would be missing.

e MAE The Mean Absolute Error (MAE) is a metric of
prediction quality that measures the average difference
between a prediction and the ground truth. In the context
of trajectory prediction, said difference is the euclidean
distance between the predicted features and the actual
ones, though only the features related to the position
should be taken into account to convey the predicted
movement accuracy. Before computing the MAE, the
coordinates of the plane should be translated into a
homogeneous frame such as the Earth-centered, Earth-
fixed (ECEF) coordinates system, which takes the static
center of the Earth as the origin of the coordinates
system.

lIl. RELATED WORK

Methods for modelling aircraft motion to perform trajectory
prediction have been classified into three categories [8]: state
estimation methods, kinetic methods, and machine learning
methods.

State estimation methods [9], [10], [11], [12], [13]
propagate the motion of an aircraft (position, speed, etc.)
according to mathematical models based on state transition
and error variance matrices built from past observations.
The estimations can be made with a single or multiple
models. When using multiple models, several flight modes
are defined, and a model is used to predict motion in
each of them. The transition between modes is modelled
with a Markov process with a transition probability matrix
that depends on the aircraft’s state. These methods do not
take into account information about the aircraft such as
its mass or shape. For example, Dalmau et al. [9] aim to
predict the current intents of an aircraft by inferring its
guidance mode (e.g. descent at constant Mach and idle thrust)
through a multiple-model algorithm focused on handling
vertical-movement maneuvers through the aggregation of
several different mathematical models. Lin et al. [11] predict
the time and altitude at which an aircraft reaches planned
route segments by applying a Hidden Markov Model in
which each segment of the route is a hidden state, and
past observations are used to adjust the state transition
probabilities. Choi et al. [13] present an hybrid method
that first applies a machine learning algorithm to predict
the next position of the aircraft, and then corrects said
point by applying an Stochastic Linear Hybrid System that
models both continuous variables (latitude, longitude, etc.)
and discrete ones (flight modes).

Kinetic methods [14], [15] model the multiple forces acting
on an aircraft through differential equations that handle the
acceleration caused by said forces, which include gravity,
engine thrust, or drag. Their effect depends on a number
of factors related to the aircraft such as its mass, position,
altitude, speed, or orientation, as well as external ones such
as atmospheric conditions or wind strength. Apart from these
variables, the pilot’s intentions must be known to predict
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the future movements of the aircraft. As a consequence,
these models are parameter-heavy, and require a considerable
knowledge about both the plane, the maneuvers being
performed and the environment in which the flight takes
place. This has prompted the development of databases
to store relevant information such as the Base of Aircraft
Data [16], as well as formal languages to express aircraft
intentions [17]. Some of these parameters, however, can
be adjusted by mining past flights data [18]. For example,
Zhang et al. [14] present a model that relies on online
connectivity, involving variables such as the precise angle of
the plane, wing surface area, aircraft intent (as instructions
split into four groups: speed, altitude, thrust or lateral),
pressure, wind speed, temperature, etc.

Machine learning methods leverage large amounts of
historical data to learn parameters that minimise the error
when making predictions. In theory, given enough examples
and relevant features, these methods can learn the underlying
laws, routes and maneuvers that govern aircraft movement
rather than having to manually integrate them. While
relatively simple models such as regression ones can be used
to predict trajectories [19], [20], the models that have caught
the most interest are those based on neural networks. The
flexibility and capability of neural networks to approximate
arbitrary functions and exploiting low-level features make
them ideal for a context where the output may be influenced
by complex, conditional non-linear combinations of the input.
Furthermore, neural network architectures like LSTM, GRU
or convolutional layers are suitable to deal with the typical
sequential nature of the data (the consecutive measurements
of the aircraft’s state), which make them a popular choice
in the field. Since neural networks are the focus of our
work, next we describe individual proposals. However, rather
than being interested in the model themselves, our interest
lies in studying what research questions are answered in
their experimentation, and therefore we enumerate the testing
conditions of each work.

Similar methods can be used for the prediction of
the trajectory of other vehicles such as ground vehicles
[21], [22], [23], which is useful for predicting traffic con-
ditions, collision risks, route optimization etc. The common
elements (prediction of the location of a vehicle) lead to the
use of similar models such as Hidden Markovv Models [21],
neural networks that leverage positional features [22], [23].
However, the differences in the application context make
those models unapplicable to aircrafts. For example, the
movement of vehicles is 2-dimensional and usually restricted
to roads, which lead to a stronger focus on network-related
algorithms and path-finding.

A. TESTING CONDITIONS OF NEURAL NETWORKS IN THE
STATE OF THE ART

Wu et al. [24] test the single-step application of a densely
connected neural network to predict the next state vector from
the last 3 observations. Min et al. [25] test the single-step
application of a recurrent Elman network to predict the next
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two state vectors from the last 4 observations. Shi et al. [26]
test the single-step application of a LSTM network to
predict the next state vector from the last 10 observations.
Xu et al. [27] test the multi-step application of a LSTM
network to predict the next 30 state vectors from the last
20 observations. This work focuses on the prediction of the
trajectories of several aircraft simultaneously. Zeng et al. [28]
test the single-step application of a LSTM network to takeoff
and landing trajectories. The network predicts the next 90 and
150 seconds of the trajectory for takeoff and landing samples
respectively (the number of points that correspond to this time
period is not mentioned) from the last 35 and 48 observations
respectively (reported to be the optimal value when testing
in the 10 to 60 range). Yang et al. [29] test the multi-step
application of a LSTM network to predict the next five state
vectors from the last 3 observations. Shi et al. [30] test
the single-step application of a LSTM network to predict
the next state vector from the last 10 observations, splitting
the dataset into climbing, cruising, and descending phases.
Ma et al. [31] test the single-step application of a LSTM
network to predict the next state vector using differential
features. Ma and Tian [32] test the multi-step application of
a network that combines the application of 1-dimensional
convolutions to the state vectors sequence and LSTM layers.
The network is used to predict the next 5 state vectors from
the last 6 observations, reporting the error for the predictions
at positions 1, 3, and 5.

Table 1 contains a summary of the testing conditions of
the former proposals. Our conclusions from the study of the
state of the art is that while many (often similar) models have
been proposed, there is little consideration about researching
how certain factors or variants may affect prediction. Only
three of the aforementioned proposals [27], [29], [32] test
the application of multi-step prediction, none of them report
the effect of using different trajectory lengths for prediction,
and only one of them [31] considered the use of differential
features. In a real use-case, these works offer few insights on
what strategies and practices can offer the best results, and
what information can benefit the models.

IV. MOTIVATION AND SCOPE

Our research is limited to the evaluation of neural network
models when applied to the prediction of aircraft trajectories
in an unknown context, that is, without any information
beyond the trajectories themselves. Our purpose is to
compare the effect of different strategies on performance
to evaluate their predictive potential rather than present the
use of neural networks as a final solution for performing
trajectory prediction.

While it may be tempting to see neural networks as
a generic solution to all prediction-related problems that
replaces the need to model a complex system with merely
feeding large amounts of data for training, neural networks
are often not precise enough to replace carefully built
specialized models in real, highly demanding use-cases.
However, neural networks have potential to model complex
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unknown factors through training that are hard if not
impossible to model otherwise (e.g. complex object detection
in images or speech synthesis), and could help improve such
models when used as a part of them or in contexts with
restrictions that make their full use impossible. Doing so
requires awareness of what conditions or variants lead to
better results and what are the limitations of their application
in this context.

The existing literature may lead to an overly optimistic
view of the capabilities of neural networks given the reported
results, but as we showed in Section III, existing research does
not delve into an in-depth study of different considerations
and therefore does not offer the insight that would be needed
to eventually integrate neural networks as part of a full-
fledged system.

It is precisely that lack of deeper insights that we try to
partially solve with our research, whose results should not be
seen as a proposal for final prediction, but as an exploration
of the effect of different circumstances and strategies on the
performance of neural networks in order to identify the most
promising lines of future development and the cases in which
they are not usable due to poor performance.

With regards to the questions themselves, we do not intend
to fully cover all possible experiments and variants, since
each question would require an additional in-depth study
focused on it to properly do so. The scope of our work is
limited to a set of experiments whose results allow us to give
a general answer while identifying possible future work.

V. EXPERIMENTAL STUDY

In this section we describe the design of the study we have
carried out, as well as the results we obtained. In Section V-A
we define the goals of the study, namely the open research
questions we have identified. In Section V-B we describe the
models we use. In Section V-C we describe how we obtained
the data used in the study. Finally, in Section V-D we show the
experimental results we obtained in several scenarios aimed
to answer the research questions.

A. GOALS

Following our study of the State of the Art, we have
identified several questions that have been left completely or
partially unanswered with the limited experiments performed
as part of the evaluation of existing proposals. Every question
represents an aspect where further experiments can be carried
on to determine the effect of certain conditions or parameters:

Q1 Do more complex architectures really achieve
a significantly better performance? Is it better
to use a simple network or a more complex
one? More complex architectures are those with
more layer types, different parameter types, and
structures designed to deal with more specific kinds
of data, e.g. an architecture that uses convolutional
and LSTM layers to deal with specific kinds of
sequential data is more complex than a generic
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TABLE 1. Summary of testing conditions of neural networks in the state of the art.

Proposal

Architecture Input length

Prediction

Observations

Wu et al. [24]
Min et al. [25]
Shi et al. [26]
Xu et al [27]
Zeng et al. [28]
Yang et al. [29]
Shi et al. [30]
Ma et al. [31]
Ma et al. [32]

Dense network 3
Recurrent Elman network 4
LSTM network 10
LSTM network 20
LSTM network
LSTM network 3
LSTM network 10
LSTM network -
Convolutional LSTM network 6

Next SV
Next 2 SVs
Next SV
Next 30 SVs
Next 90/150s
Next 5 SVs
Next SV
Next SV
Next 5 SVs

Takeoff/landing trajectories
Climbing/cruising/descending trajectories
Differential features

Q2

Q3

Q4

Q5
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dense network. While more complex architectures
may have more potential to produce complex, non-
linear outputs, the added complexity can reach a
point that is detrimental for the training of the
network. In some contexts, simple neural networks
have obtained better results than specialized archi-
tectures [33].

Do neural networks achieve better performance
than simpler baselines that do not require
training? Are there cases where the differences are
more significant (that is, the neural network model
is more suitable)? While a neural network is able to
learn how to predict movement during maneuvers,
if the movement of an aircraft is relatively regular,
a baseline that extrapolates movement in a simple
way may be more reliable on average than a neural
network that is more susceptible to producing
results with high variability.

To what extent does the length of the input tra-
jectory (that is, the number of state vectors used
to predict the next one) impact performance?
Are longer input trajectories more beneficial under
some circumstances? In an intuitive manner, pro-
viding more information about the aircraft past
states’ should be beneficial, but these benefits could
be larger in certain cases. For example, predicting
a trajectory could require the identification a
flight pattern whose detection requires a minimum
number of past observations.

When performing multi-step trajectory predic-
tion, how does the prediction accuracy degen-
erate as we make more sequential predictions
from the former ones? Each prediction introduces
an error that affects future predictions, potentially
reaching a point where the model is only fed
highly erroneous observations, leading to useless
predictions. If this is the case, only the first
predictions of a model would be trust-worthy and
different techniques should be used for long-term
predictions.

To predict a distant position, is it better to
perform multi-step prediction or delayed pre-
diction? One way to mitigate the accumulation of
errors to predict the distant future may be to directly

Q6

Q7

Q8

predict the position at the desired future instant
rather than reach it in several accumulated steps.
Models that make such predictions are less flexible:
they can’t be re-applied by concatenating the output
to the input state vectors, since the time difference
between the last observation and the input would be
much greater than the difference between the input
observations. Therefore, it remains to be seen if
training specific models leads to significantly better
performance that justifies the loss of flexibility.

Is it better to use differential or absolute fea-
tures? Differential features greatly limit the range
of input and predicted features, making it easier for
the model to learn how the plane will mode rather
than at what absolute position it will be, the later
being much more difficult to predict in a precise
way, since an error of, for example, 1% with respect
to the expected absolute position, can translate into
thousands of kilometers. On the other hand, an error
of 1% with respect to the expected movement
would be much smaller. The advantage offered by
absolute features is the additional information about
the absolute position of the plane on Earth, which
could correlate with certain routes, thus enabling
the network to learn that at certain places of the
world, aircraft tend to move in a certain way.

How do models perform when trained with
(and applied to) specific flight phases? Since the
behaviour of aircraft during different flight phases
is fundamentally different, training a generic model
that works well in all of them could be unrealistic.
Training specialized models could help improve
performance at the cost of relying on the correct
identification of the current flight phase. While
there may exist different proposals on how to split a
flight into phases or what defines such phases, it is
common to at least consider three of them: take-off,
cruise, and landing.

How do models perform when trained with (and
applied to) trajectories with less regular move-
ment (more turns)? Independently of the flight
phase, trajectories with more irregular movement
(e.g. sudden changes in direction) should be more
challenging, specially if most of the training data
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consists of samples where the aircraft follows a
straight line. Similarly to Q7, specialized models
could improve performance at the cost of lessening
the ease of application.

Q9 Does performance improve if additional
trajectory-wide features related to the position
of the plane in the flight are added? Such features
would provide information that is not associated to
each state-vector, but to the entire input trajectory,
such as the current phase of the flight, the position
of the destination, or the current absolute location
of the aircraft on Earth. The latter, for example,
would help provide the aforementioned advantage
of absolute features without relying on them.

Q10 Does performance improve if we use extra state
vector features in addition to positional ones
(latitude, longitude, and altitude)? While the
three positional ones are always readily available,
ADS-B messages may include additional fields in
their state vectors, such as the flight angle and
speed. These features can be used to expand the
state vectors fed to the network, providing extra,
explicit information that may improve performance.
However, to keep the possibility of multi-step
prediction, these features must also be predicted,
which may be too demanding and lead to an
impoverishment of the prediction of the positional
features.

Section III-A shows that no study so far has attempted to
systematically evaluate the performance of neural networks
under a variety of conditions that can be used as reference for
future research.

B. MODELS
To answer the aforementioned questions, we need to test
several fundamentally different models under different cir-
cumstances to study the differences in performance. While
endless models can be defined, our intentions are to test a
small amount of models that represent significantly different
approaches and levels of complexity. We settled for three
neural network models and two baselines. The neural network
models are the following: a densely connected network
(DCN) as a simple architecture, a LSTM network (LSTM)
as an architecture with specific mechanisms to deal with
sequential data, and a CNN-LSTM network (CNN-LSTM) as
a more complex and sophisticated architecture. The baselines
include a spline extrapolation baseline (SPLINE) and an
average extrapolation baseline (AVG).

Each model must take as input data a trajectory of length
n and predict at the very least the positional features at v, 1.
Therefore, if the number of features of each state vector is nf,
the shape of the input will be (n, nf) (two-dimensional), and
the shape of the output (nf) (one-dimensional). The neural
network models are also able to predict v,4, where o is the
offset of a delayed prediction. Next, we describe each model
in detail.
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1) DCN

A densely connected network uses mainly densely connected
layers, which connect a fixed number of inputs features
with a fixed number of output features using all possible
connections (hence the name) with a parametric weight for
each of them. While simple, the large number of connections
in these networks makes them potentially able to learn
complex transformations and combinations of data when
placed sequentially. However, the high number of parameters
makes the layers harder to train. Dense networks are usually
applied to problems in which the nature of the features
does not include concepts like sequentiality or regionality,
such as semantic typing [34] or person classification [35].
Overall, they are a conceptually simple, general-purpose
architecture whose main disadvantage is the high number
of parameters. Despite their simplicity, densely connected
networks have obtained better results than other, more
sophisticated architectures in some contexts [33].

Since these layers take as input one-dimensional data but
the network must process a sequence, in order to be fed
sequential data of shape (n, nf), the input has to be flattened
into a vector of shape (n x nf). Therefore, the input size
of the first layer is determined during the creation of the
network from the number of features and the trajectory
size.

Our implementation of a densely connected network does
this in the first dense layer, whose output is then fed to further
dense layers. The final dense layer has an output size equal
to nf, corresponding to the predicted features of the future
state vector. The dense layers with the exception of the last
one (since it produces the final prediction) are followed by
the application of the tanh function to enable non-linearity,
which was chosen to avoid significant information loss by
preserving the negative values that are common in the input
and output data, unlike other activation functions such as
ReLU, which removes them.

Figure 3 depicts the final architecture of our dense network
including the dimensions of the data as it goes the network
using an example input with n = 4 and three features,
highlighting the input and output data. We used five dense
layers with progressively reduced output sizes.

2) LSTM

A LSTM network uses as its main component one or several
Long Short Term Memory layers, which are designed to
consume sequences of data and produce an output for each
element in the sequence. Each element from the sequence
is combined with an internal state of the layer (which is
also updated with every application) and the output of the
former element, all through operations that involve trainable
parameters. Therefore, the output corresponding to the last
element of the sequence, as well as the inner state after the last
application, will be influenced by the entire sequence, making
LSTM layers ideal to process sequential data. Since a LSTM
layer produces an output for each input element, an input of
shape (n, nf) will result in an output of shape (n, x) where
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FIGURE 3. Dense network architecture.
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FIGURE 4. LSTM network architecture.

x is the configurable size of the output features, enabling
the concatenation of several layers. When the last layer is
applied, in order to obtain a single vector that represents the
entire sequence, it is typical to retain the output or inner state
corresponding to the last element of the sequence and ignore
the rest.

LSTM networks have been applied to all kind of problems
where the input contains some kind of sequence, such as
sequences of words from a text that must be classified [36],
audio signals [37], DNA sequences [38] or image sequences
from a video [39]. The only requirement is that each element
of the sequence must be represented numerically.

In addition of the LSTM block, our implementation of a
LSTM network previously applies a block of dense layers to
learn a first transformation of the input features. The LSTM
block takes its outputs and returns the output for the last
element of the sequence, which is then used to make the
prediction through a final dense layer.
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Figure 4 depicts the final architecture of our LSTM-
network. We used an initial block of two dense layers,
a LSTM block with three concatenated layers, and a final
dense layer, highlighting the input and output data. Note
that the input of the first block of dense layers has not
been flattened as happens in the densely connected network;
this is because the dense layer is applied independently to
each row in a batch-like fashion, so that, in the first dense
layer, d1;; = D({lat;, lon;, alt;})|i € [1,n],j € [1,100],
where D denotes the application of the dense layer (and tanh
function).

3) CNN-LSTM

A CNN-LSTM network combines the previously described
LSTM layers with convolutional layers. A convolutional
layer can be applied to features that have some kind of
regionality which makes it possible to tell when two features
are “‘nearby’’. Their purpose is to transform the input features
into new ones where each original feature has integrated the
nearby ones, representing information related to the ‘“‘area”
of features around the original one, e.g. whether or not there
is a sudden change in some feature. This is usually done with
a sliding window (called kernel) of a given size that traverses
one or several dimensions of the input data and aggregates
the values across that dimension by adding them up after
multiplying them by the weights associated to each position
of the kernel, which are trainable parameters.

These architectures are typical in contexts that deal with
sequences of continuous features that may benefit from the
pre-processing provided from the convolutional network.
For example, a 1-dimensional convolution could be applied
to an audio signal [40] or stock prices [41] so that the
resulting features may contain explicit information about
certain signal behaviour such as sudden drops, or smoothed
averages through kernels that cover small regions of the
sequence. These features would then be passed to the LSTM
layers that produces an output that accounts for the entire
sequence. Convolutions of 2-dimensional data are usually
applied to contexts where the elements of the sequence can
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FIGURE 5. CNN-LSTM network architecture.

be represented as an image, such as traffic prediction [42] or
video [43].

In the context of trajectory prediction it is possible to apply
a 1-dimensional convolution to the dimension of time, that
is, aggregating each feature with its value at the former and
following state vectors in the trajectory.

In a CNN-LSTM network, convolutional features are
first extracted, and then are passed to a LSTM layer.
We implemented the architecture described by Ma and
Tian [32], which first applies two convolutional layers with
32 kernels each, and then two LSTM layers, ending with a
dense layer. After the convolutional layers, max-pooling is
applied, which applies a sliding window that retrieves the
maximum value of the covered features.

Figure 5 depicts a simplified version of the architecture
with a single convolutional and LSTM layers, where k;
denotes kernel i, which traverses the time dimension and
produces the i channel of the output.

4) SPLINE

Splines are functions defined from (x, y) observations that go
over such observations in a smooth way. Splines are usually
used to interpolate y for a value of x between two of the
observations. However, splines can also be used to extrapolate
the value of y beyond the last value of x. To apply splines for
trajectory prediction, we create a spline for each state vector
feature, using the position in the trajectory as the x variable,
and the value of the feature as y. Then, we extrapolate the
value of each spline for the next value of x.

5) AVG

The averaging baseline only works with differential features,
as it predicts that the movement of the aircraft will be
a weighted average of the last movements. Concretely,
it computes sv,4+1 = 0.5 sv, + 0.3 sv,—1 + 0.2 sv,, 2.

C. DATA ACQUISITION AND PRE-PROCESSING

To obtain data about flight trajectories we used the R package
openSkies [44], which offers easy programmatic access to the
OpenSky network resources [7], which provide free access
to high-quality air traffic data obtained through a network of
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FIGURE 6. Application of different subsampling parameters to the same
trajectory.

thousands of ground stations that receive ADS-B messages
broadcast from the aircraft themselves for their tracking.

The openSkies package allows performing queries that
retrieve flights with the state vectors that represent their entire
flight trajectories with a given period. To obtain an initial
set of flights, we queried for the flights that departed from
the Frankfurt airport (EDDF) during the first of January of
2021 with a period of 30 seconds, and kept those that had
attached state vectors, resulting in 861 flights with a total of
247070 state vectors. Each state vector contains a variety of
features. However, several of them are not useful, such as a
flag indicating whether or not the aircraft is on ground or
the squawk code used for communications, or are derived
from other features, such as the aircraft speed. For these
reasons, we use as base features the latitude, longitude, and
barometric altitude, which also have the highest availability.
Next, we describe the process for obtaining the final dataset
from the collection of flights, which is also shown in
Algorithm 1.

Step 1: We subsample the state vectors of every flight
using a period multiplier that determines the period of the
consecutive state vectors. A multiplier of 1 means all state
vectors will be used, resulting in a period of 30 seconds.
A multiplier of 3 means one of every three vectors will be
used, resulting in a period of 90 seconds. Multipliers with
value m also enable the use of an offset in the range [0, m) that
determines what state vectors will be used. Figure 6 shows
how a trajectory would be sampled using different multiplier
and offset values. We subsample using all multiplier values
in the range [1, 4], ensuring that the models will learn how to
predict from arbitrarily spaced points, avoiding overfitting to
a specific period. For each multiplier value, we create samples
using all possible offset values.

Step 2: We take trajectory fragments as final evaluation
samples using a sliding window with a size determined by the
number of state vectors that will be used for the predictions,
n, and a fixed number of future state vectors that determine
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the maximum number of future predictions, f. We remove
samples in which any of the state vectors is null. Figure 7
depicts an example in which 5 samples are taken from the
trajectory. We take all possible fragments with n € [5, 10]
and f = 20. While in our experiments we only predict up to
the 5th future state vector, we store a larger number to include
more information about the trajectory.

Step 3: We select and retain the features that will be used
for each sample. If at least one feature is differential, the first
state vector will be stored to enable the reconstruction of the
original value of the features and the sequence size will be
reduced by 1 (since the first state vector has no increment).
Apart from the resulting sequence of state-vectors, trajectory-
wide features can be included, such as the distance to the
destination at the first state vector of the phase of the flight.
Figure 8 depicts an example in which the features selected
were the differential latitude, longitude and altitude, as well
as the distance to the destination and the flight phase as
trajectory-wide features.

Step 4: We remove anomalous samples, which are common
given the noisy nature of the data from ADS-B messages.
We remove samples where any of the features had a null
value, where any of the sequence steps had no increment
for all features (probably caused by the repetition of a
state vector), or where any of the feature values deviated
more than 2 standard deviations from the mean value of the
feature.

Step 5: Once all samples have been collected, we normalise
the feature values (including extra features) by subtracting the
mean of each feature and dividing by the standard deviation,
ensuring that the mean of the normalised features will have a
mean of 0 and a standard deviation of 1.

Step 6: All samples are randomly sorted using a fixed seed
for reproducibility and then split into training and testing sets.
The first half of samples is used for training, and the second
one for testing, which is reasonable given the large amount of
samples (several millions after pre-processing). The random
ordering of the samples should remove the possibility of
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Algorithm 1 Data Preprocessing

Input: F: Set< Flight> Collection of flights M:
Set< Integer> Subsampling multipliers N:
Set< Integer> Trajectory samples lengths f:
Maximum number of future predictions r:
Integer seed for randomization of samples
order
Output: 7r: List< Sample>  Collection of training
samples 7e: List< Sample>  Collection of
testing samples

/* For each flight in the evaluation set */
foreach flight in F do

/+ For each subsampling multiplier */
foreach m in M do

/* For each sampling offset */

foreach o in [0, m) do
/* The flight is subsampled

according to the parameters x/
ssFlight < subsample(flight, m, o)
/* For each desired trajectory
length */

foreach n in N do
/+ For each possible starting

point of the trajectory x/
foreach i in [0, length(sf) — n] do
/* We store the state vectors
corresponding to the input
and expected output,
as long as there are no
null or repeated state
vectors x/
fragment < ssFlight[i : i+ n+f]
sample < getFeatures(fragment)
if noNulls(sample) and

noRepeated(sample) then
| S <« SUsample

end

end

end
end

end

end

/* We remove anomalous data and normalise the
rest */

S <« removeAnomalous(S)

S < normalised(S)

/* We create the training and testing splits
*/

S <« randOrder(S, r)

Tr < S[O0 : length(S)/2]

Te < S[length(S)/2 : length(S)]

biased training where results are affected by the presence or
omission at training or testing of samples from flights with
particular characteristics.
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All the data and scripts used for pre-processing, as well as
the scripts that apply the models and compute metrics have
been made available online.

D. EXPERIMENTAL RESULTS

In this section we present the results from different
experimental scenarios designed to answer the research
questions presented in Section V-A. Each scenario presents a
comparison of the results obtained from different techniques
that provides insights into at least one of the research
questions. Table 2 shows what questions are covered by each
scenario, with each question being associated to at least one
scenario.

Unless specified otherwise, the state vector features used
in all scenarios are the latitude and longitude in degrees, and
the altitude in meters. In each scenario we show plots with all
the results, and a summary table with the results when using
10 trajectory points for the first, third, and fifth predictions.
This table is necessary to properly compare the results for
the first predictions, in which the error is lower and harder to
appreciate in the plots.

All reported results show the MAE of predictions (lower
is better) after translating into the ECEF coordinate system.
We use a starting learning rate of 1073 that is dynamically
reduced if the loss stagnates, and a batch size of 256.

1) SCENARIO 1: NETWORK ARCHITECTURE AND FEATURE
TYPE SELECTION

Our first experimental scenario seeks to determine what
network architecture obtains the best results, as well as
whether it is convenient to use normal features or differential
features. We trained a CNN-LSTM network, a DCN, and a
LSTM network, using 50 epochs and testing the use of normal
or differential features for all of them. Results are shown
in Figure 9 and Table 3 with different y-axes scales due to
the disparity when using differential and absolute features.
It can be observed that using differential features results
in a performance that is several orders of magnitude better
than normal features, which was expected since differential
features keep the value of features (both used for prediction
and being predicted) more constrained and not dependant on
the original and destination of the flight. Among the three
networks, the LSTM model yields the best results, with the
DCN probably being too simple and the CNN-LSTM model
too complex. Given the results, for the rest of the experiments
we will use a differential LSTM model as the base neural
network model.

Regarding the degradation of the predictions when making
further predictions, it can be observed that, as expected, the
MAE ramps up as further predictions are made, reaching a
point where predictions are just useful to have a general idea
of the direction of the plane rather than its actual position.
This phenomenon can be seen across all scenarios.

1 https://github.com/DEAL-US/aircraft-trajectory-prediction
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FIGURE 9. Results for S1. X-axis = prediction offset. Y-axis = MAE.

As an additional experiment, we tested the LSTM model
when training with 50, 200, and 300 epochs to determine
to which point it is convenient to train the network. Results
are shown in Table 4. There is a significant improvement
when increasing the number of epochs from 50 to 200 but
not from 200 to 300. This shows that the model is neither
over-fitted nor under-trained. If it was over-fitted, a lower
number of epochs would have resulted in significantly
better results. If it was under-fitted, the improvement would
have taken place when setting a higher number of epochs.
Therefore, for the rest of the experimental scenarios, neural
networks will be trained with 200 epochs.

2) SCENARIO 2: BASELINE RESULTS

This scenario aims to compare the results obtained by a
neural network to those obtained by simple, unsupervised
baselines: the spline and averaging baseline described in
Section V-B. Results are shown in Figure 10 and Table 5. The
neural network obtains significantly better results than both
baselines. The averaging baseline performs better than the
spline one, probably because spline extrapolation can become
erratic. The relatively good results of the averaging baseline
are probably caused by the fact that during most of the flight
the plane travels in a straight line. In some of these cases,
the LSTM model tends to erroneously predict a curve as can
be seen in Figure 11 in which the baseline model correctly
predicts the straight trajectory, which led us to the hypothesis
that using different models for different kinds of trajectories
could help diminish said errors.

3) SCENARIO 3: TURNING TRAJECTORIES

This scenario tests the behavior of the neural network when
trained with and applied to only the top 10% of the trajectories
with the most turns. We define the ‘“‘turning amount” of
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TABLE 2. Research question coverage with experimental scenarios.

Q1: network architecture performance

Q2: baseline performance
Q3: Trajectory length influence

Q4: multi-step prediction degeneration

QS: delayed prediction performance
Q6: differential features performance
Q7: flight phase influence

Q8: trajectory irregularity influence

v
v
v v v v v/
v v v v v/
v
v
ooV

Q9: trajectory-wide features performance v
Q10: extra features performance v
TABLE 3. Results summary for S1. TABLE 5. Results summary for S2.
Model Error 1 Error 3 Error 5 Model Error1 Error3 Error$5
CNN-LSTM (non-differential) ~ 23860.84  35968.30  50440.26 LSTM 159.33 53435  1140.61
CNN-LSTM (differential) 295.43 1084.57 2372.05 AVG 250.81 785.92  1578.25
DCN (non-differential) 10231.54  18683.35  29510.88 SPLINE 74373 2158.05  3254.05
DCN (differential) 293.54 1200.43 2717.48
LSTM (non-differential) 7629.14  24421.35 47184.59
LSTM (differential) 217.17 808.58 1744.67 o
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TABLE 4. Results summary for different numbers of epochs. 39.4 &
© 6000
E 303 o
Model Error1 Error3 Error5 g 39.9 t. a8 5000
LSTM (50 epochs) 217.17  808.58  1744.67 30.1 7..1._'.5
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FIGURE 10. Results for S2. X-axis = prediction offset. Y-axis = MAE.

a trajectory as the accumulated sum of the turning degree
(regarding latitude and longitude) of each point in the
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FIGURE 11. Example of LSTM and averaging baseline prediction.
Interactive 3D visualization.

trajectory. Our purpose is to check whether or not we can
obtain better performance by training a model that focuses
on cases with more irregular movement. Results are shown
in Figure 12 and Table 6, in which the LSTM (all training,
turn test) model was trained with all trajectory but tested
with only turning trajectories, while the LSTM (turns only)
model was trained and tested with only turning trajectories.
As expected the results of the LSTM model when trained with
all trajectories and tested with turns only are significantly
worse than those obtained from the average of all trajectories,
and even worse than those obtained by the baseline. However,
when a model is specifically trained with only the turning
trajectories, the results obtained are much better, surpassing
the baseline.

It can also be observed that the input trajectory length has
a greater effect on the turning trajectories model, which is

VOLUME 11, 2023



D. Ayala et al.: Neural Networks for Aircraft Trajectory Prediction

IEEE Access

LSTM (all trajectories) LSTM (all training, turns test)

6000 - 6000~
4000- 4000-
2000- 2000-
1 2 3 4 5 1 2 3 4 5

AVG (turns only)

6000 - 6000 -
4000 - 4000~
2000~ / 2000- /
0- - T £ T T 0- T T T T T
1 2 3 4 5 1 2 3 4 5

- 7 - 9

Trajectory length

6 o 8 -e 10
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TABLE 6. Results summary for S3.

Model Error1 Error3 Error5
LSTM (all trajectories) 159.33 53435 1140.61
LSTM (turns only) 163.47 646.93  1723.07
LSTM (all training, turns test) 655.60 2542.72  5352.20
AVG (turns only) 382.18 1517.85 3438.36
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FIGURE 13. Example of predictions for turning trajectory. Interactive 3D
visualization.

reasonable since the prediction of how a plane turns should
benefit more from the higher amount of information.

Figure 13 shows an example in which the model trained
with turning trajectories is able to predict more accurately the
turn of a plane, even when the plane has not started turning
yet. A possible explanation is that the trajectories with more
turns correspond to key points in the trajectory of planes that
tend to take place at some geographical point. The specific
model is then able to learn where some of these turns take
place, leading to part of the improvement.

4) SCENARIO 4: FLIGHT PHASES

This scenario tests the behavior of the neural network when
trained with and applied to only trajectories in certain flight
phases. Identification of flight phases is performed using a
fuzzy logic approach as described by [45]. We consider four
phases: climb, cruise, descent, and level (an intermediary
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TABLE 7. Results summary for S4.

Model Errorl Error3 ErrorS5
LSTM (all trajectories) 159.33 534.35  1140.61
LSTM (Climb) 77.98 233.51 509.88
LSTM (Cruise) 111.35 366.64 783.84
LSTM (Descent) 101.58 463.67  1245.22
LSTM (Level) 125.36 607.76  1661.37
LSTM (all training, Climb) 176.82 57893  1178.15
LSTM (all training, Cruise) 143.82 464.80 976.01
LSTM (all training, Descent) 198.46 852.98 2044.31
LSTM (all training, Level) 160.78 685.94  1659.73
AVG (Climb) 33462 121191 2454.32
AVG (Cruise) 201.04 519.92 973.24
AVG (Descent) 440.77  1782.83  3921.97
AVG (Level) 360.14  1375.32 2861.24

step before descent). Our purpose is, similarly to turning
trajectories, to check whether or not we can obtain better
performance by training models that focus on specific
flight phases. Results are shown in Figure 14 and Table 7.
As expected results are usually better during the cruise phase,
when the plane frequently follows a more predictable straight
path and the baseline is able to obtain results on par with
the other models. While the LSTM model trained with all
trajectories is still better than the baseline, the models trained
for specific phases outperform them in all cases, proving that
it is convenient to be able to identify flight phases and use
models that are specialized in that phase in particular.
Consistently with scenario 3, results in phases with
reasonably higher motion variability (mainly the Climb
phase) clearly improve as more trajectory points are provided.

5) SCENARIO 5: DELAYED PREDICTION

This scenario aims to test the effect of predicting a future
position with a delayed prediction, compared to multi-step
prediction. In particular, we test the prediction of the 5th
future point in the trajectory. Additionally, we test for all
trajectories and for turning trajectories similarly to scenario 3,
since such cases could benefit more from giving a direct
prediction. Results are shown in Figure 15 and Table 8.
Interestingly, delayed predictions lead to worse results in
the overall results, but to a significant improvement for the
turns only model. In other words, delayed prediction seems
to greatly benefit from separate models.

Figure 16 shows an example in which the prediction of
the 5th future point is better when using a delayed prediction
model.

It must be kept in mind that despite these conditional
improvement, delayed prediction models lack flexibility,
since they can’t predict several points into the future, which
makes them suitable only for some conditions.

6) SCENARIO 6: ADDITIONAL FEATURES

This scenario tests the effect of using additional features
in the model beyond the basic ones (latitude, longitude,
and altitude). For that purpose, we test two strategies:
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FIGURE 14. Results for S4. X-axis = prediction offset. Y-axis = MAE.
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FIGURE 15. Results for S5. Delayed prediction results show a single point
corresponding to the 5th prediction.

expanding the state vector features with extra ones, and
adding trajectory-wide features. Regarding the extra state
vector features, we add the true track (angle of the plane)
and the vertical rate, both of which could be derived
from the positions, but which could help the network by
providing explicit information. Regarding trajectory-wide
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TABLE 8. Results summary for S5. X-axis = prediction offset. Y-axis =
MAE.

Model Errorl Error3 Error5
LSTM 159.33 53435 1140.61
LSTM (5th prediction) - - 1464.58
LSTM (turns only) 163.47 646.93  1723.07
LSTM (5th prediciton, turns only) - - 800.57

features, we add the latitude and longitude of the destination,
the euclidean distance from the last known state vector to
the destination, and the flight phase in said state vector.
These features could improve performance by providing
information about where the plane is leading towards, and
at which point of the trajectory it is. To add these features
to the model, we modified the LSTM model in Figure 4
so that trajectory-wide features are concatenated to the
output of the LSTM 3 layer. We test these two strategies
independently and jointly. Results are shown in Figure 17
and Table 9. Surprisingly, all additions lead to worse results.
In the case of the extra state vector features (LSTM +
extra), this is probably caused by how the model has more
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FIGURE 17. Results for S6. X-axis = prediction offset. Y-axis = MAE.

TABLE 9. Results summary for Sé.

Model Error1 Error3 Error5
LSTM 159.33 534.35 1140.61
LSTM + traj.-wide 188.89 682.25  1455.89
LSTM + extra 351.62  1141.79  2283.27
LSTM + traj.-wide + extra 406.89  1381.05  2810.71

initial information, but is also forced to predict additional
features for the consecutive state vectors. When it comes
the trajectory-wide features, the worse results may be caused
by the higher model complexity, and the additional features
not providing crucial information for correctly predicting the
most challenging cases.

E. ANSWERS TO THE RESEARCH QUESTIONS
Next, we give an explicit answer to the identified research
questions from the results obtained in the experimental
scenarios:

Q1: Do more complex architectures really achieve a
significantly better performance?

The use of layers specialized in sequential inputs (e.g.
LSTM layers) greatly improves results over simple dense net-
works. However, more elaborate architectures (CNN-LSTM)
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perform worse than simpler ones while being much more
computationally expensive. Results from aforementioned
complex architecture did not seem to clearly improve as the
number of available trajectory points increased from 6 to 10,
which leads us to conclude that these architectures would only
make sense in a completely different scenario where the input
contains hundreds of state vectors.

Q2: Do neural networks achieve better performance
than simpler baselines that do not require training?

While the results obtained by neural networks were better
overall than a simple baseline that approximately assumes the
plane will keep moving in the same direction, the differences
between both methods was relatively small compared to cost
of training and applying a neural network. However, these
results were expected, since the majority of a flight cruise
takes place in a straight line. When predicting trajectories
during turns or non-cruise phases, the differences were larger
since the neural network is actually able to predict maneuvers
to a certain extent.

Q3: To what extent does the length of the input
trajectory (that is, the number of state vectors used to
predict the next one) impact performance?

The use of the longer trajectories (10 state vectors)
led to consistently better results than the shortest ones
(5 state vectors). The differences were more significant in
challenging scenarios: turning and non-cruise trajectories.
Surprisingly, trajectory length had a lesser effect when
performing delayed predictions in scenario S5.

Q4: When performing multi-step trajectory prediction,
how does the prediction accuracy degenerate as we make
more sequential predictions from the former ones?

In all scenarios accuracy degraded quickly beyond the
first predictions, and as expected much faster in challenging
scenarios. The use of specialized models helped to greatly
reduce this error, but the MAE remains above 1000 for the
fifth prediction. This may render neural networks unusable
for performing a direct precise prediction (unless different
techniques are applied to improve accuracy), but may be
enough to predict expected flight intentions (e.g. to perform
a turn).

QS5: To predict a distant position, is it better to perform
multi-step prediction or delayed prediction?

While the use of delayed prediction was not beneficial for
overall trajectories, it halved the MAE for turning trajectories,
showing that specialized models for predictions in the far
future may be a partial solution to the quickly degrading
accuracy at the cost of flexibility. If such longer term
predictions are needed, a reasonable option would be to train
different models for predictions at fixed times, which would
also be more efficient than repeatedly applying a model to
perform multi-step prediction.

Q6: Is it better to use differential or absolute features?

Differential features resulted in results that were an order of
magnitude better than absolute ones. While absolute features
technically contain more information that may be useful for
predictions with regards to the absolute position of a place,
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it is clear that this information should be included in addition
to differential features.

Q7: How do models perform when trained with (and
applied to) specific flight phases?

As expected, generic models that performed well in
the overall experiments did so in part because of the
predominance of the cruising phase during flights, being
much less accurate during non-cruise phases. Training
models for specific phases forced the models to focus
on non-trivial cases and led to much lower MAE in all
cases, with larger improvements in the climb and descent
phases. The conclusions regarding this question, along with
those from questions Q5 and Q8 seem to suggest that
specialized models may be the key to improve the accuracy
of predictions. Potential systems could create a variety of
models for all different identifiable situations, which may
correspond to different phases, aircrafts, weather conditions,
etc.

A cost of doing so would be the need to gather
further data that enables the training of models for specific
situations.

Q8: How do models perform when trained with (and
applied to) trajectories with less regular movement (more
turns)?

Similarly to question Q7, general models are prone to error
in non-straight trajectories, where specialized models are
more successful. The difference with question Q7, however,
is that unlike phases, it may be harder to determine when
a plane is turning or is going to turn in the near future in
order to apply the correct model. Models specialized in turns
could be applied when a certain variance in direction has been
detected, or when an additional model has predicted a flight
will take place soon.

Q9: Does performance improve if additional trajectory-
wide features related to the position of the plane in the
flight are added?

Adding trajectory-wide features to the neural network
architecture did not improve results; actually it made them
slightly worse, probably because of the increased complexity
of the network and potential overfitting. We conclude that
leveraging these features may require a more complex model
(avoiding over-complexity as mentioned in question Q1) or
completely different features.

Q10: Does performance improve if we use extra state
vector features in addition to positional ones (latitude,
longitude, and altitude)?

Adding additional features beyond latitude, longitude and
altitude led to significantly worse results, maybe for similar
reasons to those mentioned in question Q9.

VI. CONCLUSION AND FUTURE WORK

We have presented a thorough study on the application of
neural networks to short-term aircraft trajectory prediction.
While the literature contains several implementations of the
former, the experiments presented by them take place under
very limited sets of conditions and overall do not address
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potential doubts about aspects that would be crucial when
making decisions in a real-world environment. Specifically,
we have identified ten open research questions that our
study intends to answer. For that purpose, we have predicted
trajectories from more than 800 flights, using several dozens
of model variants and data configurations that, grouped and
compared in six different scenarios, provide detailed insights
into the research questions.

Our summarised findings regarding the aforementioned
questions are the following: 1) a middle-complexity model
achieved better results than a high complexity ones. 2) the
performance of a neural network was better than that
of a simpler baseline; while the later achieved similar
results in straight trajectories, the difference was more
pronounced in irregular trajectories. 3) the length of the
input trajectory is particularly relevant when the plane is
turning or in non-cruise phases. 4) as more predictions
are made, the error increases exponentially, so that good
accuracy can only be guaranteed for the first predictions;
however specialised models can greatly diminish the rate at
which the error increases. 5) delayed predictions seem to be
particularly beneficial in irregular trajectories. 6) differential
features are an order of magnitude better than normal ones.
7) training models for specific flight phases greatly dimin-
ishes the error of predictions, specially in non-cruise phases,
where trajectories should be more irregular. 8) something
similar happens when it comes to irregular trajectories:
while a general model achieves good overall results, the
error is much larger for cases with irregular movement.
9) the added trajectory-wide features didn’t lead to improved
results, but slightly worse ones. 10) adding features beyond
latitude, longitude, and altitude led to significantly worse
results.

Some of these conclusions seem to be in conflict with pop-
ular choices in the literature. For example, while differential
features are always an order of magnitude better than normal
ones, barely any of the works we have studied mentions them.
The better results obtained with a model that specializes in
making predictions for the far future (delayed-prediction) is
also particularly interesting, since making predictions in the
long term is much more challenging.

We hope that our explicit identification of these research
questions will help guide future work so that parts of the
efforts of the research community will be aimed towards
further studying them. For example, new proposals could be
evaluated with different trajectory sizes. Future work could
also focus on answering single questions in greater detail; for
example, a wider range of trajectory lengths could be tested,
additional features could be added and fed to networks with
specialised architectures, and delayed prediction could be
evaluated under more challenging conditions (e.g. predicting
further into the future). One of the most challenging scenarios
to be tackled is the prediction of longer-term positions. Ways
to tackle it could include the use of specialized models,
or applying complex models to a large amount of input state
vectors.
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