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ABSTRACT Positron emission particle tracking (PEPT) is a non-invasive technique used to study fluid,
granular, and multi-phase systems of interest to academia and industry. PEPT employs position-sensitive
radiation detectors to record gamma rays in coincidence and track the movement of discrete sources.
A modular detector array, the Large Modular Array (LaMA), has been constructed at the University of
Birmingham’s Positron Imaging Centre (PIC) to enable custom detector geometries. To estimate the LaMA’s
performance characteristics prior to experimentation, assist in developing optimised camera geometries, and
determine ideal PEPT tracer characteristics a Monte Carlo model of LaMA is created and subsequently
validated with experimental measurements. Validation is achieved through comparisons of the spatial
resolution and count-rate response following the National Electrical Manufacturers Association (NEMA)
industry standard protocol. Notably, the model’s pulse-processing chain is autonomously calibrated to match
experimental measurements using a recently developed technique which applies an evolutionary algorithm.
The results show the simulated spatial resolution of the validatedmodelmatches the experiment to within 5%.
Additionally, the total, true, and corrupted count-rates are reproduced to a mean error of 3.41%. This
calibrated detector model strengthens the PIC’s modelling capabilities. To facilitate future research, this
model has been made publicly available through the PIC’s GitHub repository.

INDEX TERMS Digital twin, GATE, Monte Carlo, positron emission particle tracking.

I. INTRODUCTION
Positron emission particle tracking (PEPT) is an imag-
ing technique used to study opaque engineering and sci-
entific systems using flow-following tracers labelled with
positron-emitting radionuclides [1]. Positrons annihilate with
electrons in close proximity to the labelled tracer, pro-
ducing back-to-back 511 keV gamma-rays which can be
detected with position-sensitive radiation detectors such as
gamma cameras or positron emission tomography (PET)
scanners [2]. Reconstruction of the labelled tracer position
requires detecting both annihilation photons in coincidence
to form a line-of-response (LoR) and applying a PEPT

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Merlino .

algorithm on a sample of LoRs to find the most likely annihi-
lation point [3]. By detecting the tracer successively, a time-
dependent trajectory is developed which can be analysed
to determine system properties such fully three-dimensional
velocity fields, tracer re-circulation times, and diffusivity [1].
PEPT has been used extensively over the last 30 years to study
a variety of equipment ranging from coffee roasters, washing
machines, and liquid metal castings [4], [5], [6].

To perform a PEPT measurement, equipment must first
be moved to a lab and placed in the field-of-view (FOV)
of a position-sensitive detector. At the University of Birm-
ingham’s Positron Imaging Centre (PIC), detectors like
the ADAC Forte and SuperPEPT have been acquired or
built specifically for PEPT measurements [7]. The Forte
dual-headed positron camera was acquired because the two
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detector heads can be separated up to between 250 mm and
800 mm, which enables the accommodation of a variety of
equipment while optimising detector sensitivity. This system
can record LoRs up to approximately 100 kHz [8]. Addition-
ally, SuperPEPT, which has recently been constructed using
components from CTI/Siemens ECAT EXACT 31, ART, and
EXACT HR+ scanners has a cylindrical geometry of about
400 mm in diameter and 544 mm in length. The diameter
can be separated up to 600 mm to place an experiment in the
FOV, but must be closed again to record data. SuperPEPT
records LoRs up to 2500 kHz, a factor of 20 higher than the
Forte, enabling improved spatiotemporal resolution of PEPT
trajectories [9].

However, there are instances where experimental equip-
ment is too large or consists of awkward geometries which
cannot be easily fit into the FOV of existing systems.
To address this, a modular detector array, named the Large
Modular Array (LaMA), has been designed to be assem-
bled around experimental systems in custom geometries [10].
LaMA consists of building block, called ‘boxes’, which
contain four ECAT951 block detectors. These boxes can
be placed in nearly any configuration and connected to a
coincidence processor, allowing flexible geometries to be
designed for imaging large-scale industrial equipment [11].
Since the LaMA is reconfigured in a different geometry
for each experiment, the performance characteristics of the
camera are difficult to predict. As such, estimating the spa-
tiotemporal resolution of the expected trajectories, designing
an optimised geometry, and selecting an appropriate tracer
activity for a given experiment can be challenging.

In this work we describe and validate a Monte Carlo model
of the LaMAwhich will be used to help optimise experiments
in the future. This model is created using the Geant4 Applica-
tion for Tomographic Emission (GATE), a Monte Carlo radi-
ation transport software which emulates the detector geom-
etry, radioactive sources, and electronic pulse-processing
of particles interacting with the detector [12], [13]. The
performance of the camera in a simple geometry is char-
acterised following the industry-standard National Elec-
trical Manufacturers Association (NEMA) protocol [14].
Notably, the pulse-processing model is calibrated by through
a recently developed method which compares the simu-
lated and real performance characteristics and tunes param-
eters of the pulse-processing model using an evolutionary
algorithm [15], [16], [17].

A. THE LARGE MODULAR ARRAY (LaMA)
The idea for the LaMA was developed at the PIC in the early
2000s, growing out of the need to have a detector system
which could image large or awkward industrial systems and
potentially be able to be transported to equipment which
could not be moved. One feature that was identified as being
key to this future system was being modular so that custom
geometries could be tailored to each experiment. To this
end, initially, three CTI/Siemens ECAT ring scanners were

acquired and dismantled to retrieve the block detectors which
could then be reassembled into a new geometries [10].

Each block detector consists of an 8 × 8 bismuth ger-
manate (BGO) crystal array, with each crystal measuring
6.25mm inwidth, 6.75mm in height, and 30mm in thickness.
The BGO crystals are optically coupled to a 5 mm thick glass
light guide and four photo-multiplier tubes (PMTs), each
100 mm in length. Using the 192 block detectors extracted
from the PET scanners, a modular unit consisting of four
blocks was designed. Each of these units are termed a ‘box’
and 48 boxes were constructed in total. Each box is approx-
imately 360 mm in width, 95 mm in height (including spac-
ers), and 460 mm in thickness with each of the four block
detectors spaced 90 mm apart from centre-to-centre. A single
box is shown on the left side of Fig. 1 and a stack of four
boxes is shown on the right. These modular units are the fun-
damental building blocks of LaMA. Currently, up to 32 boxes
can be connected to a single coincidence processor unit to
form a detector array. By using more than one coincidence
processor and merging the data streams in post-processing,
all 48 boxes can be used simultaneously, but coincidences
can only be formed between boxes connected to a shared
coincidence processor.

FIGURE 1. (a) A view inside a single box where four block detectors are
mounted. (b) A stack of four boxes. The geometry used in this work is two
stacks of four boxes separated by 500 mm.

B. Geant4 APPLICATION FOR TOMOGRAPHIC
EMISSION (GATE)
GATE is a Monte Carlo radiation transport and detector
simulation software designed for emulating the geometries,
sources, and pulse-processing chain of imaging systems [12].
Many different types of detectors and imaging modalities
have been modelled using GATE, including other detector
systems used for PEPT such as the ADAC Forte and Siemens
Inveon [13], [18], [19]. GATE is a useful tool for modelling
PEPT experiments because it provides output comparable to
real detectors and serves as ‘sandbox’ through which changes
in the detector or source properties can be assessed, synthetic
data can be processed to verify imaging techniques, or limits
of techniques can be investigated without expending the con-
siderable time and resources required for physical experimen-
tation. Of special importance for the model presented in this
work, a GATE model of a PEPT detector and experimental
geometry can be used to the assess impact of changes in the
geometry to the sensitivity of the system and affect this has on
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tracer trajectories quantified through estimates of their spatial
and temporal resolution [20], [21], [22].

One useful feature of GATE is the ‘parameterisation’ of
the simulation scripts which allows users to quickly change
aspects of the simulation through the command line. Using
this, the source activity, placement of LaMA’s boxes, and
the values for parameters of the digitizer can be edited
without having to manually change the file. In this work,
we use GATE to first replicate the geometry of the LaMA
and the source, then calibrate the digitizer through evolu-
tionary an evolutionary algorithm which is able to edit the
pulse-processing settings of the detector through parame-
terised simulation scripts. The fitness of a set of candidate
solutions with tune-able digitizer parameters is then com-
pared through the ability of the GATE model to replicate the
experimentally measured performance characteristics.

C. EVOLUTIONARY ALGORITHMS
When calibrating simulated models to experimental mea-
surements, the complex relationship between variables, noisy
measurements, and the large number of solutions that need
to be tried to explore the solution space leads to a difficult
optimisation problem with many false local minima [23].
When there are several parameters which need to be opti-
mised, such as encountered in a digitizer model, traditional
approaches like design-of-experiments become too unwieldy
and gradient-based optimisers struggle to overcome local
minima in a multi-dimensional and noisy solution space. This
has led most GATE models to be calibrated manually using
estimates of the optimal parameters provided by manufactur-
ers of the detectors [24], [25]. This type of manual tuning
is both subjective and also not guaranteed to produce the
optimal calibration.

However, a type of optimisation algorithm that has been
shown to excels in these cases are evolutionary algo-
rithms [15], [26]. Evolutionary algorithms emulate biological
evolution by using a group of simulations to act as a popula-
tion with varied features. In this way, the fitness of individual
simulations against a selective pressure can be quantified.
To improve the fitness of the next generation of simulations,
the fittest simulations are allowed to reproduce which allows
their features to be transferred and some random mutations
added to increase diversity, potentially introducing beneficial
features.

In this work, the Covariance Matrix Adaptation using
Evolutionary Strategy (CMA-ES), which is a stochastic opti-
miser for robust non-linear non-convex numerical optimisa-
tion, is used to perform the model calibration [16]. While
CMA-ES generates, assesses, and updates solutions to
parameters of the digitizer, an additional software is used to
couple CMA-ES to the GATE simulation. This software is
the Autonomous Characterisation and Calibration via Evolu-
tionary Simulation (ACCES) which is a Python interface to
the CMA-ES algorithm specifically designed for general cali-
bration simulations and has been previously used to calibrate
a GATE model of the ADAC Forte [15], [17]. More details

about our use of this software to calibrate the LaMA digitizer
are provided in Section II-C.

II. METHODS
A. CHARACTERISATION EXPERIMENTS
Two sets of characterisation experiments are conducted to
measure the spatial resolution and count-rate response of
the LaMA in a simple geometry. These two characteristics
are the most important detector characteristics in regard to
PEPT experiments because spatial resolution predominately
influences the ability to resolve a point-like source and the
digitizer model controls the count-rate response curve. Thus,
these two characteristics ultimately determine the spatial and
temporal resolution of a PEPT tracer, which are the charac-
teristics of interest for users of PEPT algorithms [7].

In order to characterise LaMA’s performance characteris-
tics, a single, simple geometry was chosen. This geometry is
a dual-headed stack of four boxes on either side of a source.
The two stacks are separated by 500 mm. This configuration
is used because of the low number of boxes required and also
because of the large solid angle it creates with the source,
allowing three-dimensional tracking of a point source, which
is important for PEPT algorithms. Additionally, by choosing
a simple geometry and achieving a calibration with the GATE
model, it is expected that when the system is scaled up for
future experiments the GATE model will remain accurate.
The LoRs collected from these experiments are processed
according to the NEMA protocol and in all cases the centre
of the FOV is defined as 0, 0, 0 mm.

1) SPATIAL RESOLUTION
The spatial resolution of the detector is defined as the full-
width half-maximum (FWHM) of the point-spread-function
(PSF) for a small point-like source in the detector’s FOV. The
source used for this experiment is a 1 mm sphere of anionic
exchange resin, volumetrically activated with fluorine-18 in a
solution of water produced by the University of Birmingham
MC40 cyclotron [27]. For imaging, the source was placed
in a small plastic sample holder and fixed to a block of
polystyrene foam at six locations ranging from the centre of
the FOV and locations at 1/4th of the FOV. These locations
and the source activities at the time of the experiment are
listed in Table 1. The source and the LaMA geometry are
shown in Fig. 2.

TABLE 1. Spatial resolution test parameters.

To produce projection images, the LoRs collected from
the experiment were first voxelised into a three-dimensional
array with a 1 mm voxel size using the voxelisation method
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FIGURE 2. The spatial resolution tests are conducted using a 1 mm
diameter resin bead placed inside a plastic sample holder and taped to a
piece of polystyrene foam.

implemented in the pept Python package [28]. Two-
dimensional slices from this array were extracted which con-
tain the voxel with the maximum number of LoR crossings.
From these slices. A one-dimensional profile was drawn
through the maximum voxel and the FWHM was extracted
from each position. Following the NEMA protocol, the spa-
tial resolution is calculated using (1-4).

ResTransCenter = (Resyx=0,y=0,z=0 + Resxx=0,y=0,z=0

+ Resyx=1/4,y=0,z=0 + Resxx=1/4,y=0,z=0)/4 (1)

ResTrans1/4 = (Resyx=0,y=1/4,z=1/4 + Resxx=0,y=1/4,z=1/4

+ Resyx=0,y=1/4,z=0 + Resxx=0,y=1/4,z=0)/4 (2)

ResAxialCenter = (Reszx=0,y=0,z=0 + Reszx=1/4,y=0,z=0)/2 (3)

ResAxial1/4 = (Reszx=0,y=0,z=1/4 + Reszx=1/4,y=0,z=1/4)/2 (4)

2) COUNT-RATE RESPONSE
The count-rate experiment measures the LoR count-rate of
the detector in response to a central source which is imaged
over several half-lives. The total, true, and scattered plus
random LoRs count-rates are extracted using the NEMA pro-
tocol and recorded at regular intervals as a function of source
activity. The scattered plus random count-rate is termed the
corrupted count-rate since the LoRs do not pass through the
positron annihilation point due to scattering or originating
from separate annihilation events and thus are treated as noise
in a PEPT experiment.

The phantom is a hollow, high-density polyethylene cylin-
der measuring 120 mm in height and 50 mm in diame-
ter with an inner cavity measuring 100 mm in height by
12 mm in diameter. This cavity is filled with a well-mixed

solution of fluorine-18 and water. Initially, the activity of
the phantom was approximately 80 MBq. This activity was
chosen such that the expected count-rate will exceed the
maximum rate at which LoRs can be recorded by the detector,
then, as the source decays, the count-rate response curves
can be developed. The phantom was imaged over several
half-lives until the activity reached near that of the back-
ground. The phantom and detector geometry are shown
in Fig. 3.

FIGURE 3. (a) The count-rate experiment is conducted with the
high-density polyethylene phantom placed in the centre of FOV and
imaged over several half-lives. (b) A GATE model of the same experiment
is conducted.

Similarly to Section II-A1, projection images are produced
by voxelising LoRs into a three-dimensional array with a
1 mm voxel size. Two-dimensional slices are extracted in
the plane parallel to the detector face (XY plane) which
contains the maximum voxel. The slice is then transformed
into a one-dimensional profile by summing the voxels in
the Y-axis which are along the cylinder’s axis. The average
source activity, Ā, for each projection image is determined
by (5) which calculates the average activity by using the
initial activity, A0, the initial and final time of the acquisition,
t0 and tf , as well as the decay constant for fluorine-18, λ. The
true counts are considered to be the LoRs ± 20 mm from the
peak of the profile from which the background on either side
of the 40 mm window is averaged and subtracted from the
counts in the window. The remaining counts outside the win-
dow and including the background are considered corrupted
counts.

Ā =
A0

tf − t0

∫ tf

t0
exp (−λt) dt (5)

B. GATE MODEL
The design of a GATE model for the LaMA presents several
challenges since it must be easily customised to rapidly pro-
totype new geometries, only allow specific coincidences to be
formed between boxes connected to a single coincidence pro-
cessor, and be able to emulate the noise, data buffer, and spa-
tial blurring inherent in the system. Achieving these goals is
accomplished using the tools available in the GATE software
in addition to custom data post-processing. The geometry,
digitizer, and post-processing are described in the following
sections. A downloadable version of the LaMA GATE model
and post-processing software is provided through a GitHub
repository: LaMA Model.
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1) GEOMETRY MODEL
Since any LaMA geometry is built using boxes, to build a
model of the LaMA, only a single box needs to be described
which can later be copied, translated, and rotated to any posi-
tion and orientation using GATE’s generic repeater function.
The dimensions for each box are found in Section I-A and
these are replicated in GATE. Material definitions for BGO,
aluminium frame, and glass light guide are already included
in the GATE materials database and definitions for the PMTs
and electronics are added. Importantly, the four ECAT951
block detectors are included in each box and the 8 × 8 BGO
crystal array in each block is defined as the ‘Sensitive Detec-
tor’ (SD) through which GATE records the interactions of
particles. The model of a single box is shown in Fig. 4 from
various viewpoints. The order in which the repeated boxes are
listed determines their volume number, which will become
important later when defining which pairs of boxes are valid
for recording coincidences.

FIGURE 4. A model of a box for the LaMA consisting of four ECAT951
block detectors each with an 8 × 8 array of BGO crystals. The box is
shown from various viewpoints and has major components labelled.

2) DIGITIZER MODEL
While a geometric model ensures the interactions of the
source’s radiation field with the detector are accurately
recorded, the system’s pulse-processing chain must also be
properlymodelled in order to emulate the detector’s response.
In GATE, implementing a linear pulse-processing chain to
particle interactions is the role of the digitizer. The digitizer
is a series of steps and filters which transform the observable
information (time, energy, position) of a particle interaction
with the SD into a form similar or identical to the real detector
output [29]. This includes grouping interactions, flow-logic,
and data-loss to mimic the real behaviour of the imaging
system [30]. The digitizer for the LaMA is shown in Fig. 5.
For the LaMA, we apply a typical digitizer model for

a PET system, but also implement a post-processing stage
to implement aspects of the detector not directly possible
through GATE [19]. This is needed to force the detector to
only record coincidences between pairs of boxes which are
associated with each other in the real coincidence processor,
implement a random spatial-blurring of LoRs to match the
experimentally observed spatial resolution, and implement a
bandwidth limitation to cap the rate at which LoRs are written
to file. The post-processing steps for the LaMAGATEmodel

digitizer are the final three steps before the final simulated
detector response is produced, as shown in Fig. 5.

FIGURE 5. The pulse-processing digitizer of the LaMA GATE model.

C. DIGITIZER OPTIMISATION
Even if every detail of the LaMA were known, there are
differences between simulation and experiment which require
aspects of the digitizer to be calibrated [10], [31]. While this
could be achieved through manual calibration, for this we
work we use a recently developed method which applies an
evolutionary algorithm to achieve a calibration to experimen-
tal performance characteristics autonomously [15].

Six stages of the digitizer are chosen to be calibrated
because of the effect they have on replicating the count-
rate response. These are the noise frequency, pile-up time,
time resolution, lower-level energy discriminator, upper-level
energy discriminator, and the non-paralysable singles dead-
time. The noise frequency is the rate at which random events
are generated simply by having the detectors running and is a
combination of the background activity and electronic noise.
The pile-up time is the time after an event is detected when
other events in close succession can be added to the signal.
The time resolution is the probability of precision by which
two events can be distinguished in time, as defined by an
FWHM. The lower and upper energy discriminators are the
thresholds between which an event can trigger the dead-time
and be recorded. The singles dead-time is a non-paralysable
dead-time model, described by (6) which limits the rate of
recording single events [32].

λout

λin
=

1
(1 + λinτ )

(6)

In order to use an evolutionary algorithm to calibrate a
GATE model, there must a metric through which the fitness
of candidate solutions to the parameters of the digitizer can
be assessed. This is achieved through a cost function, shown
in (7), which is the product of the percent differences between
the experiment and simulation’s total, true, and corrupted
count-rate response over a range of source activities, calcu-
lated using (8-10). Using this metric reduces the agreement
between the experiment and simulation down to a single value
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which can be optimised through minimisation of (7).

ε = εTotεTrueεCorrupt (7)

εTot =

∑
|(RTotexp − RTotsim )/RTotexp | (8)

εTrue =

∑
|(RTrueexp − RTruesim )/RTrueexp | (9)

εCorrupt =

∑
|(RCorruptexp − RCorruptsim )/RCorruptexp | (10)

Parameter combinations are generated following a multi-
variate normal distribution with the initial uncertainty defined
as the range between the upper and lower bounds of the
solution space for each parameter. To stop the optimisation,
the user must provide either the number of generations, called
epochs, of simulations desired or provide a target uncertainty
in the calibrated parameters. In this optimisation, we used
100 epochs with 100 parameter value combinations per epoch
as the terminating criteria because this provides greater than
10 times the factorial of the number of free-parameters in the
optimisation, sufficiently constraining the problem.

Each combination is simulated over 10 different activities,
ranging from 2 MBq to 80 MBq, until 5 million LoRs are
recorded at each activity. This number of LoRs provides
sufficient counts such that an accurate measurement of each
respective count-rate can be extracted from the projection
images. The bounds of the parameters and their initial guesses
are provided in Table 2. The optimisation is conducted on
the University of Birmingham’s high-performance comput-
ing system, BlueBEAR, on Icelake cores with 16GB ofmem-
ory each. After the optimisation is finished, the calibrated
parameters are extracted and a new set of simulations are
conducted with 20 activities over the same activity range
until 30 million LoRs are recorded, reducing statistical error
even further. These simulations are presented and compared
in Section III.

TABLE 2. Digitizer parameter bounds and initial guesses for calibration.

III. RESULTS AND DISCUSSION
In this section, we present the results of the characterisation
experiments as well as the results of the digitizer calibra-
tion. For spatial resolution, six tracer positions were imaged
over several minutes then the FWHM of the 1-dimensional
PSF is extracted. The FWHM at these positions are used
to compute the transaxial and axial spatial resolutions in
the centre of the FOV and at 1/4th of the FOV. Next, the
experiments are reproduced in simulation and the crystal blur-
ring is adjusted until the best match between the experiment
and simulation was achieved. The crystal blurring that best
agrees with the experiment 2 times the crystal dimensions

FIGURE 6. The spatial blurring is calibrated by finding the crystal blurring
that minimises the absolute percent error.

TABLE 3. Results and comparisons of the spatial resolution tests for the
experiment and simulation.

(6.25 mm by 6.75 mm), as evidenced in Fig. 6. The exper-
imental and simulated results are presented in Table 3 and
compared through their respective percent differences.

Following the spatial resolution characterisation and crys-
tal blurring calibration, the count-rate response experiments
were analysed to be used as a comparison for the ACCES
optimisation. The optimisation takes place over 100 epochs
with 100 parameter value combinations tried every epoch.
This results in 10,000 cost function evaluations which took
approximately three days to complete running the BlueBEAR
high-performance computing system. At the end of the opti-
misation, the finalmean parameter values were extracted. The
value for these parameters and their uncertainty are provided
in Table 4. Additionally, the history of these parameters
during the optimisation (uncertainties and mean values) is
presented in Fig. 7, demonstrating that before the end of the
optimisation, each parameter reaches a stable value, meaning
that the parameters have been calibrated.

All parameters produced reasonable calibrations within the
upper and lower bounds given to the optimiser. Interestingly,
the optimised value for the time resolution falls within the
12 ns ± 2 ns measured in a previous characterisation of
the LaMA [31]. This provides additional evidence that the
calibrated parameters correspond to physical reality and are
global solutions, not simply local solutions.

The parameter with the highest uncertainty is the upper
level energy discriminator. We believe this is due to the
relatively small impact of this parameter on the calibration.
To illustrate this, take for example the the singles dead-time
which has the lowest uncertainty. The singles dead time has
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a strong pressure to be calibrated because this is applied to
nearly all events which are detected. meaning small changes
in the calibrated values will causes large differences in the
simulated count-rate response. On the other hand, the upper
energy discriminator acts on a much smaller set of events
and can only be applied to events that have piled up on
one another. Since the upper energy discriminator is set
to 1990 keV, this means that at least four 511 keV events must
be grouped together and this happens only a limited number
of times in a simulation. As a result, there is not a strong
pressure to calibrate this value. While this results in a higher
uncertainty, because of the lower effect of this parameter on
the overall response of the model this value is considered
adequately calibrated.

TABLE 4. Digitizer calibration results and uncertainty.

When the new set of simulations is conducted with the
calibrated digitizer, the results match the experiment to a
mean absolute difference of 3.41% over all three count-rates

FIGURE 7. Subplots showing the mean values of calibrated parameters
with the error bars as the standard deviation of solutions.

with the total, true, and corrupted count-rates being 2.31%,
2.18%, and 5.72%, respectively. The experimental and sim-
ulated count-rate response is shown in Fig. 8. To quantify
the calibration further, it is also important to observe how the
fraction of true and corrupted counts behave as a function of
source activity. These results are presented in Fig. 9, showing
that their behaviour is approximately the same overall activi-
ties with the true and corrupted count fractions reconstructed
to 1.91% and 3.72% error, respectively.

FIGURE 8. Results of the count-rate experiment and comparison of the
ACCES calibrated GATE model.

FIGURE 9. Results of the count-rate experiment in terms of the true and
corrupt count fractions and comparison with the ACCES calibrated GATE
model.

In summary, the GATE model of the LaMA has been
characterised by experiments testing the spatial resolution
and count-rate response and the digitizer pulse-pulse process-
ing model has been calibrated using an evolutionary algo-
rithm. In addition to calibrating the amount of crystal spatial
blurring, six free-parameters of the pulse-processing digi-
tizer model were calibrated using evolutionary simulation,
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ultimately producing simulated results which match the
observed real behaviour of the detector system. The
ACCES software was used to perform this optimisation
autonomously, needing only the number of solutions to try
for each epoch, the bounds of the solution space for each
parameter, and a terminating criterion.

IV. CONCLUSION
In this work, we have introduced a Monte Carlo model
of the Positron Imaging Centre’s LaMA and validated the
model against experimental measurements. This model will
bolster the modelling capabilities of the Positron Imaging
Centre, complementing the existing Monte Carlo model of
the ADAC Forte. A model of LaMA is particularly useful
because the camera is typically configured into new geome-
tries for every experiment in order to capture the relevant
system behaviour. Prior to this model, it was not possible to
quantitatively estimate the spatial resolution and count-rate
response because these characteristics depend on a com-
plex relationship between source activity, detector geometry,
and gamma-ray scattering. Using this model, not only can
the spatial resolution and count rate response be estimated,
but moreover the tracer activity which maximises the true
count-rate and the detector geometry which maximises the
camera sensitivity for a given experiment can be identified.
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