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ABSTRACT Recent innovations in wearable devices have expanded the usage opportunities of single-
channel electrocardiography (ECG) recordings in a daily life environment and enabled a variety of indirect
daily activity monitoring based on heart rate variability (HRV). In general, wearable ECGs rarely undergo
visual inspection by medical experts and therefore may contain noise or artifacts. Although noise/artifact-
induced changes in ECG waveforms are known to cause misdetection of the QRS complex (i.e., the most
distinguishable ECG components comprised ofQwave, Rwave, and Swave), its complete suppressionmight
be technically impossible. Since misdetection occurs in the QRS complex unit, we propose reframing the
traditional HRV analysis flow by subdividing the R-R interval (RRI) editing into four steps in accordance
with the processing detail (i.e., identification and editing) and its target unit (i.e., QRS complex or RRI).
In addition, as a dubious QRS complex identification method for practical use, we utilize the amplitude at
the detected point assuming the use of a single-channel wearable ECGwithout a reference. Initial evaluations
using pseudo/real ECG datasets including ECGs with noise/artifacts show that the proposed processing/unit-
based subdivision is theoretically effective for improving HRV calculation accuracy, and that the dubious
QRS complex identification method for practical use also maintains this effect. Our study starting from
practical HRV analysis using single-channel wearable ECG devices encourages reexamining each step in
HRV analysis through the interdisciplinary research of clinical medicine and engineering/informatics that
reveals the relationship of every two adjacent steps from the perspective of theory and practice.

INDEX TERMS Electrocardiography (ECG), heart rate variability (HRV), R-R interval (RRI) editing,
single-channel/single-lead, wearable device.

I. INTRODUCTION
Heart rate variability (HRV) quantifies the fluctuations within
the sequence of inter-beat intervals [1], [2]. From its incep-
tion, HRV has been recognized as one of the most promising
quantitative biomarkers of autonomic nervous activity [1],
and several recent studies have clarified the relationship
betweenHRV and the target status (e.g., sleep apnea [3], sleep
stages [4], [5], or driver drowsiness [6]). HRV is continuing to
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gain attention as a biomarker that enables a variety of indirect
daily activity monitoring systems based on the estimated
status.

HRV can easily be obtained from electrocardiography
(ECG). In general, it is calculated as the fluctuation of the R-R
interval (RRI), which is the interval between two adjacent
R waves (Fig. 1); this is because the R wave (or the QRS
complex comprised of Q wave, R wave, and S wave) is one
of the most distinguishable and robust ECG components cor-
responding to one heartbeat. Technological innovations from
the 2010s onward have made ECG recording possible for
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FIGURE 1. ECG components and R-R interval (RRI).

several hundred USD or even around USD 100 by focusing
on a single-channel ECG recording [7], [8], [9], [10], [11],
[12], [13]. As single-channel wearable ECG devices enabled
unaided setup by non-experts while posing minimal disrup-
tion to the user’s daily life, they have also expanded the usage
opportunities of ECG in the daily life environment by reduc-
ing the cost of daily monitoring, including operation manage-
ment. Thanks to these characteristics, several participatory
social experiments have been conducted using commercial
single-channel wearable ECG devices [12], [13]. Since the
technological advances of these easy-to-use single-channel
wearable ECG devices have continued to the present day,
we expect much of the basic research focused on the relation-
ship betweenHRV and the target status (e.g., [3], [4], [5], [6])
to move on to participatory social implementation in the
near future. The challenge has now become how to calculate
HRV as appropriately as possible from single-channel ECGs
recorded in the daily life environment without any reference
ECGs.

In theory, HRV should be calculated from the normal-
to-normal (NN) intervals comprising two adjacent normal
QRS complexes stemming from pure sinus node depolar-
ization [1]. However, noise and artifacts in the recorded
ECG degrade the accuracy of the R wave (or QRS complex)
detection by changing the apparent morphology of the ECG
waveform including the R wave (or QRS complex) [14],
finally resulting in HRV miscalculation. Although accurate
ECG recording would be the logical solution, it is realistically
impossible for single-channel wearable ECGs, especially for
non-clinical healthcare services that are typically recorded
during daily life activities. In the first place, it is easy for the
ECGs to be contaminated with noise/artifacts due to external
factors such as body movements, respiration, and perspira-
tion [15], [16]. In addition, theoretically, the morphology of
an ECG waveform can be changed depending on the location
of the electrode itself (i.e., ECG recording lead; see detail in
Appendix. A) [17], [18], which can be influenced by how the
device is worn along with the person’s physique. Moreover,
when using single-channel shirt-type wearable ECG devices,
the ECGs are also affected by the inherent characteristics of
clothing: for example, a shirt including embedded electrodes
will deform along with body movement, which may cause

displacements between the electrodes and the skin surface
and thereby result in impedance fluctuations [15] that can
be observed as noise/artifacts. Since it is not realistic to ask
users to manually keep the same condition all the time or to
ask well-trained medical experts to visually inspect all ECGs,
it has become a challenge to calculate HRV as appropriately
as possible in the data processing of HRV analysis, not in
the ECG recording, while suppressing the effect of noise,
artifacts, and morphological changes in the ECG waveform.

As the first step of HRV analysis, QRS complex detection
has been a major research topic for the past several
decades [19], [20], [21], [22], [23], [24], [25]. However,
complete suppression of misdetection has not yet been
accomplished and might be technically impossible: since
the frequency characteristics of artifacts and the real QRS
complex are so similar, one might be mistakenly detected
as the other [24]. As the second step of HRV analysis,
RRI editing has been another major research topic [2],
[16], [26], [27], [28], [29], [30], [31], [32]. Although many
approaches have been proposed, the majority of them can-
not be applied to our assumed situation. Historically, RRI
editing has focused on the misdetection of physiologically
inadequate beats (e.g., arrhythmic beats) from ‘‘clean’’ ECG
without any noise/artifacts, so its dubious RRI identification
step generally uses duration information. As such, when the
duration is physiologically reasonable, these methods might
overlook an RRI including one or two misdetected QRS
complexes, which are derived from the processing failure
of a QRS complex detection algorithm. To avoid this issue,
another conventional RRI editing method [28] considers the
morphological similitude of the QRS complex in addition
to the duration of the RRI. However, this method is not
sufficient for our assumed scenario either: the morphology
of an ECG waveform can change depending on the ECG
recording lead as well as noise/artifacts, so the dubious RRI
identification method for our situation cannot postulate a
similar morphology in the QRS complex. For a more accurate
HRV calculation using single-channel wearable ECG devices
under the daily life environment, we need to develop a new
RRI editing method for misdetected QRS complexes while
utilizing information other than themorphological similitude.

In this paper, we propose reframing the traditional HRV
analysis flow [1] by subdividing the RRI editing into four
steps in accordance with the processing detail (i.e., identi-
fication and editing) and its target unit (i.e., QRS complex
or RRI): the dubious QRS complex identification step, the
dubious QRS complex editing step, the dubious RRI iden-
tification step, and the dubious RRI editing step. The first
combination targeting the dubious QRS complexes extracts
only the sequence of possibly accurately detected points,
and the second combination targeting the dubious RRIs
then extracts only the sequence of possible NN intervals.
In addition, as a dubious QRS complex identification method
for practical use, we utilize the amplitude at each detected
point assuming the use of a single-channel wearable ECG
without a reference. Since misdetection occurs mainly with
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ECGs containing noise/artifacts, our method detects dubious
QRS complexes by considering the signal quality of ECG
at the detected point as an indirect indicator of misdetection
possibility.

The original concept of identifying misdetected QRS com-
plexes by QRS complex unit for improving RRI editing was
proposed in our previous work [32], [33], where we excluded
dubious RRIs comprising misdetected QRS complexes by
RRI unit. In this study, we go one step further by implement-
ing the processing/unit-based subdivision in consideration
of the QRS complex misdetection-induced cascading effects
over the HRV analysis processing flow. The first contribution
of this study is to clarify the importance of processing/unit-
based subdivision in the HRV analysis processing flow
(Fig. 9) and confirm its validity through two experiments: one
using pseudo ECG data created from open data and the other
using real ECG data recorded by a commercial single-channel
shirt-type wearable ECG device. The second contribution is
to clarify the ideal step structure of the HRV analysis flow
(Fig. 21) in consideration of the validation experiment results
with its performance at the theoretical/practical level, inter-
step relationships, and the original definition of each HRV
feature calculation.

II. POTENTIAL ISSUES INHERENT IN TRADITIONAL HRV
ANALYSIS FLOW UNDER DAILY LIFE ENVIRONMENT
Since the traditional HRV analysis flow comprises several
steps [1], we need to consider both tacit understanding in
each step and the inter-step relationships between every two
adjacent steps when proposing an RRI editing method, which
is an intermediate step of HRV analysis. In addition, potential
issues to address should be clarified from the perspective of
both theory and practice. Most of the conventional studies
from the engineering perspective seem to unintentionally
neglect or overlook the medical prerequisites for each step
in HRV analysis, especially when these prerequisites are
regarded as tacit understanding. To make matters worse, most
conventional studies targeting HRV analysis, even includ-
ing review papers, may lack the whole picture; in general,
they tend to focus on the step of interest alone or at most
the inter-step relationships between the two adjacent steps
including the step of interest. Thismeans that researchersmay
potentially overlook issues if they already possess the tacit
understanding required. In fact, on the basis of the source
codes, we confirmed that several open-source libraries for
HRV analysis at present might not be able to calculate HRV
features accurately in some cases because they seem to over-
look both tacit understanding and inter-step relationships.
In other words, researchers using these open-source libraries
may unintentionally make a mistake in HRV analysis.

In this section, we highlight potential issues induced by
overlooking tacit understanding and inter-step relationships
to clarify the potential issues stemming from the combina-
tion of the traditional HRV analysis flow and ECGs with
noise/artifacts. We first present an overview of the traditional
HRV analysis flow [1] and then discuss the processing details

FIGURE 2. Reframed traditional heart rate variability (HRV) analysis flow
for clarifying potential issues inherent in traditional HRV analysis flow.

step-by-step from start to end. To highlight potentially over-
looked issues in each step under a daily life environment,
our discussion includes the perspectives of both theory and
practice. Finally, to identify which issues to address, we
summarize the recommended policies for each step along
with potentially remaining issues.

A. OVERVIEW OF TRADITIONAL HRV ANALYSIS FLOW
To clarify potential issues inherent in the traditional HRV
analysis flow, we reframe the traditional HRV analysis flow
defined in the guidelines [1] as the following four steps
(Fig. 2): (i) QRS complex detection, (ii) dubious RRI iden-
tification (defined as artefact identification in the traditional
flow), (iii) dubious RRI editing (the step comprisingRRI edit-
ing and RRI rejection in the traditional flow), and (iv) HRV
feature calculation. Although several conventional methods
focusing on RRI editing feature one integrated step compris-
ing what we call the dubious RRI identification step and
dubious RRI editing step, we explain their characteristics
separately here, as we feel the former is more important than
the latter. Specifically, if we cannot identify dubious RRIs at
all, the dubious RRI editing step might be useless regardless
of the RRI editing method used.

Since HRV features should be calculated from the NN
intervals [1], we define the aims of each step as follows.

(i) QRS complex detection: detects as many accurate QRS
complexes as possible

(ii) Dubious RRI identification: identifies as many dubious
RRIs as possible to exclude non-NN intervals in the
dubious RRI editing step
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(iii) Dubious RRI editing: edits the sequence of dubious
RRIs to obtain the sequence of NN intervals

(iv) HRV feature calculation: calculates HRV features from
the sequence of NN intervals

In this paper, we use the term non-NN interval to mean an
RRI including one or two non-normal QRS complexes and
the term dubious RRI to mean an RRI suspected of being a
non-NN interval.

Issues in HRV analysis inevitably pile up along with the
progression of steps. Theoretically, the traditional ECG pro-
cessing flow [1] assumes only one-way processing, which
means the later steps suffer from all the remaining issues of
the preceding steps. This makes it difficult for the following
steps to recover from the issues that should ideally have been
solved in the preceding steps.

For a practical situation, we need to keep in mind that the
QRS complex detection step is firstly influenced by the qual-
ity of the recorded ECGs. If we cannot completely suppress
noise/artifacts at the level of the ECG signal, the remaining
noise/artifacts will hamper QRS complex detection and cause
detection errors [14]. Since the RRI used in HRV analysis is
generally calculated as the time interval between two adjacent
points detected as Rwaves (or QRS complexes), the influence
of detection errors is not limited to the QRS complex detec-
tion step but might spread to the subsequent steps. Potential
issues raised inHRV analysis under the daily life environment
should therefore be unraveled in consideration of the theoreti-
cal role, processing detail, step-specific issues, and cascading
effects on the following steps.

B. SUMMARY OF PROCESSING DETAILS IN EACH STEP
AND POTENTIAL ISSUES
To clarify which issues to address, this subsection briefly
summarizes the processing details in each step while high-
lighting tacit understandings together with the potential
issues raised in the daily life environment.

1) QRS COMPLEX DETECTION
Normal ECG waveforms corresponding to at least one heart-
beat comprise a P wave, the QRS complex (comprised of a
Q wave, R wave, and S wave), an ST segment, and a T wave
(Fig. 1) [17]. Among these, the QRS complex is the most
striking component [19]. For the purpose of calculating the
inter-beat interval, RRI is therefore generally used. In this
sense, the QRS complex detection step aims to detect as many
accurate QRS complexes (or just R waves) from the recorded
ECG as possible.

The general scheme for QRS complex detection is built
on a two-stage structure [19]: a preprocessing stage com-
prising linear/nonlinear filtering sub-steps for denoising or
feature extraction, and a decision stage comprising a peak
detection logic sub-step and a decision sub-step for select-
ing applicable QRS complex candidates alone. Because the
decision stage acts as an ‘‘output filter’’ of the preprocessing
stage, ideally, the preprocessing stage should line up all the

TABLE 1. Confusion matrix.

applicable QRS complex candidates while suppressing detec-
tion error. Towards this ultimate goal, various preprocess-
ing approaches have been developed, including those using
digital filters [20], [21], wavelet transform [22], [23], [24],
or convolutional neural networks (CNN) [25]. As for the
decision stage, the commonly used approach has been thresh-
old determination on amplitude regardless of the approach
applied in the preprocessing stage. Several recent studies
including [24] have utilized a determination rule other than
the threshold on amplitude.

To clarify cascading effects on the subsequent steps,
we would like to explicitly explain the errors induced in the
QRS complex detection step. In this paper, we define three
types of errors in consideration of the confusion matrix on
QRS complex detection (Table 1) [34], [35]: misrecognition,
detection artefact,1 and detection errors. Here, we use the
term ‘‘artefact’’ (the middle character of the word is ‘‘e’’)
to indicate the errors that occurred in the QRS complex
detection step, whereas the term ‘‘artifact’’ (the middle char-
acter of the word is ‘‘i’’) to indicate the signal quality of
the recorded ECG (see III-B for detail). Misrecognition and
detection artefact correspond to the ‘‘true positive (TP)’’
class, where an algorithm correctly detects the QRS complex,
and detection error corresponds to either the ‘‘false positive
(FP)’’ or ‘‘false negative (FN)’’ class, where an algorithm
cannot correctly detect the QRS complex. FP means the
situation where an algorithm detects an irrelevant point as
a QRS complex (i.e., misdetected QRS complex), and FN
means the situation where an algorithm overlooks a QRS
complex and it remains undetected (i.e., overlooked QRS
complex). The ‘‘true negative (TN)’’ class does not exist from
the perspective of QRS complex detection; the algorithm
only targets ‘‘positive’’ detection (i.e., QRS complex) without
‘‘negative’’ detection and there are no ‘‘negative’’ labels in
the reference either (i.e., all reference QRS complexes are
defined as ‘‘positive’’).

The detailed definition of misrecognition, detection arte-
fact, and detection errors are as follows. We define mis-
recognition as the situation where an algorithm detects a
physiologically non-normal beat (i.e., an arrhythmic beat) as
TP. The main cause of this error is improperly defined labels.
For example, the label of a QRS complex during supraven-
tricular arrhythmias might not necessarily be ‘‘non-normal’’

1In recognition of the work by Malik et. al. [36], we use the word
‘‘artefact’’ to indicate the errors that occurred in the QRS complex detection
step. What Malik et. al. call a ‘‘recognition artefact’’ is the combination of
what we call a ‘‘detection artefact’’ and ‘‘detection error’’ in this paper.
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but rather ‘‘normal’’ because the theoretical shape of the
QRS complex is quite similar to or even the same as that
of a normal beat. Complete suppression of misrecognition
requires both appropriate labelling and more accurate han-
dling of arrhythmias, which can be accomplished by utilizing
the dubious RRI identification step in conjunction with the
dubious RRI editing step.

In contrast to misrecognition, detection artefact and detec-
tion errors are simple technical errors caused by the algo-
rithms. We define detection artefact as a slight time gap
between the detected point and the exact observation time of
the R peak. In practical terms, a detection artefact is consid-
ered to be less than the duration of a normal QRS complex
in a healthy participant (i.e., 0.10 s) [17]. As error compen-
sation for detection artefact, we may additionally implement
an extra post-processing stage for precisely determining the
temporal location of the assumed QRS candidate after the
decision stage [19], [37].

By defining the detection artefact as above, we can regard
the detected point as a detection error whose time gap
from its corresponding QRS complex label exceeds 0.10 s.
In contrast to detection artefacts, we cannot completely sup-
press detection errors: considering the two-stage structure
of QRS complex detection, both FNs and FPs might be
caused by a mismatch of feature extraction in the prepro-
cessing stage as well as by inappropriate selection in the
decision stage. Technically speaking, suppression of noise
can be accomplished by improving the performance of the
preprocessing stage including filtering because its frequency
characteristics might be quite different from the QRS com-
plex. However, it is nearly impossible to completely sup-
press the influence of artifacts in both the preprocessing
and decision stages because their frequency characteristics
and morphology are quite similar to those of the QRS
complex. For this reason, detection errors due to artifacts
would have to be dealt with in the subsequent steps of HRV
analysis.

For appropriate HRV analysis, the steps subsequent to
the QRS complex detection step should be able to handle
detection errors (i.e., both FNs and FPs) that may be recorded
in ECG with artifacts regardless of the algorithm. This is
crucial because the RRI sequence including FNs or FPs does
not appropriately reflect actual heart activity.

2) DUBIOUS RRI IDENTIFICATION
Since HRV features should be calculated from the NN inter-
vals in principle [1], the aim of the dubious RRI identification
step is to identify dubious RRIs.

Dubious RRIs are classified into two types on the basis
of their origin: physiological disturbances in the heart (e.g.,
the RRI during arrhythmia) and technological disturbances
in the HRV analysis (e.g., an RRI comprising one or two
detection errors). Although the origins are different, both
disturbances may cause changes to the ECG waveform or
inter-beat interval.

When ECG devices are capable of recording clean ECG
without any noise/artifacts, the target of dubious RRI iden-
tification is only the physiological disturbances in the heart,
namely, the RRIs during arrhythmia. As several arrhythmias
represented as a premature atrial contraction (PAC) or pre-
mature ventricular contraction (PVC) can commonly occur in
healthy individuals [38], dubious RRI identification typically
refers to the RRI duration [26], [27]. However, consider-
ing the practical situation in a daily life environment, it is
nearly impossible to record clean ECGs completely free from
noise/artifacts. The dubious RRI identification methods used
in a practical situation should therefore target the dubious
RRIs coming from both physiological disturbances in the
heart (e.g., arrhythmic beats) and technological disturbances
in HRV analysis (e.g., dubious RRI comprising FNs or FPs).

Technically, we can divert the conventional duration-based
dubious RRI identification method just as it is to dubious
RRI comprising FNs alone. Specifically, the duration of a
dubious RRI comprising FNs can be longer than a real RRI
(i.e., prolonged RRI), and its value is thus the sum of two
or more real RRIs. However, we cannot divert these methods
to dubious RRIs comprising FPs. Since the duration of these
RRIs is not necessarily changed nor is their variability consis-
tent, duration-based dubious RRI identification methods may
overlook an FP by regarding it as ‘‘normal’’ when its duration
seems to be physiologically reasonable. For these reasons,
we cannot simply declare that prolonged RRIs should be the
dubious RRIs comprising FNs under the practical situation,
which means that we should subdivide the dubious RRI iden-
tification in accordance with its editing target unit (i.e., QRS
complex or RRI).

Liu et al. proposed an alternative dubious RRI identifica-
tion method that considers the morphological similitude of
the QRS complex in addition to the duration of the RRI,
and confirmed its suitability for the four types of dubious
RRIs by QRS complex unit (i.e., FN, FP, PAC, or PVC) [28].
When we consider ECGs with noise/artifacts, however, uti-
lizing the morphological similitude of QRS complexes is
still not sufficient to identify dubious RRIs comprising FPs.
In ECG with noise, we can often observe apparent changes in
the QRS complex due to the superposition principle, which
makes it seems as though the QRS complex was recorded
from different ECG recording leads, even if the actual ECG
recording lead is unchanged (described in detail in III-B).
Because this method may misidentify a QRS complex as an
FP when the ECG waveform is apparently different from the
others due to the superposition principle, we need to develop
a new dubious RRI identification method for dubious RRIs
comprising FPs.

3) DUBIOUS RRI EDITING
Using the results of the dubious RRI identification step as
a basis, the dubious RRI editing step aims to extract the NN
intervals alone by editing dubious RRIs that do not come from
pure sinus node depolarization.
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Regardless of the identification unit (QRS complex or RRI)
in the dubious RRI identification step, conventional dubious
RRI editing methods try to edit dubious RRIs by RRI unit
to obtain the applicable RRI sequence. These methods can
be classified into RRI deletion [2], [29], replacement [2], [4],
[26], [27], [29], [30], and RRI interpolation [2], [16], [31],
[32]. Note that RRI deletion here includes RRI rejection in
the traditional HRV flow [1], namely, rejecting the impulse
in the RRI sequence is theoretically equivalent to deleting the
RRIs that make the ‘‘impulse.’’ These RRI editing approaches
are non-exclusive and can be used in combination with each
other.

Before moving on to the potential issues raised in this
step, let us briefly revisit the definition of RRI. Although
this definition can be traditionally regarded as a tacit under-
standing, it seems to be unintentionally neglected in most
studies targeting RRI editing. In principle, RRI is calculated
as the time interval between two adjacent points detected as
R waves (or QRS complexes) in such a way that the ideal RRI
sequence satisfies

RRIn+1 (x) = RRIn (x) + RRIn (y) , (1)

where n is a natural number and n ≥2. RRIn(x) stands for the
observation time of the n-th RRI, whereas RRIn(y) stands for
the value of the n-th RRI. In actual use, the first RRI is calcu-
lated from the second and first detected points so that RRI1(x)
becomes the observation time of the second detected point
while RRI1(y) becomes an absolute value of the difference in
the observation time between the first and second detected
points. In an ideal RRI sequence, from start to finish, every
two RRI elements should satisfy the relationship expressed
as (1) without any missing value.

Considering this RRI definition and the aforementioned
RRI editing methods, there are potentially two types of
incorrect RRI editing consequences corresponding to their
mathematical approach: the deletion approach (i.e., RRI dele-
tion) may cause missing values (hereafter, ‘‘missing RRI’’),
whereas the insertion approach (i.e., RRI interpolation) may
cause a value difference between the plausible RRI and the
theoretically insertable RRI (hereafter, ‘‘type-A RRI gap’’).
Namely, type-A RRI gap means the situation in which a
plausible RRI obtained from an arbitrary method cannot be
ensured (1). Mathematically, the RRI replacement approach
may combine deletion and insertion, so the RRI replacement
would potentially cause both of these two.

Both the missing RRI and the type-A RRI gap are
undoubtedly inappropriate at the level of the RRI sequence.
Although missing RRI would ensure the original RRI def-
inition expressed as (1), there would be a value missing as
its name stands for. Meanwhile, the type-A RRI gap may
even collapse the original RRI definition expressed as (1).
We should also point out that avoiding the type-A RRI gap
is not necessarily easy. A simple resolution of the type-
A RRI gap by value compensation using (1) often leads
to another issue, namely, the value difference between the
originally obtained plausible RRI and the actually inserted

RRI (hereafter, ‘‘type-B RRI gap’’). In other words, we are
forced to encounter either a type-A or type-B RRI gap unless
the three values (plausible RRI, theoretically insertable RRI,
and actually inserted RRI) are coincident with each other.

To make matters worse, the missing RRI, type-A RRI
gap, and type-B RRI gap may even decrease the accuracy
of the HRV features in consideration of the attention point
and calculation flow (described in detail in II-B4.). To come
up with a reasonable dubious RRI editing method for target
HRV features, we should therefore also take the HRV feature
calculation step into account.

4) HRV FEATURE CALCULATION
HRV features are one of the most promising quantitative
markers of autonomic activity [1], and a number of indices
have been proposed [1], [39], [40]. HRV features are roughly
divided into time domain HRV features (tHRVs) and fre-
quency domain HRV features (fHRVs), examples of which
are respectively shown in Tables 2 and 3.

The major tHRVs are divided into statistical measures [1]
and geometric measures [1], [39]. Statistical measures can
be further divided in accordance with their point of focus:
one type focuses on the characteristics of whole target NN
intervals using simple statistics (e.g., mean NN intervals
and SDNN), and the other on the characteristics of topical
NN intervals expressed by defined formulae (e.g., RMSSD,
SDSD, and pNN50). For calculating the latter statistical mea-
sures focusing on topical NN intervals, in general, we first
calculate the differences between every two adjacent NN
intervals and then apply defined formulae. Geometric mea-
sures, on the other hand, focus on the geometric and/or
graphic properties of the resulting pattern of NN intervals
(e.g., TINN, CVI, and CSI), so the point of focus will vary
depending on each feature.

As for fHRVs, they focus on the frequency characteris-
tics inherent in the tachogram of NN intervals that can be
measured as specific frequency components in their power
spectral density (PSD) [1]: low frequency (LF) compo-
nents (0.04–0.15 Hz) and high-frequency (HF) components
(0.15–0.40 Hz). We therefore need three preprocessing sub-
steps before fHRV calculation: data interpolation, data resam-
pling, and spectral analysis. Since RRIs are, in principle,
unequally spatial data derived from individual heartbeats, all
target RRIs should be equally spaced by data interpolation
and data resampling before spectral analysis is performed.

The accuracy of HRV features is influenced by both phys-
iological disturbances and technological disturbances. The
overlooking of ectopic beats is known to induce fHRV mis-
calculation due to the miscalculation of PSD [29]. Regard-
ing technological disturbances, both detection artefact and
detection errors may disrupt accurate tHRV calculation [36].
Since detection artefact can be corrected by extra post-
processing in the QRS complex detection step, we focus here
on appropriately dealing with detection errors (i.e., FPs and
FNs). In this context, as emerging issues under the practical
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TABLE 2. Examples of time domain HRV features.

TABLE 3. Examples of frequency domain HRV features.

situation, we should emphasize that even the missing RRI
or RRI gap induced in the dubious RRI editing step might
unintentionally influence the calculation of both tHRVs and
fHRVs. In contrast to the laboratory setting where these HRV
features are originally developed, it is basically impossible to
be completely free from all technical disturbances.

Regarding tHRVs, both missing RRI and RRI gaps may
decrease the accuracy depending on the situation. Although
simple deletion of dubious RRIs would be more effective
than doing nothing in theory, missing RRI might lead to
a miscalculation in the statistical tHRVs focusing on the
whole target NN intervals (e.g., mean NN intervals and
SDNN) due to the ‘‘presence bias’’ of the remaining RRIs.
This would be more problematic, especially when targeting
ECGs recorded during/after exercise using wearable ECG
devices. Considering physiological heart activity, heart rate
may increase/decrease during/after exercise. If we were to
delete lots of dubious RRIs (e.g., FNs and FPs induced by

noise/artifacts during exercise activity), it would ultimately
result in calculating inappropriate tHRVs from only a few
remaining RRIs reflecting ‘‘presence bias’’ rather than the
whole target RRIs (Fig. 3). Aside from this, geometric tHRVs
(e.g., CVI, and CSI) and statistical tHRVs focusing on every
two adjacent RRIs (e.g., RMSSD, SDSD, and pNN50) are
also influenced by missing RRIs depending on their observa-
tion time management. Let us introduce an example of CVI
and CSI calculation to highlight potentially overlooked issues
in HRV calculation. The Poincaré plot used for CVI and CSI
calculation is depicted as a scatter graph whose x-axis is the
value of the n-th RRI and y-axis is the value of the n+1-th
RRI. If the tHRV calculator only utilizes the value of the RRI
sequence without its observation time, technically, it might
miscalculate CVI and CSI due to an incorrectly depicted
Poincaré plot (Fig. 4). Specifically, without the observation
time of each RRI, the tHRV calculator might not notice the
presence of missing RRI and instead depict dots even when
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FIGURE 3. Examples of RRI miscalculation and RRI presence bias caused
by deleting miscalculated RRIs. (a) Reference RRIs. (b) Example of
miscalculated RRIs including FPs and FNs. (c) Example of edited RRIs by
deletion. In (b) and (c), we assume the signal quality of ECG in the latter
part (after 15 s) is poorer than that in the former part (before 15 s), which
causes the RRI miscalculation. Gray circles in (b) and (c) indicate correct
RRIs. In (c), RRIs have presence bias in the former part: the number of
RRIs here may be higher than in the latter part due to missing RRIs. Green
arrow in (c) indicates non-adjacent RRIs that may cause incorrect
depiction of Poincaré plot without managing its observation time (see
details in Fig. 4).

it is unreasonable (e.g., when a missing RRI is observed
between two RRIs, neither of which are adjacent). A similar
miscalculation due to adjacency confirmation failure might
occur in the calculation of statistical tHRVs focusing on
every two adjacent RRIs (e.g., RMSSD, SDSD, and pNN50).
On the basis of the source codes, we confirmed that cur-
rently available HRV analysis techniques using open-source
libraries also suffer from this adjacency confirmation failure.
Regarding the RRI gap, a type-B RRI gap may also cause a
miscalculation in the statistical tHRVs focusing on every two
adjacent RRIs (e.g., RMSSD, SDSD, and pNN50) or several
graphical tHRVs (e.g., CVI and CSI) because it focuses on
every two adjacent RRIs. Although a type-A RRI gap may
evade this issue, we cannot determine whether to permit the
presence of a type-A gap because it cannot ensure the original
definition of RRI shown in (1).

FHRVsmay also be under the influence of both themissing
RRI and RRI gaps. Missing RRI stemming fromRRI deletion
may cause another kind of RRI outlier in the data inter-
polation preprocessing sub-step: when using a cubic spline
function for interpolating missing RRIs, we may observe out-
of-range values for the RRI in a healthy participant, or even
impossible ones in consideration of the heart activity due to
the oscillation of the function [16] (Fig. 5). However, this
issue might also be overlooked unless we check the result
of cubic spline interpolation in detail; since this cubic spline
interpolation itself is mathematically correct, no processing

FIGURE 4. Example of incorrectly depicted Poincaré plot using RRIs from
Fig. 3. (a) Reference RRIs. (b) Example of miscalculated RRIs including FPs
and FNs. (c) Example of edited RRIs by deletion. Gray circles in (b) and
(c) indicate correct RRIs. Comparing (b) and (c), (c) is able to obtain the
Poincaré plot similar to (a). Without managing the observation time of
each RRI, however, the dot indicated by the green arrow in (c) is
incorrectly depicted.

FIGURE 5. Example of RRI outliers caused by spline interpolation. Several
resampled calculated RRIs using the spline interpolation function are
lower than the lower limit of RRI in a healthy participant (i.e., 250 ms
indicated by gray shaded area).

error would occur. Since the data resampled from RRI out-
liers does not appropriately reflect real heart activity, fHRV
miscalculation is bound to occur. Although this issue could
be suppressed by performing pre-interpolation before the
data interpolation sub-step, this ad-hoc solution might cause
another fHRV miscalculation due to the RRI gap. Unless the
pre-interpolation results match plausible values, the type-B
RRI gap would cause fHRV miscalculation by false RRI
fluctuation. As we mentioned in the discussion on tHRVs,
although the type-A RRI gap may evade this issue, we cannot
determine whether to permit the presence of a type-A gap
because it cannot ensure the original definition of RRI shown
in (1). We should emphasize that these issues occurring at the
level of the RRI sequence could also have a cascading effect
on the PSD calculation: unless the calculated RRI sequence
matches the real RRI sequence, we may miscalculate PSD
and ultimately miscalculate fHRV.

To sum up, inappropriate dubious RRI editing may
decrease the accuracy of both tHRVs and fHRVs. Under the
practical situation, we need to decide how to suppress this
unintentional influence induced by missing RRIs and RRI

25550 VOLUME 11, 2023



K. Eguchi, R. Aoki: Practical RRI Editing for HRV Analysis Using Single-Channel Wearable ECG Devices

gap over target HRV features along with the dubious RRI
editing step in consideration of the characteristics of the target
HRV features.

C. RECOMMENDED POLICIES IN TRADITIONAL HRV
ANALYSIS FLOW UNDER DAILY LIFE ENVIRONMENT AND
POTENTIALLY REMAINING ISSUES
To clarify the current technical limitations and potential
requirements for considering the proposed method, this sub-
section highlights recommended policies in the traditional
HRV analysis flow step-by-step. As HRV features should
be calculated from the NN interval sequence in principle,
as a whole, we ultimately need to aim for all dubious RRIs
stemming from physiological disturbances and technological
disturbances. Supposing a daily life environment where HRV
analysis mainly targets non-clinical healthcare services, how-
ever, it would be better to prioritize dubious RRIs coming
from technological disturbances (i.e., FPs and FNs). This is
because ECGs recorded under that situation would comprise
noise/artifacts with higher probability than transient arrhyth-
mic beats in healthy participants, and detection errors are
totally irrelevant to the real heart activity.

Regarding the QRS complex detection step, we should at
least consider how to obtain QRS complexes of sufficient
quality and quantity for calculating the target HRV features.
Recall that the number of detection errors and their type (i.e.,
FNs or FPs) depend in large part on the performance of the
applied algorithm. Since only the QRS complex detection
step has the unique capability of detecting QRS complexes
from recorded ECGs, we should use certain algorithms that
can detect as many plausible QRS complexes as possible
while suppressing FNs. In other words, we should use an
algorithm that is capable of following the apparent wave-
form change in the QRS complex to suppress noise-induced
FPs and FNs. Regardless of the algorithm, we should then
implement an extra post-processing stage to compensate for
detection artefact so that the quality of TPs is ensured. How-
ever, complete suppression of artifact-induced FPs and FNs
only by the QRS complex detection step is nearly impossible:
both the frequency and morphology characteristics of the
artifacts are similar to those of the QRS complexes. Hence,
we appropriately compensate for the remaining FPs and FNs
in the following steps.

Regarding the dubious RRI identification step, we propose
subdividing the dubious RRI identification step in accordance
with the editing target unit (i.e., QRS complex or RRI), as FPs
and FNs lead to different consequences: FPs cause miscalcu-
lated RRI, whereas FNs cause prolonged RRI. Furthermore,
considering practical RRI calculation, FPs and FNs may be
differently observed. The RRI comprising FPs, of course,
comprises one or two FPs, but the RRI only comprising FNs
may be observed as simply prolonged RRIs comprising two
TPs (i.e., the FN class corresponds to the ‘‘defined label of
QRS complex’’ overlooked in the QRS complex detection
step, not to ‘‘detected point as QRS complex’’). Considering
these points, the appropriate identification target unit for FPs

and FNs should be different: FPs should be identified as a
QRS complex unit, whereas FNs as an RRI unit. Therefore,
we need to develop a dubious RRI identification method
for dubious RRI comprising FPs. Assuming the practical
situation, we should clarify here that the potential minimum
requirement may become ‘‘not using morphological simili-
tude of QRS complex.’’ Due to the superposition principle, an
apparent QRS complex in ECG with noise might be changed
just as if the QRS complex is recorded from different ECG
recording leads, whichmeans that utilizing themorphological
similitude of QRS complexes might cause the misdetection of
FPs. Meanwhile, one way of identifying the RRIs comprising
FNs would be to adopt conventional dubious RRI identifica-
tion methods that focus on the duration of RRIs.

Regarding the dubious RRI editing step, again, the RRI
editing-induced influence over each HRV feature would be
different depending on the consequences of the incorrect RRI
editing (i.e., missing RRI or RRI gap) and even the target
HRV features. We should therefore come up with a plausible
RRI editing method for target HRV features in consideration
of the potential issues emerging under the assumed environ-
ment. In other words, we should newly consider appropriate
countermeasures depending on the identification target unit,
which might not be accomplished by simply using the con-
ventional RRI editing approach (i.e., deletion, interpolation,
and replacement). For example, FP rejection should include
consequent RRI re-calculation using non-FPs (i.e., TPs) iden-
tified by the QRS complex unit, whereas RRI re-calculation
for FNs should include plausible value calculation by the RRI
unit (generally, this plausible value might be smaller than
the initially calculated prolonged RRI). As the influence over
each HRV feature varies, we may have to decide whether to
prioritize the accuracy at the level of RRI sequence satisfying
(1) or at the level of HRV features. For example, if we need
HRV features for status prediction utilizing the relationship
between HRV features and target status, we may prioritize
the accuracy at the level of HRV features.

To sum up, we need to newly consider both the dubious
RRI identification step and the dubious RRI editing step
in addition to the potential influence derived from FPs and
FNs. We also need to determine the appropriate execution
sequence for these two steps along with their subdivision:
since the QRS complex is theoretically a smaller unit than
RRI, the identification and editing for FPs might need to be
done before that for FNs. Considering the current technical
achievements in each step together with step-specific issues
and their cascading effects, we will first work on dubious RRI
identification for FPs. This is because the identification of
FPs has not yet been accomplished even though it is a neces-
sity for its editing, nor can we utilize any of the identification
techniques from conventional studies.

III. ECG CHARACTERISTICS RECORDED UNDER DAILY
LIFE ENVIRONMENT
In the use case of practical HRV monitoring under a daily
life environment, FPs are inevitably under the influence of
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the ECG characteristics recorded by wearable ECG devices.
Unlike in-hospital ECG devices used for clinical purposes,
however, these ECGs rarely get a visual inspection by experts,
especially for non-clinical purposes. Since the traditional
ECG processing flow [1] assumes one-way processing only,
the signal quality of ECG in principle will influence the
accuracy of the HRV features.

In this section, we unravel the ECG characteristics and lim-
itations unique to wearable ECG devices at the level of ECG
signals. We first introduce the single-channel wearable ECG
devices assumed in this study, followed by the potential issues
induced by their use in a daily life environment. Here, we aim
to clarify potentially overlooked issues inherent in wearable
ECG devices, which can be a major premise for our study.
We then define the terms ‘‘noise’’ and ‘‘artifacts’’ used in this
paper while showing the apparent changes they can create.
We finish this section by summarizing the requirements for
the proposed method.

In this study, we compare wearable ECGs to the stan-
dard 12-lead ECG to clarify the ECG characteristics from
the perspectives of theory and practice. Since engineers can
easily start ECG analysis without studying the background
represented as Kaggle, we introduce the essential principles
of ECG including the standard 12-lead ECG in Appendix A.
We assume this section should be read with the basic knowl-
edge described there.

A. ECG CHARACTERISTICS RECORDED BY
SINGLE-CHANNEL WEARABLE ECG DEVICE AND
POTENTIAL ISSUES UNDER DAILY LIFE ENVIRONMENT
1) TYPES OF SINGLE-CHANNEL WEARABLE ECG DEVICES
AND THEIR RECORDING DURATION
To meet the growing demand for more appropriate diagnosis
or estimation related to heart activity under the daily life
environment, a variety of wearable ECG devices have been
developed to increase the scope of ECG recording opportuni-
ties [7], [8], [9], [10], [11], [12], [13]. Although usability and
signal quality are in an inevitable trade-off relationship, each
device seems to improve usability for non-experts within a
permissible range for the intended usage.

Depending on where the electrodes are placed, cur-
rently available wearable ECG devices can be classified
into patch-type [7], [13], shirt-type [8], [9], [10], [12], and
wristband-type [11]. In many cases, these devices record a
single-channel ECG by means of bipolar measurement (see
Appendix A for details), so the duration of a continuous
ECG recording depends on the duration of electrode-to-
skin contact. For HRV analysis during daily life activity, the
patch-type or shirt-type is therefore theoretically preferable.
Since these two types feature two electrodes that can be
placed on the skin surface around the chest without disturbing
daily life activities, long-term ECG recording suitable for
HRV analysis is possible. A wristband-type is less suitable
because it only records ECGs when the user is touching
one electrode with the left hand and the other with the right

FIGURE 6. Examples of commercial single-channel wearable ECG devices
that have been used for participatory social experiments in Japan.
(a) Shirt-type comprising a specially designed shirt (C3fit IN-pulse,
Goldwin, Inc., Tokyo, Japan) and an attachable dedicated wearable ECG
device (hitoe®transmitter 01, NTT DOCOMO, INC., Tokyo, Japan).
(b) Patch-type (myBeat, Union Tool Co., Tokyo, Japan).

(or vice versa), which can be fundamentally disruptive to
daily activity.

2) TYPICAL SETTINGS AND CHARACTERISTICS IN THE USE
OF COMMERCIAL SINGLE-CHANNEL WEARABLE ECG
DEVICES UNDER DAILY LIFE ENVIRONMENT
Fig. 6 shows examples of commercial single-channel wear-
able ECG devices that have been used for participatory social
experiments [12], [13]. In the shirt-type device shown in
Fig. 6(a), a special shirt has electrodes/lead wires embed-
ded inside it, so the setup for ECG recording only requires
directly wearing the shirt on the body and attaching a small
dedicated device for the ECG recording. In the patch-type
device shown in Fig. 6(b), the setup requires users to affix
electrodes and attach a small dedicated device for the ECG
recording. Comparing the two types, the shirt-type one tends
to be used more for non-clinical purposes (e.g., bus driver
fatiguemanagement), as it only costs aroundUSD 100, which
is significantly cheaper than the patch-type, and its electrode
is reusable by machine-washing. Note that the ECG data
recording method is different depending on device-to-device
and even system-to-system; for example, whether it is directly
recorded in a small dedicated device itself or transferred to
other devices (e.g., a smartphone, personal computer, or even
database via relay devices such as a smartphone or receiver
module). Regardless of the ECG data recordingmethod, users
can normally check the recorded ECG in an application.
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The signal quality of ECGs recorded by the aforemen-
tioned single-channel wearable ECG devices is not constant:
often they are simultaneously under the influence of ‘‘active’’
ECG recording conditions over time (e.g., electrode-to-skin
contact conditions and electrode conditions) and ‘‘static’’
device specifications of the hardware/software that remain
unchanged during ECG recording (e.g., analog-to-digital
(A/D) converter and built-in filters).

As one of the ‘‘active’’ ECG recording conditions, physical
skin-to-electrode contact can easily change during daily life
activity. For example, friction can occur between an electrode
and the skin surface, the back side of the electrode may bump
into some other object, or a part of the electrode may not be
in direct contact with the skin surface. Electrode conditions
can change along with daily activity as well: for example,
humidity (e.g., perspiration) can cause changes in electrodes,
or they can be deformed by physical issues such as flexion or
expansion. All of these condition changes can potentially lead
to displacements between an electrode and the skin surface,
which might ultimately result in impedance fluctuations [15]
observed as noise/artifacts in an ECG recording.

We should emphasize again here that an ECG recording
lead should be regarded as an ‘‘active’’ ECG recording con-
dition when using wearable ECG devices. Unlike in-hospital
ECG devices that are set up by experts, ECG recording leads
are not necessarily used as intended when a non-expert sets
them up unaided.When targeting daily life activities, as stated
earlier, an ECG recording lead can be changed along with
body movements depending on the device type. Shirt-type
wearable ECG devices with embedded electrodes have a
pronounced tendency to do this (e.g., the electrode can easily
slip off). Since the ECG waveform is principally affected

by ECG recording leads (see Appendix A.2 for details), this
represents a significant influence over the ECG waveform.

Since so many factors can influence an ECG recording
and they are rarely exactly the same every time, identi-
cal noise/artifacts are not repeatedly observed even when
the same user performs the same movements. This makes
it nearly impossible to record long-term ECG without any
noise/artifacts during daily life activity. Moreover, despite
the potential instability in the quality of ECG recordings,
wearable ECG devices utilized for non-clinical healthcare
services are rarely inspected visually by well-trained medical
experts. Since it is not realistic to ask users to manually unify
all ‘‘active’’ ECG recording conditions, we need to suppress
the influence of noise/artifacts in the data processing of HRV
analysis, not in the ECG recording.

B. APPARENT CHANGES IN ECG WAVEFORM CAUSED BY
NOISE AND ARTIFACTS
Moving forward, we separately use the term ‘‘noise’’ or
‘‘artifacts’’ depending on the distinguishability of the QRS
complex only on the basis of the waveform.

In this paper, ‘‘noise’’ means an ECGwith a low-frequency
component in which we can visually recognize a QRS com-
plex only on the basis of the waveform (defined as ‘‘baseline
wander (BW)’’ in the MIT-BIH Noise Stress Test Database
(NSTDB) [43], [44], [45]). Although apparent waveform
changes in the recorded ECG are primarily caused by the
ECG recording lead, similar apparent changes in the QRS
complex are often observed in ECGs with noise due to the
superposition principle (Fig. 7). Specifically, the visible part
of a QRS complex buried in noise can be observed as if the
QRS complex was recorded from a different chest lead, even

FIGURE 7. Example of ECG waveform change in QRS complex. (a) Variations in QRS complex patterns of chest leads from V1 to V6 (this set of ECG
waveforms originally appeared in [18], on which we drew additional lines indicating R wave and S wave). (b) Apparent waveform change
observed in wearable ECGs contaminated by noise/artifacts. In (b), black arrows indicate the position of QRS complexes and the duration of each
window is 0.5 s. Previous research [24] has demonstrated that the Pan-Tompkins algorithm [20] could not detect any of the QRS complexes
shown in (b), whereas SCWF [24] was able to do so.
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FIGURE 8. Conceptual diagram of the relationship between QRS complex
in artifacts and its identifiability. (a) Example of an identifiable QRS
complex. (b) Example of an unidentifiable QRS complex buried in
artifacts at the same level. (c) Example of an unidentifiable QRS complex
buried in artifacts at the greater level. Black arrows indicate the location
of the QRS complex, which is exactly the same in both (a) and (b). In
(a) to (c), the dotted line connected to the black arrow indicates the
location of the local maxima of the R wave.

though the actual ECG recording lead seems to be constant.
When targeting an ECG that may be suffering from noise, we
should remain cognizant of these apparent waveform changes
regardless of the ECG recording lead.

Meanwhile, ‘‘artifacts’’ in this paper means an ECG with
a high-frequency component in which we cannot recognize a
QRS complex only on the basis of the waveform (defined as
‘‘electrode motion artifact (EM)’’ or ‘‘muscle artifact (MA)’’
in NSTDB [43], [44], [45]). Unlike ECGswith noise, whether
we can distinguish a QRS complex recorded in an ECG
with artifacts depends totally on the amplitude of artifacts.
Specifically, we can distinguish it if the amplitude of artifacts
is sufficiently smaller than the actual QRS complex, but
cannot distinguish it at all when the amplitude of artifacts
is approximately the same as or larger than the actual QRS
complex (Fig. 8) [16].

C. SUMMARY OF REQUIREMENTS FOR PROPOSED
METHOD
Themain issue caused by the presence of noise/artifacts is the
miscalculation of HRV features induced by detection errors.
Considering the one-way-only processing in the traditional
ECG processing flow, along with the technical limitations in
improving the performance of the QRS complex detection
step (discussed in II-B1 and II-C), we need to come up with
a new dubious RRI identification step as well as a dubious
RRI editing step targeting the RRI comprising FPs and FNs.
Ideally, these steps can be used in practical situations under
the daily life environment regardless of the algorithm applied
for QRS complex detection.

Assuming a practical situation targeting daily activitymon-
itoring, ECGs for HRV analysis are recorded only by one
ECG device. When using a single-channel wearable ECG
device for this purpose, we cannot distinguish the class of the
detected QRS complexes (i.e., TPs, FNs, FPs) in a conven-
tional way. In principle, these classes should be determined

FIGURE 9. Overview of proposed heart rate variability (HRV) analysis flow
for the suppression of miscalculation induced by technological
disturbances (i.e., FP- and FN-induced miscalculation). The shaded area
indicates our proposal. Fig. 9 modified Fig. 2 by subdividing the editing
target identification and the actual editing into four steps in accordance
with the target unit (i.e., QRS complex or RRI). Note that we omit several
sub-steps in the conventional HRV analysis flow here (i.e., QRS complex
detection step and HRV calculation step) that are irrelevant to the
proposal of this study.

on the basis of the confusion matrix requiring a ‘‘reference’’
for evaluation. To enable more appropriate HRV analysis
in a daily life environment, we need to develop a method
that distinguishes the class of detected QRS complexes by
utilizing only the information available in one single-channel
ECG device rather than the morphological similitude of the
QRS complex.

IV. METHODS
One of the key challenges when it comes to achieving a
more appropriate HRV analysis using a single-channel wear-
able ECG device under the daily life environment is how
to suppress the technological disturbances that induce mis-
calculation (i.e., miscalculation induced by FPs and FNs)
at the level of RRI or HRV features. With the aim of sup-
pressing of FP-induced miscalculation even when using a
single-channel wearable ECG device, we propose reframing
the conventional dubious RRI identification step and dubious
RRI editing step by subdividing them in accordance with the
target unit (i.e., QRS complex or RRI).

Fig. 9 depicts an overview of the modified HRV anal-
ysis flow including the four proposed steps: dubious QRS
complex identification, dubious QRS complex editing, dubi-
ous RRI identification, and dubious RRI editing. We adopt
this step-by-step solution to deal with the practical situation
in which FPs may occur in combination with FNs. In the
dubious QRS complex identification step and dubious QRS
complex editing step, we first aim to extract the sequence
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of possible TPs from the sequence of detected points. Then,
in the dubious RRI identification step and dubious RRI edit-
ing step, we aim to extract the possible NN interval sequence
from the sequence of possible TPs. In addition, as a dubious
QRS complex identification method for practical use assum-
ing a single-channel wearable ECG without a reference,
we utilize the amplitude at the detected point as an indirect
indicator of misdetection possibility.

In this section, we introduce the processing details step-by-
step in the order of execution.

A. IDENTIFICATION AND EDITING FOR QRS
COMPLEX UNIT
The aim of the dubious QRS complex identification step and
dubious QRS complex editing step is to extract a possible TP
sequence alone by editing all dubious QRS complexes from
the sequence of detected points obtained in the QRS complex
detection step.

As the initial target of dubious QRS complexes assuming
wearable ECGs, we herein aim for FPs that might be observed
during ECGs with noise/artifacts. Considering the origin and
cascading effects of FPs, the most plausible editing method
for FPs is, in theory, uniquely determined to reject FPs before
the RRI calculation.

1) FP IDENTIFICATION
This step aims to identify possible FPs utilizing only the infor-
mation available in one single-channel ECGdevice regardless
of ‘‘active’’ ECG recording condition. This is because the
waveform changes in aQRS complex due to the superposition
principle as well as the unobvious/unstable ECG recording
lead, both of which can be changed along with body move-
ments.

Since wearable ECG devices vary depending on the par-
ticipant and the environmental conditions, and the number
of FPs varies depending on the algorithm used for QRS
complex detection, it is extremely difficult to create a train-
ing dataset for FP classification from scratch. Moreover,
as there is currently no gold standard algorithm, it would
be unrealistic to make a new training dataset for every algo-
rithm with appropriate classification labels. In this situation,
as the very first attempt to identify FPs from wearable ECGs,
we therefore use an unsupervised classification based on
predetermined heuristic rules that do not require any training
dataset.

In practical terms, FPs are mainly caused by inappropriate
processing of ECG with noise/artifacts in the QRS complex
detection algorithm. Considering the general performance
of the currently available algorithms, this indicates that the
detected points from ECG with noise/artifacts are probably
FPs depending on the algorithm, whereas the detected points
from clean ECG without any noise/artifacts are probably TPs
regardless of the algorithm. In other words, we can consider
the quality of the ECG at the detected point to be an indi-
rect indicator of the possibility of FP. We therefore try to

discriminate FPs based on the recording status of the ECG
at the detected point.

To this end, we set three possible ECG recording sta-
tuses: artifacts, noise, and clean. Regardless of the algorithm
performance, we presume the detected points from ECG
with artifacts without references are FPs. According to our
interview with experts, the detected points from ECG with
artifacts without references cannot be regarded as TPs even
if that detected point looks like an actual QRS complex
through visual inspection. Conversely, there is no unified
determination for the detected points from ECG with noise
without references. Because the robustness to noise varies in
each algorithm even in terms of its detecting point, we need
to determine how to deal with the detected points from ECG
with noise without references by considering the algorithm
performance against ECG with noise. In fact, we confirmed
that the algorithm developed by Shimauchi et al. [24] was able
to accurately detect QRS complexes from ECG with noise,
whereas the Pan-Tompkins algorithm (PTA) [20] could not
(Fig. 7(b)). For FP identification based on the recording status
of ECG, we should therefore independently handle artifacts
and noise to determine the appropriate processing for each
algorithm.

Considering the difficulties in QRS complex detection, the
likelihood of FPs decreases in the order of artifacts, noise,
and clean ECG regardless of the algorithm. To determine the
ECG quality at each detected point, the proposed method
utilizes a three-stage evaluation based on two criteria: one
for artifacts and the other for noise. Specifically, we first
evaluate the ECG quality using the criterion for artifacts,
and if it does not meet this criterion, we evaluate it again
using the criterion for noise. Finally, the ECG is regarded as
clean when it does not meet both criteria. In other words, the
proposed method classifies each detected point as artifacts,
noise, or clean corresponding to the worst conceivable quality
at that point.

We first define the criterion for clean ECG on the basis of
practical confirmation. In our previous study [24], we con-
firmed that even a conventional benchmark QRS complex
detection algorithm such as PTA is able to accurately detect
QRS complexes without any detection error from ECGs with
slight noise (i.e., ECG with BW alone). For this reason,
we regard apparent ECG waveform changes within the range
of chest leads (i.e., from V1 to V6) as ‘‘clean,’’ and excessive
apparent ECG waveform changes that pass over that range as
‘‘noise’’ or ‘‘artifact.’’ The criteria for discriminating ‘‘noise’’
and ‘‘artifacts’’ are as follows.

For the artifact criterion, we utilize the amplitude of the
QRS complex (hereafter, QRS amplitude) obtained as the dif-
ference between the R wave peak and S wave depth (Fig. 10)
that can absorb the difference in the height of the R wave
among chest leads. Assuming HRV analysis using a single-
channel ECG device aimed at non-clinical healthcare ser-
vices, the main targets are healthy participants whose ECGs
are unlikely to correspond to morbid criteria. In other words,
we can consider the detected point to be an artifact when it
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FIGURE 10. Conceptual diagram of FP identification based on the
amplitude of detected point. Classification of each detected point is
shown by the initial character of corresponding class: A, artifacts; N,
noise; C, clean.

exceeds the morbid criteria in the medical field. We there-
fore focus on the QRS amplitude criterion of left ventricular
hypertrophy (LVH), which is a major heart disease affecting
QRS amplitude. Here, we utilize the Sokolow-Lyon crite-
rion [46], RV5+SV1>3.5 mV, where RV5 is the R wave in
V5 and SV1 is the S wave in V1. In principle, an R wave and
S wave recorded by a single-channel wearable ECG device
cannot simultaneously become RV5 and SV2 (see Appendix
A for details), so our method evaluates the detected point by
the QRS amplitude using that criterion. Note that we consider
the subtle differences in R waves due to thoracic respiration
to be sufficiently small and would thus be negligible.

For the noise criterion, we also utilize the amplitude at
the detected point: namely, apparent ECG waveform changes
from within the range of chest leads (i.e., from V1 to V6) are
considered ‘‘clean.’’ To discriminate ‘‘clean’’ ECG regardless
of the apparent difference in the shape of the QRS complex,
we focus on the theoretical sequential apparent difference
in an S wave. As discussed in Appendix A.2, the depth of
an S wave reaches the maximum at V2 and is shallower at
V5 and V6, and it will be approximately the same as the
height of an R wave in the transitional zone around V3 or
V4. Since the S wave depth in a ‘‘clean’’ ECG is between V2
and V6, we set two criteria for noise discrimination and then
regard the detected point as ‘‘noise’’ when its S wave depth
is out of that range, namely, the range between two criteria
representing the possible location ranges of the S wave depth
between V2 and V6. The value of the S wave depth in chest
leads is nearly 0 in V6 and becomes half that of the QRS
amplitude in the transitional zone and more than half in V2.
We therefore calculate the S wave depth in V2 using (2) and
in V6 using (3).

Sdepth (V2) = −
QRSamplitude

2
− a×

QRSamplitude
2

(2)

Sdepth (V6) = −
QRSamplitude

2
+ a×

QRSamplitude
2

(3)

Here, a is a positive real number used as a coefficient. Con-
sidering the S wave depth in V6, a should be set to around 1.

2) FP EDITING
This step aims to extract a TP sequence from the sequence
of detected points by rejecting all possible FPs based on the
results of the FP identification step.

As mentioned in IV-A1, we regard the detected points
from ECG with artifacts without references as FPs, so we
should undoubtedly reject all the detected points classified
as ‘‘artifacts’’ regardless of the algorithm. In contrast, the
detected points classified as ‘‘clean’’ should be regarded as
TPs that must not be rejected.

Unlike the detected points classified as ‘‘artifacts’’ or
‘‘clean,’’ whether to reject the detected points classified as
‘‘noise’’ should be determined in consideration of the algo-
rithm performance applied for the QRS complex detection.
For this determination, we require algorithm-specific valida-
tion tests when targeting several HRV features focused on
different characteristics.

B. IDENTIFICATION AND EDITING FOR RRI UNIT
The aim of the dubious RRI identification step and dubious
RRI editing step is to extract a possible NN sequence alone
by editing all the dubious RRIs from the RRI sequence cal-
culated after the dubious QRS complex editing step.

1) PREREQUISITES FOR CONSIDERING DUBIOUS RRI
IDENTIFICATION AND DUBIOUS RRI EDITING
As an initial attempt to divide traditional dubious RRI iden-
tification and dubious RRI editing in accordance with the
target unit, we propose a basic dubious RRI identification
and dubious RRI editing using simple mathematics. Our
intention is that these can be used as a benchmark in future
studies.

As an initial target of dubious RRI identification assuming
wearable ECGs, we aim for two kinds of dubious RRI that we
can identify mainly on the basis of the RRI duration: FNs that
might be observed during/after ECGs with noise/artifacts,
and possible arrhythmic beats whose duration significantly
differs from the majority of the remaining RRIs (i.e., single
or short-term ectopic beats represented as PAC).

With this dubious RRI editing, note that we will likely face
HRV feature miscalculation due to the RRI gaps or missing
RRIs unless all RRI elements meet the real value. In other
words, it is important that the dubious RRI editing method
be able to obtain accurate target HRV features rather than
doing nothing while allowing the RRI gaps or missing RRIs.
However, unlike FPs that theoretically should be rejected
before RRI calculation, there are currently no appropriate
dubious RRI editing methods or corresponding execution
order, even in conventional studies. Considering the tradi-
tional calculation methods for each HRV feature along with
its theoretical focus point, plausible RRI editingmethodsmay
be different depending on the target HRV features. For tHRVs
focusing on the topical NN intervals, we need to consider
RRI deletion suitable for suppressing the issues stemming
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from the RRI gap; for tHRVs focusing on the whole NN
intervals, either RRI deletion or RRI replacement would be
suitable depending on which one reflects the distribution
of the ideal RRIs; for fHRVs, the RRI replacement should
prevent oscillation of the interpolation function in the sub-
steps for fHRV calculation (i.e., data interpolation and data
resampling). Here, we consider the most plausible approach
for fHRVs through risk comparison. RRI replacement for
fHRVs is inevitably prone to risk, as it potentially has cas-
cading effects on the PSD calculation andmight lead to fHRV
miscalculation. At the same time, the severity of the oscilla-
tion of the interpolation function might be higher than that
of the PSD miscalculation, so that we should prioritize the
suppression of the former. In this sense, RRI replacement is
potentially a better countermeasure than RRI deletion alone.
Note that our considerations of all the potential RRI editing
methods are theoretical only. Validation tests for each target
HRV feature type will be required to determine the best way
to edit dubious RRIs.

As an initial validation of dubious RRI editing in consider-
ation of traditional calculation methods for each HRV feature
along with its theoretical focusing point, we propose taking a
different editing approach depending on the target HRV fea-
ture. For example, RRI deletion alone is presumably suitable
for tHRVs focusing on topical NN intervals, whereas RRI
replacement may be better for fHRVs. We need to investigate
how RRI deletion or RRI replacement affects the calculation
of tHRVs focusing on the whole NN intervals. In our method,
to improve the accuracy of the target HRV features, each
dubious RRI editing is allowed to use several different RRI
editing approaches together with its corresponding dubious
RRI identification: as discussed in II-B3, each conventional
RRI editing approach can be used in combination with others.
Here, we conduct dubious RRI identification and dubious
RRI editing as a pair, and implement several pairs in a sequen-
tial manner (starting with the first pair and then moving on to
the next until finishing with the last pair).

Since this paired processing is performed sequentially,
we describe the dubious RRI identification together with
dubious RRI editing by its RRI editing approach: deletion and
replacement. Since RRI replacement technically uses exactly
the same RRI deletion as in RRI deletion alone, we discuss
only deletion and interpolation below.

2) DUBIOUS RRI IDENTIFICATION AND DUBIOUS RRI
EDITING BY DELETION APPROACH
In this approach, the dubious RRI identification identifies
dubious RRIs that should be excluded from the HRV calcu-
lation, then the dubious RRI editing deletes them. Since the
sequence of detected points only includes TPs after the dubi-
ousQRS complex editing step, we presume that dubious RRIs
can be identified simply on the basis of the RRI duration.

As a target of this deletion, we set two types of dubious
RRI: ‘‘out of the range of the normal’’ and ‘‘of the major-
ity.’’ Here, out of the range of the normal refers to RRIs
shorter/longer than the normal RRI in a healthy participant

(i.e., shorter than 250 ms or longer than 1500 ms), and of
the majority means RRIs whose duration deviates from the
majority of RRIs (i.e., out of the range defined bymean± n×

standard deviation, where n is an integer). Since dubious
RRI deletion targeting RRIs out of the range of the normal
alone is not sufficient for deleting possible arrhythmic beats,
we further propose a two-step deletion: first, delete abnormal
RRIs by conducting a pair of dubious RRI identification
and dubious RRI deletion targeting the dubious RRIs whose
duration is out of the range of the normal, and second, delete
‘‘outliers’’ in the remaining RRIs by conducting another pair
of them targeting the dubious RRIs whose duration is out of
the range of the majority. This sequential order is determined
on the basis of the theoretical fact that out of the range of the
majority can be influenced by the presence and the volume of
‘‘outliers.’’

Through this two-step dubious RRI editing by deletion,
we expect to obtain more accurate HRV features than when
doing nothing, especially when calculating tHRVs focusing
on the topical NN intervals.

3) DUBIOUS RRI IDENTIFICATION AND DUBIOUS RRI
EDITING BY INTERPOLATION APPROACH
In this approach, the dubious RRI identification identifies
dubious RRIs missing from the consecutive RRI sequence
(i.e., missing RRIs), then the dubious RRI editing interpolates
them. These steps can be rephrased as ‘‘missing RRI iden-
tification’’ and ‘‘missing RRI interpolation.’’ Our objective
with this interpolation is to improve the accuracy of the
target HRV features, which cannot be accomplished by the
deletion approach alone. For tHRVs focusing on the whole
NN intervals, we should suppress the presence bias of the
remaining RRIs. Meanwhile, for fHRVs, we should avoid
the oscillation of the spline function in the data interpolation
sub-step as far as possible. In this sense, we try to avoid
reproducing RRI outliers that may decrease the accuracy of
the target HRV features.

As an initial attempt to replace dubious RRIs in com-
bination with dubious RRI deletion, we utilize the same
interpolation for calculating tHRVs focusing on the whole
NN intervals and fHRVs. Because the interpolation method
itself potentially influences the missing RRI identification
method (i.e., affecting how long the missing RRI should
be interpolated), we first consider the interpolation method
used in dubious RRI editing by the interpolation approach,
and then consider which dubious RRI identification method
can avoid reproducing RRI outliers in combination with the
interpolation method.

Among the interpolation methods listed in Peltola’s review
article [2], degree zero (i.e., direct current (DC) components),
degree one (i.e., linear), and spline use simple mathematics
and thus can be easily utilized for our purposes. We decided
against using spline interpolation due to the possible issue
with the oscillation of the interpolation function (mentioned
in II-B4). Among the remaining two methods, DC interpo-
lation itself does not comprise the frequency components

VOLUME 11, 2023 25557



K. Eguchi, R. Aoki: Practical RRI Editing for HRV Analysis Using Single-Channel Wearable ECG Devices

of the fHRV we focus on (i.e., LF: 0.04–0.15 Hz; HF:
0.15–0.40 Hz), and theoretically, the linear interpolation may
result in a miscalculation of fHRV due to overestimation
of low-frequency components depending on the duration of
the interpolation (i.e., the duration of missing RRIs) [32].
The influence of DC interpolation on the target frequency
components is limited to two parts: immediately before and
immediately after the interpolation. Compared to the long-
term influence induced by linear interpolation, this might be
more suitable for suppressing PSD miscalculation. For these
reasons, we opted to use DC components (i.e., the average of
the remaining RRIs after dubious RRI editing by deletion) for
interpolating the missing RRIs.

On the basis of the original definition of RRI described
in II-B3, we interpolate missing RRIs while satisfying (1).
Since the endpoint of a missing RRI is a TP that cannot be
rejected, the missing RRI interpolation requires at the very
least that we recalculate RRI to satisfy (1) while allowing
the type-B RRI gap. Although a missing RRI itself can
theoretically be identified on the basis of the observation
time of RRI, we need to consider the possible interpolation-
induced RRI outliers for determining the target duration of
missing RRI identification. When a missing RRI is shorter
than the interpolation value, we cannot interpolate it, and
when a missing RRI is not sufficiently longer than the inter-
polation value, the very last interpolated value might result
in an RRI outlier. This outlier could ultimately lead to an
inappropriate fHRV calculation due to the oscillation of the
spline function in the data interpolation sub-step for fHRV
calculation. For these reasons, we only interpolate a missing
RRI when it exceeds a predetermined threshold that is the
same as the deletion criterion on the maximum normal RRI
in a healthy participant.

This missing RRI editing by interpolation should enable
us to obtain more accurate HRV features than doing nothing,
especially when calculating tHRVs focusing on the whole NN
intervals as well as fHRVs.

V. EVALUATION
We performed an initial validation to determine whether the
proposed method can improve the accuracy of HRV features
compared to the conventional method regardless of the algo-
rithm used for QRS complex detection.

In this section, we first present an overview of the two
experiments we conducted and then describe the experimen-
tal conditions of each in detail. We then report the results
of each experiment in independent sub-sections. In both
experiments, we used the same ECG dataset as our previous
study [24], but we here briefly summarize the experimental
conditions before moving on to the results so as to ensure
clarity and reproducibility.

A. EXPERIMENT OVERVIEW
1) EXPERIMENT DESIGN
We conducted the two experiments shown as follows.

• Experiment 1: Targeting the sequence of detected points
obtained from a pseudo ECG dataset. This dataset
comprises eight ECGs created from two different
open data sources (the MIT-BIH Arrhythmia Database
(MITDB) [43], [47], [48] and NSTDB [43], [44], [45])
assuming ECGs recorded by single-channel shirt-type
wearable ECG devices.

• Experiment 2: Targeting the sequence of detected points
obtained from a real ECG dataset. This dataset com-
prises three ECGs recorded by a single-channel shirt-
type wearable ECG device during exercise activity.

In each experiment, the sequence of detected points
obtained by the target algorithm (i.e., PTA or SCWF) was
used as input data for the proposed method and evalu-
ated separately for each algorithm. We used the code by
Sedghamiz [49], a PTA program code that works on the
MATLABő environment (The MathWorks, Inc., Natick, MA,
USA). As in our previous study [24], each experiment used
the reference of RRIs for comparative evaluation. The details
of the ECG dataset along with its references are described for
each experiment.

All experiments were conducted after preparing the tar-
get data in the storage medium of a personal computer
(CPU, Intel ®Core™i7-7700 3.60 GHz; RAM, 32.0 GB;
OS, Windows 10). All analyses were conducted offline post-
experiment.

2) TARGET ALGORITHMS
As discussed in II-C, we should use an algorithm with high
performance, or else we could end up with inaccurate HRV
features. However, it has not yet been clarified whether and to
what degree the dubious RRI identification/editing steps con-
tribute to improving the accuracy of HRV calculation. Since
our point of interest is the inter-step relationships within HRV
analysis, we need to clarify whether our proposed method can
improve the accuracy of HRV calculation by compensating
for the difference in the performance of the QRS complex
detection step. Without any intermediate processing between
the QRS complex detection step and the HRV calculation
step, in theory, the number of FPs and FNs would directly
degrade the accuracy of the HRV features: the greater the
number of FPs or FNs, the lower the accuracy of the HRV
features. Since the detailed breakdown of FPs and FNs (e.g.,
their quantity, ratio, and generation timing) varies in each
algorithm even when targeting exactly the same ECGs, vali-
dation tests targeting several different algorithms should give
us a better idea of the effectiveness of the proposed method
in a practical use case.

To clarify these interests through our experiments, we tar-
get two algorithms having different performances with ECGs
contaminated by noise/artifacts: PTA [20], which is com-
monly used as a benchmark algorithm for QRS complex
detection and is also utilized in gold-standard HRV anal-
ysis software [50], and single complex wavelet filtering
together with morphology-based peak selection (hereafter,
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SCWF) [24], which we developed in an earlier study. In our
previous work [24], we confirmed that the sequence of
detected points derived from both algorithms contained FPs
and FNs as expected when the target ECGs were contami-
nated. SCWF performed better than PTA in terms of reducing
the number of both FPs and FNs during and after the contam-
ination of noise/artifacts. In this study, we regard SCWF as an
algorithm that performs well in the presence of noise/artifacts
and PTA as an algorithm that performs worse.

B. EXPERIMENTAL CONDITIONS IN EACH EXPERIMENT
1) OVERVIEW OF EVALUATION PERSPECTIVES
As discussed in Section IV, our proposal includes two inde-
pendent perspectives: subdividing the editing target identi-
fication and the actual editing into four steps in accordance
with the target unit (i.e., QRS complex or RRI), and dubious
QRS complex identification utilizing the amplitude at the
detected point. We clarify the effect of each by evaluating
from the following two perspectives.

• Theoretical (i.e., ideal): Corresponding to the evalu-
ation of subdividing the editing target identification
and the actual editing into four steps in accordance
with the target unit (i.e., QRS complex or RRI). Eval-
uating the effectiveness of dubious QRS complex edit-
ing and dubious RRI editing based on its theoretical
performance.

• Practical (i.e., real): Corresponding to the evaluation of
dubious QRS complex identification utilizing the ampli-
tude at the detected point. Evaluating the effectiveness
of dubious QRS complex editing based on its practical
performance.

In this study, we set 12 experimental conditions on each
evaluation target algorithm: six for the theoretical perfor-
mance evaluation and six for the practical performance eval-
uation. The details of each condition are described in the
following V-B2 and V-B3.
Since there are two target algorithms, we investigate the

results of the 12 evaluation conditions targeting the sequence
of detected points obtained by PTA and by SCWF.

2) CONDITIONS FOR THEORETICAL PERFORMANCE
EVALUATION
We first introduce the basic experimental conditions with
regard to the theoretical performance evaluation.

Among the four steps comprising the proposed method,
only two are responsible for the editing that might change
the accuracy of the HRV features: the dubious QRS complex
editing step and the dubious RRI editing step. To determine
whether we should execute these two steps, we set the four
evaluation conditions shown in Table 4.
However, we should also clarify which dubious RRI edit-

ing approach (deletion or replacement) performs better as
a sub-evaluation of the theoretical performance evaluation.
As mentioned in IV-B1, the effectiveness of the dubious
RRI editing step will be different depending on the editing

TABLE 4. Combination of evaluation conditions.

approach (i.e., deletion or replacement) and target HRV fea-
tures. Thus, we need to subdivide conditions β and δ accord-
ingly to evaluate the performance of each approach.

For these reasons, we set the following six conditions for
each target algorithm as the basic experimental conditions.

• Condition α: Do not use any intermediate processing
between the QRS complex detection step and the HRV
calculation step.

• Condition β-1: Do not use the dubious QRS complex
editing step, but do use the dubious RRI editing step
featuring the deletion approach (described in IV-B2).

• Condition β-2: Do not use the dubious QRS complex
editing step, but do use the dubious RRI editing step
featuring the replacement approach implemented by the
combination of deletion (described in IV-B2) and inter-
polation (described in IV-B3).

• Condition theoretical-γ (t-γ hereafter): Do use the dubi-
ous QRS complex editing step based on its theoretical
performance, but do not use any dubious RRI editing
step.

• Condition theoretical-δ-1 (t-δ-1 hereafter): Do use the
dubious QRS complex editing step based on its the-
oretical performance, and then use the dubious RRI
editing step featuring the deletion approach (described
in IV-B2).

• Condition theoretical-δ-2 (t-δ-2 hereafter): Do use the
dubious QRS complex editing step based on its theoret-
ical performance, and then use the dubious RRI editing
step featuring the replacement approach implemented
by the combination of deletion (described in IV-B2) and
interpolation (described in IV-B3).

Conditions t-γ , t-δ-1, and t-δ-2 apply the dubious QRS
complex editing step based on its theoretical performance
while making use of the reference in each dataset. In other
words, they use the information of erroneously detected QRS
complexes. We obtained these erroneously detected QRS
complexes through a comparative evaluation between the
sequence of detected points and that of the reference QRS
complexes.

3) CONDITIONS FOR PRACTICAL PERFORMANCE
EVALUATION
We introduce the following extra experimental conditions
with regard to the practical performance evaluation.

As discussed in IV-A2, whether to reject the detected
points classified as ‘‘noise’’ should be determined on the basis
of validation tests for each algorithm while targeting sev-
eral HRV features focused on different HRV characteristics.
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For this reason, we should clarify whether or not we use the
detected points regarded as ‘‘noise’’ as a sub-evaluation of the
practical performance evaluation.

Since there are three-tuple conditions using the dubious
QRS complex editing step (i.e., conditions γ , δ-1, and δ-2),
the number of extra conditions becomes six: the product of the
three-tuple condition and the two different approaches with
regard to the use of the detected points regarded as ‘‘noise.’’
One is a fail-safe approach that does not use the detected
points regarded as ‘‘noise’’ (i.e., conditions practical1-γ ,
practical1-δ-1, and practical1-δ-2), and the other is a fail-
soft approach that does use the detected points regarded as
‘‘noise’’ (i.e., conditions practical2-γ , practical2-δ-1, and
practical2-δ-2).

• Condition practical1-γ (p1-γ hereafter): Do use the
practical dubious QRS complex editing step (described
in IV-A), but do not use any dubious RRI editing step.
Here, the practical dubious QRS complex editing step
takes the fail-safe approach in which only the detected
points classified as ‘‘clean’’ are used for the following
analyses while those classified as ‘‘noise’’ or ‘‘artifacts’’
are rejected.

• Condition practical1-δ-1 (p1-δ-1 hereafter): Do use the
practical dubious QRS complex editing step (described
in IV-A) taking the fail-safe approach, and then use the
dubious RRI editing step taking the deletion approach
(described in IV-B2).

• Condition practical1-δ-2 (p1-δ-2 hereafter): Do use the
dubious QRS complex editing step (described in IV-A)
taking the fail-safe approach, and then use the dubi-
ous RRI editing step taking the replacement approach
implemented by the combination of deletion (described
in IV-B2) and interpolation (described in IV-B3).

• Condition practical2-γ (p2-γ hereafter): Do use the
dubious QRS complex editing step (described in IV-A),
but do not use any dubious RRI editing step. Here, the
practical dubious QRS complex editing step takes the
fail-soft approach in which the detected points classi-
fied as ‘‘clean’’ and ‘‘noise’’ are used for the follow-
ing analyses while those classified as ‘‘artifacts’’ are
rejected.

• Condition practical2-δ-1 (p2-δ-1 hereafter): Do use the
dubious QRS complex editing step (described in IV-A)
taking the fail-soft approach, and then use the dubious
RRI editing step taking the deletion approach (described
in IV-B2).

• Condition practical2-δ-2 (p2-δ-2 hereafter): Do use the
dubious QRS complex editing step (described in IV-A)
taking the fail-soft approach, and then use the dubious
RRI editing step taking the replacement approach imple-
mented by the combination of deletion (described in
IV-B2) and interpolation (described in IV-B3).

Here, we set a in (2) and (3) for noise classification to
1.5 to prevent undervaluation/overvaluation of classifying
‘‘noise.’’

C. EXPERIMENT 1: EVALUATION TARGETING SEQUENCE
OF DETECTED POINTS OBTAINED FROM PSEUDO ECG
DATASET CREATED BY OPEN DATA
In experiment 1, we first evaluated the performance of the
proposed method targeting the sequence of detected points
obtained from a pseudo ECG dataset that assumes ECGs
recorded by a single-channel shirt-type wearable ECG device
under a daily life environment. This evaluation mainly targets
the accuracy of theHRV features, as the proposedmethodwas
originally developed for improving the accuracy of HRV fea-
tures even when targeting single-channel ECGs contaminated
by noise/artifacts.

1) EVALUATION CONDITIONS IN EXPERIMENT 1
Through the evaluation of the dubious QRS complex identi-
fication step targeting the pseudo ECG dataset (described in
Appendix E.1), we confirmed that no detected points were
classified as ‘‘artifacts.’’ Hence, experiment 1 targets only
nine experimental conditions: α, β-1, β-2, t-γ , t-δ-1, t-δ-2,
p1-γ , p1-δ-1, and p1-δ-2. The three p1 conditions belong to
the fail-safe approach that only uses the ones classified as
‘‘clean’’ for the following analyses.

2) OVERVIEW OF PSEUDO ECG DATASET
We utilized an artificially generated pseudo ECG dataset
created by mixing noise/artifacts into the ECG while fixing
the ECG recording lead. As the ECG, we used the first 60 s
of V5-derived ECGs belonging to ID no. 100 inMITDB [43],
[47], [48], as this was considered easy enough for both algo-
rithms to accurately detect R waves (or QRS complexes).
Assuming the situation in which certain noise/artifacts sud-
denly occur, ECGs of 30 to 40 s were replaced with pseudo
ECGs derived by

targetECG = ECG+ n× irregular wave, (4)

where n is an integer.
Prior work [16] has shown that noise/artifacts observed in

ECGs recorded by a single-channel shirt-type wearable ECG
device may be similar to the combination of three irregular-
ities defined in NSTDB [43], [44], [45]: BW, EM, and MA.
To calculate (4), the previous study [24] therefore regarded
V5-derived ECGs of ID no. 100 in MITDB [43], [47], [48]
as the ECG and noise 1 of BW, EM, and MA provided in
NSTDB [43], [44], [45] as the irregular wave. On the basis of
the combination of three types of irregular wave, the pseudo
ECG dataset comprises the following eight ECGs in total:
(i) RAW (without any noise/artifacts), (ii) BW, (iii) EM,
(iv) MA, (v) BW+EM, (vi) BW+MA, (vii) EM+MA, and
(viii) BW+EM+MA. When mixing two or more irregular
waves, the summed value of bothwas used. Assuming that the
ECGs were recorded by a single-channel shirt-type wearable
ECG device, integer n in (4) was set to 3 on the basis of a
visual comparison of the QRS complex between the pseudo
ECG generated by (4) and the real ECG recorded by a com-
mercial single-channel shirt-type wearable ECG device [16].
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FIGURE 11. Target pseudo ECGs in experiment 1. Black shaded area in
each ECG indicates period when the target pseudo ECG undergoes
noise/artifacts created by (4).

Fig. 11 shows the target pseudo ECGs created in accordance
with the above procedures.
ECG and irregular wave were synchronized with the same

sample number. Since the complex wavelet utilized in SCWF
assumes the ECG sampled at 200 Hz, all the target ECG data
were down-sampled after the additive synthesis using (4).
No preprocessing was applied because we wanted to obtain
the detected points by the original performance of each QRS
complex detection algorithm.

The signal quality of this dataset measured by the signal-
to-NOISE ratio (SNR) defined in Appendix B.1 was 0.566 ±

1.02. Note that we use the capitalized term ‘‘NOISE’’ to mean
the components other than heart activity; this is calculated
from independent data of each irregular wave and that of the
ECG other than P-QRS-T. The detailed SNR for each target
ECG is shown in Appendix C.

3) REFERENCE QRS COMPLEXES
In experiment 1, we used the ‘‘annotations’’ ofMITDB ID no.
100 in the first 60 s as the reference from (i) to (viii) regardless
of the algorithm. This is because noise/artifacts only cause
apparent changes in the ECGwaveform without changing the
heart activity (i.e., the actual positions of QRS complexes).

A total of 75 points were annotated as the reference QRS
complexes in the first 60 s. On the basis of the guidelines
provided by the PhysioBank annotation [51], we did not use
the very first annotation ‘‘+’’ observed at 0.050 s because it
is not related to an actual QRS complex. However, we used
the annotation ‘‘A’’ observed at 5.678 s as a reference because
the premature atrial contraction represented as ‘‘A’’ does not
cause changes to the shape of a QRS complex, according to
the clinical definition [17]. Overall, 74 points from 0.214 to
59.508 s were used as the references of the QRS complexes.
As in our previous study [24], we moved each annotation to
the local maxima of the corresponding R wave.

4) RULES FOR CLASSIFYING DETECTED POINTS IN
THEORETICAL CONDITIONS
In conditions t-γ to t-δ-2, we used the classification results
of detected points obtained manually through comparative
evaluation to the reference QRS complexes.

To obtain TPs as accurately as possible while suppressing
overvaluation or undervaluation, we utilized a specific time
range for classification: a detected point observed within
0.10 s of the observation time of the corresponding reference
QRS complex is classified as TP, and otherwise, as FP. Here,
0.10 s is the normal duration of one QRS complex among
healthy people, according to the clinical definition [17].

5) TIME ADJUSTMENT AND QRS AMPLITUDE CALCULATION
FOR DETECTED POINTS IN PRACTICAL DUBIOUS QRS
COMPLEX IDENTIFICATION
Assuming that a detected point obtained from eachQRS com-
plex detection algorithmmight be close to an exact QRS com-
plex (e.g., within the normal range from Q wave to S wave),
we first adjusted the observation time of each detected point
from its original value to the local maxima observed before
and after 0.10 s from each detected point. Here, 0.10 s is the
normal duration of one QRS complex among healthy people,
according to the clinical definition [17]. We then regarded the
local minima observed after 0.10 s from each detected point
as S wave, and calculated the QRS amplitude of each detected
point as the difference in amplitude between the local maxima
and the local minima.
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6) TARGET HRV FEATURES
As frequently used HRV features, we targeted the six tHRVs
shown in Table 2 and three fHRVs shown in Table 3 marked
as evaluation target.

The target tHRVs were calculated in accordance with
the description in Table 2. Before the calculation of tHRVs
focusing on the characteristics of topical NN intervals
(i.e., RMSSD, pNN50, CVI, and CSI), we independently
checked the adjacency using (1), and only RRIs that were
confirmed to be adjacent to the RRIs immediately before and
after were utilized for the calculation.

For the fHRV calculation, we implemented three con-
ventional preprocessing sub-steps: data interpolation, data
resampling, and spectral analysis. Since the sequence of RRIs
calculated from (1) is not sampled at a constant frequency,
we resampled at 8 Hz using the linear function. In the spectral
analysis, we first windowed the target RRIs with a Hann
window and then calculated PSD by using an autoregressive
model at the sixteenth order, where PSDs at low and high
frequencies become stable regardless of respiration.

7) EVALUATION METHODS FOR HRV FEATURES
All HRV features theoretically reflect the characteristics of
the target RRI sequence, so we conducted a pre-evaluation to
investigate the RRI sequence obtained under each condition.
As the evaluation points in this experiment mainly focus on
the accuracy of the target HRV features, this pre-evaluation
investigates the physiological RRI changes and provides a
brief summary at the level of the RRI sequence originating
from each experimental condition in the form of an RRI
tachogram.

For the performance evaluation of target HRV features,
we considered the root mean squared error (RMSE) using
the HRV features calculated from the reference RRIs as an
ideal value. To assess the influence of the combination of the
dubious QRS complex editing step and dubious RRI editing
step on the target HRV calculation, on each HRV feature,
we calculate RMSEs between the ideal value and the cal-
culated value obtained by each condition and compare them
among the nine experimental conditions. Here, we assess the
performance of each condition using a box plot of RMSEs.

8) PRE-EVALUATION OF RRIS
Fig. 12 and Fig. 13 show the RRI tachograms obtained by
each algorithm. As a whole, the physiological RRI changes
in the reference RRIs were confirmed to be stable. The only
exception was a temporary RRI change due to PAC at 5.675 s
(shortened) and 6.670 s (lengthened).

Before investigating each experimental condition, we
briefly discuss the original performance of the two tar-
get algorithms under condition α. Overall, PTA obtained
FPs and FNs when noise/artifacts were present (from 30 to
40 s), and even after the noise/artifacts (after 40 s). In con-
trast, SCWF obtained FPs and FNs during noise/artifacts
(from 30 to 40 s) and was free of them after noise/artifacts
(after 40 s).

Comparing the six experimental conditions from α to t-δ-
2 targeting theoretical performance, overall, the only execu-
tion of the dubious QRS complex editing step (i.e., condi-
tion t-γ ) resulted in obtaining rather inappropriate prolonged
RRIs due to FP rejection regardless of the algorithm. When
ignoring missing RRIs, the dubious QRS complex editing
step together with the dubious RRI editing step taking the
deletion approach (i.e., condition t-δ-1) was able to obtain
the most accurate RRI sequence. A similar tendency was
confirmed in the practical dubious QRS complex editing step
(i.e., conditions p1-γ to p1-δ-2): among these three condi-
tions, p1-γ performed the worst, whereas p1-δ-1 performed
the best when ignoring missing RRIs.

In summary, overall, executing both the dubious QRS
complex editing step and dubious RRI editing step will pre-
sumably improve the accuracy at the level of RRIs. The
plausible RRI editing approach should be clarified through
the evaluation targeting HRV features.

9) RESULTS OF HRV FEATURES
Fig. 14 and Fig. 15 show the RMSEs of target HRV features
calculated under each experimental condition targeting the
detected points obtained from PTA and SCWF. Steel-Dwass
testing revealed a significant difference between several pairs
of experimental conditions in the mean RRI obtained by
SCWF. Here, one of each pair was consistently the condition
p1-δ-2: between the condition α (p= 0.003), β-1 (p= 0.003),
β-2 (p = 0.003), t-γ (p = 0.001), t-δ-1 (p = 0.001), and t-δ-2
(p= 0.003). Steel-Dwass tests also revealed that there was no
significant difference between any pairs of the experimental
conditions in any of the remaining HRV features regardless
of the algorithm.

Comparing the six experimental conditions α to t-δ-2
targeting theoretical performance, as indicated at the level
of RRI sequence, either condition t-δ-1 or t-δ-2 was able
to achieve the highest accuracy in most of the target HRV
features regardless of the algorithm. Regarding PTA, based on
the median, t-δ-1was the best condition for pNN50, RMSSD,
CVI, and HF, whereas t-δ-2 was best for mean RRI, SDNN,
LF, and LF/HF. Excluding these, condition t-γ performed
best for CSI. Regarding SCWF, based on the median, t-δ-1
was the best condition for SDNN, pNN50, RMSSD, and
CVI, whereas t-δ-2 was best for mean RRI, CSI, LF, and
HF. Excluding these, conditions α to β-2 performed best for
LF/HF. In a broad sense, these results indicate that executing
both the dubious QRS complex editing step and dubious RRI
editing step would be effective to improve the accuracy of
HRV features regardless of the algorithm, but the suitable
dubious RRI editing method may vary depending on the
target HRV feature.

Next, we investigated whether the best-performing con-
dition for each target HRV feature was consistent with the
theory in consideration of the original focus point of each
HRV feature and physiological RRI changes. Regarding
tHRVs, we investigated target tHRVs in conditions α to
t-δ-2 targeting theoretical performance from three categories
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FIGURE 12. RRI tachograms calculated from QRS complexes obtained by
PTA. Black shaded areas indicate period when the target pseudo ECG
undergoes noise/artifacts created by (4). Regardless of the target ECG,
only the rejection of QRS complex (conditions t -γ and p1-δ-2) caused
inappropriately prolonged RRIs.

corresponding to their original focusing point: volume (i.e.,
mean RRI), topical characteristics between every two adja-
cent RRIs (i.e., pNN50, RMSSD, CVI, and CSI), and vari-
ability (i.e., SDNN). Regarding mean RRI, we confirmed
that the replacement approach (i.e., condition t-δ-2) would

FIGURE 13. RRI tachograms calculated from QRS complexes obtained by
SCWF. Black shaded areas indicate period when the target pseudo ECG
undergoes noise/artifacts created by (4). Regardless of the target ECG,
only the rejection of QRS complex (conditions t -γ and p1-δ-2) caused
inappropriately prolonged RRIs.

effectively improve the accuracy. This result is consistent
with the theoretical prediction in consideration of the phys-
iologically stable RRI changes in this experiment. In other
words, when physiological RRI changes are stable, replacing
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FIGURE 14. tHRVs calculated under each condition. The shaded areas in each graph indicate the set of conditions with regard to QRS complex
rejection: no shade, without QRS complex rejection; darker shade, with QRS complex rejection by theoretical performance; lighter shade, with QRS
complex rejection by fail-safe practical performance. Conditions α, β-1, β-2, t-δ-2, and p1-δ-2 in (a) obtained by SCWF are depicted as points instead of
boxes because the RMSEs calculated from all eight target ECGs were the same. Here, their value was also the same in conditions α, β-1, β-2, and t-δ-2.

dubious RRIs with the average value of RRIs would be effec-
tive. Regarding tHRV features focusing on every two adjacent
RRIs (i.e., pNN50, RMSSD, CVI, and CSI), the dubious RRI
deletionwould perform better unless the dubious replacement
accomplishes perfect interpolation. Since these four tHRV
features require adjacency to be ensured between every two
RRIs at the minimum, interpolating imperfect RRIs cannot
satisfy this initial requirement. As expected, the deletion
approach (i.e., condition t-δ-1) performed the best in pNN50,

RMSSD, and CVI: specifically, it performed well in pNN50
because it mainly focuses on whether the difference exceeds
50 ms. In this experiment, however, the best condition for
CSI was the replacement approach (i.e., condition t-δ-2).
Considering the original definition, CVI and CSI would be
theoretically under the influence of volume, difference, and
variability between every two adjacent RRIs. It is true that
the miscalculation of geometric features using the Poincaré
plot may fail depending on the remaining RRI, but the
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FIGURE 15. fHRVs calculated under each condition. The shaded areas in each graph indicate the set of conditions with regard to QRS complex
rejection: no shade, without QRS complex rejection; darker shade, with QRS complex rejection by theoretical performance; lighter shade, with QRS
complex rejection by fail-safe practical performance.

dubious RRI deletion would be better than the replacement
in terms of ensuring adjacency. Unlike the aforementioned
tHRV features, we cannot theoretically determinewhether the
deletion or replacement approach would be better for tHRVs
focusing on variability (i.e., SDNN). From the perspective
of suppressing the overvaluation of false fluctuation due to
FPs, we should at least delete dubious RRIs. However, the
suitability of the replacement would theoretically depend on
its interpolation performance. In this experiment, we cannot
confirm a consistent advantage in either the deletion approach
or the replacement approach.

Regarding fHRVs, the replacement approach (i.e., condi-
tion t-δ-2) would be suitable from the perspective of sup-
pressing the overvaluation of low-frequency components.
Focusing on the results of LF, as consistent with the theory,
the replacement approach (i.e., condition t-δ-2) performed
better than the deletion approach (i.e., condition t-δ-1) regard-
less of the algorithm. This difference might originate from
the preprocessing of the fHRV calculation. Considering the
experimental conditions in this experiment, in theory, missing
RRIs at the level of RRI sequence would be altered to the
resampled RRIs by using the linear function in the prepro-
cessing of the fHRV calculation. Since the deletion approach
generates more missing RRIs for a longer period of time than

the replacement approach, this might cause an overvaluation
of low-frequency components. The replacement approach,
on the other hand, interpolates missing RRIs at the level of
the RRI sequence by the average value of the RRIs classified
as ‘‘clean.’’ These might act as direct current components and
enable the overvaluation of low-frequency components to be
suppressed. The difference in the RMSE of PTA and SCWF
under the t-δ-1 condition supports this hypothesis: PTA is
more vulnerable to this issue than SCWF due to the longer
missing RRI. However, regarding HF and LF/HF, we cannot
confirm a consistent advantage in either the deletion approach
or the replacement approach. Since LF/HF is the ratio of
LF and HF, the order of magnitude in both components
influences the accuracy. In other words, simply suppressing
the overvaluation of LF does not necessarily contribute to
obtaining a more accurate LF/HF depending on the RRI
sequence. As a result of this ordering issue, the RMSE of
SCWF under the t-δ-2 condition could not reach the level of
conditions α to β-2.
As a temporal summary of the comparative evaluation of

the six experimental conditions from α to t-δ-2 targeting
theoretical performance, we conclude that the execution of
both the dubious QRS complex editing step and dubious
RRI editing step (conditions t-δ-1 and t-δ-2) are, in theory,
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potentially effective to obtain more accurate RRIs and HRV
features. The execution of the dubious QRS complex edit-
ing step alone (condition t-γ ) resulted in obtaining an inap-
propriate RRI sequence and HRV features compared to the
conventional dubious RRI editing methods alone (conditions
β-1 and β-2). Regarding the dubious RRI editing method, the
deletion approach (condition t-δ-1) is theoretically suitable
for pNN50, RMSSD, CVI, and CSI and the experimental
results supported this hypothesis in pNN50, RMSSD, and
CVI. Meanwhile, the replacement approach (condition t-δ-2)
is better for mean RRI targeting physiologically stable RRI
sequences and LF.

Regarding the practical dubious QRS complex editing step
(conditions p1-γ to p1-δ-2), the same tendency was con-
firmed regardless of the algorithm. Among these three condi-
tions, either p1-δ-1 or p1-δ-2 performed the best. Specifically,
the deletion approach (condition p1-δ-1) performed better
for pNN50, RMSSD, and CVI, whereas the replacement
approach (condition p1-δ-2) performed better for mean RRI
and fHRVs. Of note, in the mean RRI obtained by SCWF,
condition p1-δ-2 performed significantly better than the the-
oretical dubious QRS complex editing step. The results of
the RRI sequence suggest that this improvement was caused
accidentally by the overvaluation of FPs together with dubi-
ous RRI replacement: condition p1-δ-2 rejected more RRIs
than actual FPs and replaced missing RRIs with values that
were closer to the average. Overall, the combination of the
practical dubious QRS complex editing step and dubious
RRI editing step enabled us to obtain more accurate HRV
features than the conventional dubious RRI editing methods
(conditions β-1 and β-2), even though the accuracy of several
target HRV features did not reach the level of the theoretical
performance (conditions t-δ-1 and t-δ-2).
Comparing condition α between PTA and SCWF, as we

confirmed at the level of RRI sequence, SCWF performed
better. Comparing the same condition between PTA and
SCWF, in general, the difference in the original algorithm
performance was directly linked to the accuracy of the target
HRV features. Although the combination of the dubious QRS
complex editing step and dubious RRI editing step was able
to improve the accuracy of HRV features, this proposed com-
bination cannot turn over the difference in the original algo-
rithm performance on the QRS complex detection. However,
applying the proposed combination enabled PTA to improve
the accuracy of the target HRV features at the same level as
SCWF without the proposed combination.

In summary, the results of experiment 1 demonstrate that
applying both the dubious QRS complex editing step and
dubious RRI editing step is potentially effective for improv-
ing the target HRV features regardless of the algorithm, even
by its practical performance. Regarding the dubious RRI
editing, the deletion approach is presumably more suitable
for pNN50, RMSSD, CVI, and CSI whereas the replace-
ment approach is better for mean RRI and LF. Applying the
proposed combination enables the QRS complex detection
algorithm with poor performance to improve the accuracy

TABLE 5. 13 workouts comprising radio exercise no. 1 and approximate
duration of each.

of the target HRV features at the same level as the one
with better performance that does not apply the proposed
combination.

D. EXPERIMENT 2: EVALUATION TARGETING SEQUENCE
OF DETECTED POINTS OBTAINED FROM REAL ECG
DATASET RECORDED BY SINGLE-CHANNEL SHIRT-TYPE
WEARABLE ECG DEVICE
In this experiment, we evaluated the performance of the
proposed method targeting the sequence of detected points
obtained from a real ECG dataset recorded during an exercise
activity by a single-channel shirt-type wearable ECG device.
As in experiment 1, the accuracy of HRV features was the
focus of evaluation.

1) EVALUATION CONDITIONS IN EXPERIMENT 2
Through the evaluation of the dubious QRS complex iden-
tification step targeting the real ECG dataset (described in
Appendix E.2), we confirmed that the detected points were
classified as ‘‘artifacts,’’ ‘‘noise,’’ or ‘‘clean.’’ Hence, we tar-
get the same 12 experimental conditions described in V-B: α,
β-1, β-2, t-γ , t-δ-1, t-δ-2, p1-γ , p1-δ-1, p1-δ-2, p2-γ , p2-δ-1,
and p2-δ-2.

2) TARGET EXERCISE
Under the assumption of a daily life environment, the previ-
ous study [24] targeted ECGs recorded while the participants
performed ‘‘radio exercise no. 1 [52], [53].’’ This exercise
was originally designed to help ordinary people improve their
physical fitness, so it comprises exercises for all parts of the
body, including jumping and twisting/stretching/bending of
the trunk. The 13 short workouts in this exercise are listed
in Table 5 and can be easily performed by ordinary people
from children to the elderly. The detailed movements of
each workout are provided in Appendix B of the previous
study [24]. Eachworkout is set tomusic with short commands
on the next workout, and the entire set takes approximately
three min from start to finish [52], [53].
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Before the experiment, all participants watched the video
and practiced the movements. In case a participant forgot any
of themovements, we also played the exact same video during
the experiment.

3) DEVICE SETUP FOR CREATING REAL ECG DATASET
To evaluate RRI and HRV regardless of the signal quality of
the target ECG, the previous study [24] used the sequence
of detected points obtained by two independent wearable
ECG devices at the same time: a commercial single-channel
shirt-type device that records the target ECGs for the per-
formance evaluation, and a three-channel patch-type device
with medical approval that records the reference ECGs for
the comparative evaluation.

In the experiment, a participant first wore the three-channel
patch-type wearable ECG device for the reference ECG and
then wore the single-channel shirt-type wearable ECG device
for the target ECG. After wearing both devices, we confirmed
that each was able to record ECGs without interfering with
the other device.

4) OVERVIEW OF REAL ECG DATASET
The real ECG dataset comprises three ECGs recorded from
three healthy male participants (age: 30.0 ± 1.633) while
performing ‘‘radio exercise no. 1.’’ All participants provided
written informed consent. In accordance with the approxi-
mate duration of each workout in the video, we took the same
approach as the previous study [24] and targeted the ECGs
recorded for 200 s from the start of the designated music.

Fig. 16 shows the three target ECGs. The signal quality
measured by the signal-to-ARTIFACTS ratio (SAR) defined
in Appendix B.2 was 1.70 ± 3.46. Note that we use the
capitalized term ‘‘ARTIFACTS’’ to mean the possible com-
ponents other than heart activity. The details of the SAR per
target ECG and its relevance to the movement are discussed
in Appendix D. As shown in Fig. 16 and Table 7, as a
whole, the ECG obtained from participant 3 (Fig. 16(iii))
was comparatively clean regardless of the movements. For
participants 1 (Fig. 16(i)) and 2 (Fig. 16(ii)), on the other
hand, several parts of the recorded ECGs were contaminated
with noise/artifacts.

Since we used two individual devices for recording the
target ECG and reference ECG,we paired both per participant
in accordance with the method described in V-D8. Note that
the SNR and the SARof the reference ECGwere not available
because the wearable ECG device used for obtaining it cannot
output raw ECG data.

5) THREE-CHANNEL WEARABLE ECG DEVICE USED FOR
RECORDING REFERENCE ECGS
The reference ECGs were recorded by a three-channel patch-
type Holter ECG monitoring device (Cardy 303 pico+,
SUZUKEN CO., LTD., Aichi, Japan) with medical approval.
This device can record three-channel bipolar ECGs
simultaneously (i.e., NASA, CM5, and an auxiliary lead that
is similar to half of CC5) at a sampling rate of 125 Hz.

This three-channel ECG recording enables the suppression
of obtaining FPs or FNs due to the processing failure of the
recorded ECGs. More detailed information on this device can
be found in the previous study [24].

6) REFERENCE QRS COMPLEXES OBTAINED FROM
REFERENCE ECGS
Fig. 17 shows the reference RRIs obtained from each par-
ticipant by using the Holter ECG device. Regarding physio-
logical changes in the RRI sequence, overall, the RRIs were
shortened along with the progress of elapsed time regardless
of the participants. Since experiment 2 targets the ECGs
recorded during exercise, this RRI shortening is physiolog-
ically reasonable.

On the basis of the previous study [24], there were no
RRI calculation failures in the reference ECG of partici-
pant 1. For participants 2 and 3, on the other hand, several
RRI calculation failures were observed by the annotations:
specifically, the device failed to obtain RRIs observed at
170.28 s and 170.56 s for participant 2, and at 85.856 s and
86.144 s for participant 3. As we did in the previous study,
we excluded those four RRIs and used the rest of them as
the reference QRS complexes for the comparative evaluation
of the detected points from the target ECGs. In total, the
following points were set as the reference QRS complexes
in this study: 274 points for participant 1, 332 points for
participant 2, and 321 points for participant 3.

7) SINGLE-CHANNEL WEARABLE ECG DEVICE USED FOR
RECORDING TARGET ECGS
The target ECGs were recorded by a commercial single-
channel shirt-type wearable ECG device comprising a spe-
cially designed shirt (Toray Industries, Inc., Tokyo, Japan)
and an attachable wearable ECG device (hitoe®transmitter
01, NTT DOCOMO, INC., Tokyo, Japan). Lead wires and
electrodes made of the functional material hitoe®(Toray
Industries, Inc., Tokyo, Japan) were embedded inside the spe-
cially designed shirt. Note that hitoe®is an electroconductive
textile fabric made of nano-fiber yarn (fiber diameter 700 nm;
polyester) coated with a PEDOT-PSS polymer thermobond-
ing composition [9], [54].

The combination of the specially designed shirt with
embedded electrodes and an attachable wearable ECG device
is capable of recording a single-channel ECG whose mea-
surement lead is similar to a bipolar chest lead CC5 [55] at a
sampling rate of 200 Hz. More detailed information on this
device can be found in the previous study [24].

After finishing the target ECG recording, all ECG data
were transferred to a personal computer, and the des-
ignated QRS complex detection algorithm was applied
offline.

8) RULES FOR CLASSIFYING DETECTED POINTS
To unify the time counting systems of the two independent
devices, the previous study used the time elapsed since the
observation time of the first RRI.
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To classify the detected points as accurately as possi-
ble under the situation in which the sampling rates of two
ECGs were different (i.e., 125 Hz for the reference ECGs
and 200 Hz for the target ECGs) when raw ECG data are
not necessarily available, the previous study only classified
a detected point as TP when it was observed within 0.10 s
from the observation time of the corresponding reference
RRI, and otherwise classified it as FP. The previous study
assumed that these rules were also capable of resolving sam-
pling rate differences in the same QRS complex: a sam-
pling rate difference induced by a theoretical time gap (i.e.,
0.003 s) was comparatively smaller than the time gap between
the reference RRI and the detected point (i.e., less than
0.10 s).

9) TARGET HRV FEATURES
We calculated all the HRV features targeting the sequence
of the detected points obtained by each algorithm from the
target ECGs (i.e., about 200 s from the start of the designated
music).

Since this experiment targets the ECGs recorded during
exercise activity, we only target the six tHRVs shown in
Table 2 marked as evaluation targets. As in experiment 1,
we independently checked the adjacency of two adjacent
RRIs by (1) before calculating tHRVs focusing on the charac-
teristics of topical NN intervals (i.e., RMSSD, pNN50, CVI,
and CSI).

10) EVALUATION METHODS FOR HRV FEATURES
As in experiment 1, we conducted a two-step evaluation:
one for RRIs and the other for HRV features. As the pre-
evaluation of the target RRIs, we first confirmed the physio-
logical RRI changes by the tachograms of the reference RRIs.
We then investigated a brief summary at the level of the RRI
sequence originating from each experimental condition based
on the tachogram of the calculated RRIs.

For the performance evaluation of the target tHRVs,
we used the RMSE with the HRV features calculated from
the reference RRIs as an ideal value. For each HRV feature,
we calculated the RMSE between the ideal value and the
calculated value obtained under each condition and then com-
pared them among the 12 experimental conditions. We then
assessed the performance of each condition using the box plot
of RMSEs.

11) PRE-EVALUATION OF RRIS
Fig. 18 and Fig. 19 show the RRI tachograms obtained
under each experimental condition. Regarding the original
performance of the target algorithms shown as condition α in
each target ECG, PTA and SCWF performed differently: PTA
resulted in obtaining FPs and FNs during/after noise/artifacts,
whereas SCWF resulted in obtaining FPs and FNs during
noise/artifacts and was able to recover after the contamina-
tion. Regardless of the algorithm, the number of FPs and FNs
seems to be directly proportional to the signal quality of the
target ECG: both algorithms seldom resulted in obtaining FPs

FIGURE 16. Target real ECGs in experiment 2. All ECGs were recorded by a
commercial single-channel shirt-type wearable ECG device during the
target exercise. The solid vertical lines indicate the end of each workout
(i.e., switching point of the movements), whereas the dotted one
indicates the end of ‘‘pause’’ in workout no. 1.

FIGURE 17. Reference RRIs obtained from each participant by a series of
three-channel wearable Holter ECG monitoring devices. The solid vertical
lines indicate the end of each workout (i.e., switching point of the
movements), whereas the dotted one indicates the end of ‘‘pause’’ in
workout no. 1. The red crosses at 170.28 s and 170.56 s for (ii) Participant
2 and at 85.856 s and 86.144 s for (iii) Participant 3 indicate erroneous
RRIs according to the annotation (i.e., RRIs excluded from the reference
RRIs).

or FNs in the ECG with better quality (i.e., participant 3),
whereas both frequently resulted in obtaining FPs or FNs in
the ECG with worse quality (i.e., participants 1 and 2).
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FIGURE 18. RRI tachograms calculated from QRS complexes obtained by PTA. The solid vertical lines indicate the end of each workout (i.e., switching
point of the movements), whereas the dotted one indicates the end of ‘‘pause’’ in workout no. 1.

As confirmed in experiment 1, among the six experimen-
tal conditions from α to t-δ-2 targeting theoretical perfor-
mance, the execution of only the dubious QRS complex
editing step (i.e., condition t-γ ) resulted in obtaining inap-
propriately prolonged RRIs regardless of the algorithm.
When ignoring missing RRIs, the dubious QRS com-
plex editing step together with the dubious RRI edit-
ing step taking the deletion approach (condition t-δ-1)
was able to obtain the most accurate RRI sequence.
Regarding the practical dubious QRS complex editing
step (conditions p1-γ to p2-δ-2), a similar tendency was
consistently confirmed: among these six conditions, p1-γ
and p2-γ performed worse due to prolonged RRIs, whereas

p1-δ-1 and p2-δ-1 performed better if we ignore missing
RRIs.

Comparing the two practical approaches (conditions p1-γ
to p1-δ-2 corresponding to the fail-safe approach and condi-
tions p2-γ to p2-δ-2 corresponding to the fail-soft approach),
each performed differently: the fail-soft approach ensured
a greater number of RRIs than the fail-safe approach when
ignoring several misidentifications of FPs, whereas the fail-
safe approach ensured a better quality of RRIs when ignoring
the number of RRIs.

In conditions t-γ , p1-γ , and p2-γ of participants 2 and 3,
there were a few FPs caused by the absence of the reference
RRI. Aswementioned inV-D6, the RRIs observed at 170.28 s
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FIGURE 19. RRI tachograms calculated from QRS complexes obtained by SCWF. The solid vertical lines indicate the end of each workout (i.e., switching
point of the movements), whereas the dotted one indicates the end of ‘‘pause’’ in workout no. 1.

and 170.56 s for participant 2, and at 85.856 s and 86.144 s for
participant 3, were excluded, so these RRIs would be unfairly
rejected even if they were correct. Considering the original
performance of SCWF, the only prolonged RRI observed in
condition t-γ of participant 3 might have suffered from this
issue.

In summary, overall, executing both the dubious QRS
complex editing step and dubious RRI editing step
seems likely to improve the accuracy at the level
of RRIs. We will investigate the plausible RRI edit-
ing approach through the evaluation targeting HRV
features.

12) RESULTS OF HRV FEATURES
Fig. 20 shows the RMSEs of the target tHRV features
calculated under each experimental condition targeting the
detected points obtained by PTA and SCWF. Steel-Dwass
tests revealed no significant difference between any pairs of
the experimental conditions in any of the target HRV features
regardless of the algorithm.

Comparing the six experimental conditions from α to t-δ-2
targeting theoretical performance, based on the median, the
deletion approach (i.e., condition t-δ-1) consistently enabled
the most accurate HRV features to be obtained among all the
target HRV features regardless of the algorithm. We herein
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FIGURE 20. tHRVs calculated under each condition. The shading in each graph indicates the set of conditions with regard to QRS complex rejection: no
shade, without QRS complex rejection; the darkest shade, with QRS complex rejection by theoretical performance; middle gray shade, with QRS
complex rejection by fail-safe practical performance; the lightest shade, with QRS complex rejection by fail-soft practical performance.

investigate whether the best performing condition for each
target HRV feature was consistent with theory in consider-
ation of the original focus point of each HRV feature and
the physiological RRI changes. In experiment 2, unlike in
experiment 1, the deletion approach (condition t-δ-1) per-
formed better for mean RRI calculation than the replacement
approach (condition t-δ-2). Considering the physiological

RRI shortening in experiment 2, this seems to be reason-
able. When RRIs are consistently changing, the replacement
approach using the average value of RRI would not nec-
essarily be effective for mean RRI calculation: the average
value itself would be under the influence of the presence bias
of the RRIs, so replacement using this value might cause
false changes. Specifically, real ECGs were confirmed to be
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clean at the beginning of the exercise but contaminated with
noise/artifacts in the middle (see Appendix D for details),
so the average value might strongly reflect the RRI value at
the beginning of the exercise. This false change might lead
to the miscalculation of the mean RRI. Although the deletion
approach is not a perfect solution, it would perform better
unless it causes inappropriate results due to the presence bias
of RRIs. Regarding tHRVs focusing on every two adjacent
RRIs (i.e., pNN50, RMSSD, CVI, and CSI), the deletion
approach (condition t-δ-1) consistently performed better for
the same reasons described in experiment 1: in short, it was
able to better suppress false RRI fluctuations compared to
the replacement approach (condition t-δ-2). As we men-
tioned, this result would be reasonable in consideration of
physiological RRI shortening, the possible value used for
the replacement approach, and the possible false variability
between the remaining RRI and the replaced RRI. Regarding
tHRVs focusing on the variability of the whole target RRIs
(i.e., SDNN), we cannot theoretically assert whether the dele-
tion or replacement approachwould be better; it might depend
on whether the false RRI variability fits with the real RRI
variability.

A temporal summary of the theoretical performance eval-
uation (conditions α to t-δ-2) is consistent with experiment 1.
Specifically, executing both the dubious QRS complex edit-
ing step and dubious RRI editing step would be, in theory,
potentially effective for improving the accuracy of HRV fea-
tures. On the basis of physiological RRI shortening due to
exercise, the deletion approach (condition t-δ-1) would be
preferable with regard to the dubious RRI editing step.

The performance of the practical dubious QRS complex
editing step (conditions p1-γ to p2-δ-2) was, in a broad sense,
consistent with the results of the theoretical performance
evaluation. Based on the median, condition p2-δ-1 performed
the best in most HRV features regardless of the algorithm
except for two HRV features by PTA: condition p2-γ for
mean RRI and condition p1-δ-1 for pNN50. Although the
performance of these best practical conditions did not reach
the level of the theoretical performance, they were able to
obtain more accurate HRV features than the conventional
dubious RRI editing methods (conditions α to β-2) in most
cases; the exceptions were mean RRI by PTA and SCWF as
well as SDNN by SCWF. As mentioned in the theoretical
performance evaluation, we presume these exceptions were
mainly caused by the presence bias of RRIs.

Focusing on the performance of the two practical
approaches (i.e., the fail-safe approach in conditions p1-γ
to p1-δ-2 and the fail-soft approach in conditions p2-γ to
p2-δ-2), the fail-soft approach consistently performed bet-
ter for most of the target HRV features regardless of the
algorithm. Considering the RRI sequence and the RMSEs,
however, the reason for this would be different depending on
each algorithm. The main reason for SCWF was the quality
and quantity of RRIs: on the basis of the RRI sequence,
SCWF seemed able to detect QRS complexes from ECG
with noise, so it does not need to reject the detected points

classified as ‘‘noise.’’ In other words, we can actively select
the fail-soft approach. This hypothesis is supported by the
results of participant 3: as we mentioned in V-D11, the only
prolonged RRI observed in condition t-γ might be caused by
the lack of the reference RRI, so SCWF in condition p2-δ-1
was able to obtain the RRI sequence that might be closest
to the actual one. Regarding PTA, on the other hand, the
main reason might be the number of RRIs and their presence
bias. Specifically, in participant 1, missing RRIs generated by
the fail-safe approach became extremely large (i.e., 23.16 s),
so deleting this prolonged RRI may cause an inappropriate
calculation due to the presence bias of RRIs: in theory, the
mean RRI might be under the influence of this issue. In other
words, the fail-soft approach was passively selected to avoid
other issues that might have had a larger impact. This passive
selection of the fail-soft approach might not necessarily work
well depending on the target HRV features: for example,
because the fail-safe approach can strictly ensure the quality
of RRIs, it worked better for pNN50, which focuses on the
local difference between two adjacent RRIs.

Comparing the same condition between PTA and SCWF,
as we confirmed in experiment 1, SCWF consistently per-
formed better than PTA. The difference from experiment 1
was the impact of the performance of QRS complex detection
on the accuracy of HRV features. Since the target real ECG
dataset suffered from intermittent noise/artifacts more fre-
quently than the pseudo ECG dataset, applying the proposed
combination could not allow PTA to obtain the target HRV
features at the same level as SCWF without the proposed
combination.

In summary, the results of experiment 2 demonstrate that,
in a broad sense, applying both the dubious QRS complex
editing step and dubious RRI editing step taking the deletion
approach is potentially effective for improving the target
HRV features regardless of the algorithm.We should mention
again here that the accuracy improvement by the proposed
intermediate processing might be limited by the performance
of the algorithm used for QRS complex detection. Regarding
the practical dubious QRS complex editing step, the fail-soft
approach would enable fair processing, but for the pNN50
calculation by PTA, the fail-safe approach performed better.
Since PTA could not accurately detect QRS complexes from
noise, the fail-safe approach that only uses the detected points
from ‘‘clean’’ can ensure more accurate calculation than the
fail-soft approach that uses the detected points from ‘‘clean’’
and ‘‘noise.’’

VI. DISCUSSION
A. EFFECTIVENESS AND ADVANTAGES OF OUR PROPOSAL
In this study, we proposed subdividing the dubious RRI
identification and dubious RRI editing steps in accordance
with the target unit (i.e., QRS complex or RRI). The results
of two experiments showed that applying both the dubi-
ous QRS complex editing step and dubious RRI editing
step is theoretically effective for improving the target HRV
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features regardless of the algorithm used. Although the pro-
posed framework mainly focuses on technological distur-
bances in HRV analysis, it may still work well when there
are only a few arrhythmic beats. Arrhythmic beats gener-
ally accompany inter-beat interval changes, so the influence
derived from relatively few arrhythmias can be recovered
by a combination of the dubious RRI identification step
and dubious RRI editing step. For this reason, the proposed
framework shows good potential for non-clinical health-
care services utilizing HRV features when the main target
is healthy users. We can therefore conclude that our pro-
posed reframing would be theoretically suitable for HRV
analysis.

As an initial method for practical dubious QRS complex
identification assuming a single-channel wearable ECGwith-
out a reference, we also proposed utilizing the amplitude
at the detected point in consideration of the characteristics
of ECGs themselves and wearable ECG devices, which we
summarized in Sections II and III. Although the performance
of the practical dubious QRS complex identification was not
perfect, it performed better than the combination of conven-
tional dubious RRI identification/editing steps only targeting
the RRI unit.

The three unique advantages in our proposed practi-
cal dubious QRS complex identification are its applicabil-
ity, real-timeness, and labor-effectiveness. As shown in our
experiments, it can be applied for HRV analysis regardless of
the QRS complex detection algorithm because it only uses the
ECGs before/after 0.10 s of each detected point. For the same
reason, it can be applied in real-time (i.e., 0.10 s immediately
after the detection) even though it is post-hoc processing
for QRS complex detection. Before introducing the final
advantage, high labor-effectiveness, we should reiterate that
the calculation required for applying our proposed method
is simple, involving just the absolute value of the peak and
the gap between the absolute value and the local minima of
the peak. As we confirmed in experiment 1, applying the
combination of our proposed practical dubious QRS complex
editing and the dubious RRI editing enables the algorithm
with poor performance (i.e., PTA) to improve the accuracy
of HRV features at the same level as the one with high
performance (i.e., SCWF) without our proposed intermedi-
ate processing. Since only the QRS complex detection step
has the unique capability of detecting QRS complexes from
recorded ECGs, it is clear that developing algorithms with
better performance is crucial; as a major premise in HRV
analysis, using an algorithm that is tolerant to noise/artifacts
is undoubtedly essential, and applying the proposed combina-
tion cannot turn over the difference in the original algorithm
performance on the QRS complex detection. Considering
the possible efforts required for improving the performance
of QRS complex detection, however, applying the proposed
combination would be the best choice in terms of ensuring
labor-effectiveness.

B. BEST APPROACH WITHIN PROPOSED SUBDIVIDED
STEPS FOR ACCURATE HRV ANALYSIS REVEALED
THROUGH EXPERIMENTS
The results of our experiments also clarified that the best
approach for QRS complex editing and RRI editing will vary
depending on several factors: the performance of the QRS
complex detection algorithm, the target HRV features, and
even the physiological RRI changes. Fig. 21 summarizes
our findings gleaned through the experiments. For future
reference, we highlight insights on our proposed intermediate
processing in accordance with the order of HRV analysis.

Regarding the dubious QRS complex identification step
and the dubious QRS complex editing step, ideally, all
FPs should be identified and rejected without overlooks.
Although we validated two approaches in this study (fail-safe
and fail-soft) as practical QRS complex editing methods, the
experimental results indicated that the appropriate approach
might change depending on the performance of the algorithm
used for QRS complex detection, the number of RRIs, and the
target HRV features. Our findings clarified that the fail-soft
approach was appropriate for an algorithm with good per-
formance (e.g., SCWF) regardless of the target HRV fea-
tures. Regarding an algorithm with poor performance (e.g.,
PTA), the fail-safe approach would perform better for tHRVs
focusing on every two adjacent RRIs (e.g., pNN50) because
it can strictly ensure the quality of RRIs; otherwise, the
plausible approach would change depending on the target
HRV features.

Regarding the dubious RRI identification step and the
dubious RRI editing step, they should at least identify and
delete the prolonged RRIs caused by FP rejection in the dubi-
ous QRS complex editing step. Although the ideal replace-
ment using complete interpolation for missing RRIs might
improve the accuracy of all HRV features, we should choose
either deletion or incomplete replacement with a limited per-
formance under the practical situation. Our findings indicated
that the following approaches would be suitable from theory
and practice: for tHRVs focusing on every two adjacent RRIs
(e.g., pNN50, RMSSD, CVI, and CSI), deletion approach;
and for fHRVs, replacement approach using direct current
components (e.g., average). Regarding the tHRVs focusing
on the volume of the whole RRIs (e.g., mean RRI), the
best approach might be different depending on the physio-
logical RRI changes. Specifically, the replacement approach
using the average of RRIs performed better than the deletion
approach when targeting stable RRIs, but it caused rather
inappropriate results when targeting changing RRIs (e.g.,
shortening or lengthening). Regarding the tHRVs focusing
on the variability of the whole target RRIs (e.g., SDNN),
we cannot theoretically assert whether deletion or replace-
ment would be better; although deletion meets the mini-
mum requirement, replacement might be better depending
on whether the false RRI variability matches the real RRI
variability.
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FIGURE 21. Overview of ideal heart rate variability (HRV) analysis flow considering the origin of dubious QRS complex and dubious RRI, physiological
characteristics of arrhythmias, and the definition of each HRV feature. Shaded area indicates our proposal. Fig. 21 modified Fig. 9 by subdividing
dubious QRS complex identification and dubious RRI identification in accordance with its origin (i.e., physiological disturbances of the heart and
technological disturbances in HRV analysis). Note that we omit several sub-steps in the conventional HRV analysis flow here (i.e., QRS complex
detection step and fHRVs calculation step) that are irrelevant to the proposal of this study. Definition of abbreviations: Mireq, minimum requirements;
interpolation func., interpolation function.

C. IDEAL FRAMEWORK FOR HRV ANALYSIS
Since HRV features should be calculated from the NN inter-
val sequence in theory [1], we ultimately need to ensure that

all TPs come from pure sinus node depolarizationwithout any
false inter-beat interval changes. In other words, we should
rephrase the aim of the intermediate processing steps between
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the QRS complex detection step and the HRV calculation step
as suppressing the influences derived from ECG disturbances
of physiological origins and technological origins to guar-
antee the accuracy of the RRI sequence and HRV features.
In this sense, we need to subdivide the TP class based on
whether it comes from pure sinus node depolarization. The
TP class in this study simply means that the corresponding
beat comes from the heart activity, so a single ectopic beat
such as PAC might be regarded as TP and left as it is. Thus,
ideally, both the dubiousQRS complex identification step and
dubious RRI identification step should extend their target to
the physiological disturbances of the heart (e.g., arrhythmia)
in addition to the technological disturbances in HRV analysis
that we targeted in this study (i.e., FPs and FNs).

Fig. 21 shows the ideal framework for the HRV analysis
we consider. The ideal dubious QRS complex identification
step should aim for false changes occurring in a heartbeat
unit from the perspective of the technological disturbances
(e.g., FPs) and the physiological disturbances (e.g., single
ectopic beats such as PVC/PAC or short-run atrial/ventricular
tachycardia). Since a false QRS complex (e.g., FP or ectopic
beat) should in theory be rejected regardless of its origin,
the dubious QRS complex editing step should be uniquely
accomplished by rejection. Simultaneously, the ideal dubious
RRI identification step should aim for false changes occur-
ring in an inter-beat interval unit from the perspective of the
technological disturbances (e.g., FNs) and the physiological
disturbances (e.g., prolonged inter-beat interval after reject-
ing arrhythmic beats).

Along with this extension of the identification target, the
dubious RRI editing step should change its processing in
accordance with the origin of dubious RRIs. Considering the
cascading effects of arrhythmia, dubious RRIs coming from
physiological disturbances of the atrium should be deleted.
On the other hand, dubious RRIs coming from technologi-
cal disturbances in HRV analysis, as well as dubious RRIs
coming from physiological disturbances of the ventricle,
should be replaced with ideal RRIs by combining the dubious
RRI deletion and missing RRI interpolation. Physiologically,
an atrial ectopic beat may reset the sinus rhythm such that
the sinus rhythm before and after an atrial ectopic beat is dif-
ferent: in other words, there is no ideal beat substitute for an
ectopic beat. As we mentioned, an ectopic beat itself should
be rejected in theory, so all we can do in this situation is delete
the RRI comprising the two TPs before and after an ectopic
beat. Regarding dubious RRIs coming from technological
disturbances in HRV analysis, as well as dubious RRIs com-
ing from physiological disturbances of the ventricle, on the
other hand, the sinus rhythm itself is constant: the ultimate
goal of the dubious RRI editing step targeting FNs should
therefore be to replace dubious RRIs with ideal RRIs.

D. POSSIBLE FUTURE WORK TOWARDS IDEAL
FRAMEWORK
As part of the dubious QRS complex identification step
assuming the use of wearable ECG devices such as a

single-channel shirt-type, we proposed an FP identifica-
tion based on heuristic criteria that can be used regard-
less of the ECG recording lead. Although it can identify
FPs caused by noise/artifacts with high amplitude, it is still
difficult to identify FPs caused by artifacts with approx-
imately the same amplitude as that of the QRS complex
(e.g., MA) (see details in Appendix E). Since our experimen-
tal results showed that FP rejection would be theoretically
effective for improving HRV feature calculation, improving
the performance of practical FP identification is the next
challenge.

To improve the FP identification performance and expand
its target to include physiological disturbances, we cast an
eye to the visual inspection of ECGs. Specifically, with
adequate expert knowledge, it is possible for humans to
empirically infer whether either physiological or technolog-
ical disturbances have occurred in each heartbeat by sight
while making use of amplitude, timing, and morphology. For
example, when we observe an inter-beat interval change or
a morphological change of the P-QRS-T part without any
noise/artifacts, we can infer that it might be caused by physi-
ological disturbances represented as arrhythmia. Conversely,
when we confirm a morphological change of ECGs not
limited to the P-QRS-T part, such as a plateaued baseline
or overall amplitude change without any health condition
change, we can infer that it might be caused by technological
disturbances such as noise (e.g., overall amplitude change
with a low frequency such as BW), artifacts (e.g., overall
amplitude change with a high frequency such as MA or EM),
or even detached electrodes (e.g., plateaued baseline). For
these reasons, in a broad sense, the dubious QRS complex
identification step can be divided into two sub-steps, as pro-
posed in our previous study [56]: first, assessing the presence
of a dubious QRS complex or signal quality in a segmented
ECG unit, and second, applying the results of the segmented
ECG to a corresponding detection point. Approaches for per-
forming the first sub-step are not limited to a specific method
but can be borrowed from those in conventional studies:
for example, making use of morphological similitude [28],
statistical ECG characteristics [56], or even CNN focusing
on the graphical characteristics of the heartbeat observed by
recurrence plot [57]. Another viable approach would be to
apply supervised learning utilizing the dubious QRS complex
classification results in this study.

We should emphasize that the conditions required for exe-
cuting the dubious QRS complex identification step (e.g.,
data length for input and execution timing) are directly linked
to real-time processing: a method that can be implemented
directly after the detection of each point (such as the one
used in this study) enables real-time processing, otherwise a
pause time for processing the dubious QRS complex identifi-
cation is required. Since there may be trade-offs between real-
time processing and the accuracy of dubious QRS complex
identification in general, the point of compromise should
be determined in consideration of the purpose of the HRV
analysis, the quality requirements for dubious QRS complex
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identification (e.g., what degree the target of dubious QRS
complex identification would be from FPs at the minimum
to TPs coming from pure sinus node depolarization at the
maximum), and the ECG recording conditions (e.g., ECG
recording lead). In this sense, the proposed FP identification
based on the QRS amplitude can function as a benchmark of
FP identification: specifically, we can use it immediately after
detecting each point regardless of the QRS complex detection
algorithm and can obtain more accurate HRV features even
though the performance may not be perfect.

Regarding the dubious RRI identification step, we might
have to change the identification method along with expand-
ing the identification target. As mentioned, the dubious RRI
editing step in the ideal framework might edit dubious RRIs
differently in accordance with their origin. In this sense,
using the duration of RRIs (as done in this study) would
not be suitable because, in principle, it cannot distinguish
FNs from arrhythmias. For appropriate processing in the
dubious RRI editing step, the dubious RRI identification
step should at least label the before/after every rejected QRS
complex while separating two origins. This labeling might
be accomplished together with the dubious QRS complex
editing step.

Regarding the dubious RRI editing step, the deletion
approach would be the same regardless of the origin of dubi-
ous RRIs. We should emphasize several insights here related
to missing RRI interpolation used as a part of the replacement
approach for dubious RRIs originating from technological
disturbances in theHRV analysis. Considering the calculation
process of HRV features together with their point of focus, the
requirements for interpolating missing RRIs can be changed
depending on the timing. Specifically, when interpolating
missing RRIs at the timing of RRI calculation, the interpo-
lated RRIs should satisfy (1). In contrast, when interpolating
missing RRIs at the timing of HRV calculation, the interpo-
lated RRI does not necessarily have to satisfy (1). A typical
example of the latter is fHRV calculation: the RRI sequence
would lose (1) by the data interpolation sub-step in theory,
so missing RRI interpolation at this timing may be free from
having to satisfy (1). The previous study [16] utilized this
theoretical characteristic and proposed interpolating missing
RRIs during the preprocessing of fHRVs. Another example
of the latter is mean RRI: since mean RRI does not focus on
each RRI value in detail, both type-A and type-B RRI gaps
stemming from (1) not being satisfied would be negligible.
Conversely, missing RRIs should be avoided: the accuracy
of mean RRIs may be decreased due to the presence bias of
RRIs. For these reasons, even if (1) is not satisfied, inter-
polation by linear approximation of all the remaining RRIs
can increase the accuracy of mean RRI while suppressing the
presence bias of RRIs as well as reflecting the overall trend
of the RRI sequence. As discussed above, depending on the
target HRV features, the missing RRI interpolation approach
suitable for improving the accuracy may be different depend-
ing on the method, timing, or satisfying (1). Although the
use of several different missing RRI interpolation methods

depending on target HRV features is technically viable, the
point of compromise should be determined in consideration
of the characteristics of the target HRV features as well as
the assumed situation: extremely complicated missing RRI
interpolation may lead to unexpected consequences.

E. LIMITATION
The major limitation of this study is the lack of a com-
prehensive evaluation: all the aforementioned insights are
based solely on the results of experiments obtained from
a few studies or desk studies related to the mechanism of
the heart. As we have shown, a variety of factors affect
each step of HRV analysis in theory, including physio-
logical heart activity changes (e.g., RRIs that are phys-
iologically stable/shortened/lengthened or the number of
arrhythmic beats), ‘‘static’’ device specifications of hard-
ware/software, ‘‘active’’ ECG recording conditions, and even
the performance of the algorithm used for QRS complex
detection. Although the two experiments in this study pro-
vide useful insights for HRV analysis, the findings are
limited to two conditions: the situation in which the PTA or
SCWF targeting the ECGs recorded by one specific com-
mercial single-channel shirt-type wearable ECG device fea-
ture RRIs that are either stable (experiment 1) or shortened
(experiments 2).

For a firmer HRV analysis theory construction, it will be
necessary to accumulate real data and corresponding evalu-
ation results utilizing several QRS complex detection algo-
rithms. This will enable us to determine which approaches for
each step have the highest affinity in consideration of the pros
and cons inherent in each method along with their relevance
to the accuracy of the HRV calculation. For achieving prac-
tical healthcare services using HRV features under the daily
life environment, an effective data collection approach will
be indispensable because the environmental conditions are
constantly changing. We need to validate the results step-by-
step and investigate the cascading effects over the estimation
target status.

VII. CONCLUSION
Towards more appropriate HRV analysis, in this paper,
we proposed reframing the traditional HRV analysis flow [1]
by subdividing the RRI editing into four steps (Fig. 9) in
accordance with the processing detail (i.e., identification
and editing) and its target unit (i.e., QRS complex or RRI).
In addition, as a dubious QRS complex identification method
for practical use, we utilize the amplitude at the detected
point assuming the use of a single-channel wearable ECG
without a reference. Our experimental results showed that this
processing/unit-based subdivision is theoretically effective
for improving the target HRV features, and the dubious QRS
complex identification method for practical use also main-
tains this effect. Furthermore, we confirmed that the plausible
dubious RRI editing method would be different depending
on the target HRV features and physiological RRI changes.
Our experimental results revealed the following indications
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with regard to the dubious RRI editing: the deletion approach
would be suitable for tHRVs focusing on every two adjacent
RRIs (e.g., pNN50); the replacement approach using a linear
approximation of all the remaining RRIs would be suitable
for tHRVs focusing on the volume (e.g., mean RRI); and the
replacement approach using direct current components would
be suitable for fHRVs.

Since HRV features should be calculated from the NN
interval sequence in theory, we ultimately need to ensure that
all TPs come from pure sinus node depolarization with regard
to both the heartbeat unit and inter-beat interval unit. The
ideal framework for HRV analysis (Fig. 21) should expand
its identification target to dubious RRIs coming from the
physiological disturbances of the heart (e.g., arrhythmias).
As the construction of an ideal framework will necessitate
an interdisciplinary research approach, it is indispensable
to combine the knowledge of clinical medicine and engi-
neering/informatics from the perspectives of both theory and
practice.

APPENDIX
A. ESSENTIAL PRINCIPLES OF ECG
1) PRINCIPLE OF ECG RECORDING AND ITS RELEVANCE TO
RECORDING DURATION
As with other electrophysiological signals, ECGs can be
recorded by either a bipolar or unipolar measurement. In a
bipolar ECG recording, the potential difference between a
pair of electrodes is amplified by one amplifier channel. In a
unipolar ECG recording, in contrast, the potential difference
between one electrode and the reference is amplified. The
reference in a unipolar ECG measurement is a potential cal-
culated from several signals recorded by several electrodes
[17], [18].

In principle, the duration of continuous ECG recording
depends on the duration of electrode-to-skin contact, regard-
less of themeasurement used. In a bipolarmeasurement, ECG
recording is effective so long as two electrodes are placed on
the skin, but it will fail and result in recording nothing if either
of the electrodes comes off. In a unipolar measurement, the
ECG recording is effective when all electrodes are placed on
the skin, but again it will fail if any of the electrodes come
off. In contrast to a bipolar measurement, the consequences
of a failed unipolar measurement are different depending on
which electrode detaches from the skin. Specifically, when
the electrode comes off, the ECG recording will fail, and
when the electrode comprising the reference comes off, the
ECG recording itself might continue but the result will be
different due to the change in the reference calculation.

2) ECG WAVEFORM AND WAVEFORM CHANGES
CORRESPONDING TO ECG RECORDING LEADS
The typical shapes of ECG waveforms are shown in Fig. 1.
These shapes are not constant but rather change depending
on the ECG recording position. Usually, we interpret them in
accordance with the similarity to the standard 12-lead ECG.

The 12-lead ECG is broadly divided into two types based
on the ECG recording plane: one comprises chest leads
focused on the heart in the horizontal plane, and the other
comprises limb leads focused on the heart in the vertical
plane. All the chest leads (i.e., V1 to V6) are unipolar ECGs,
whereas the limb leads are comprised of three unipolar ECGs
(i.e., aVR, aVL, aVF) and three bipolar ECGs (i.e., I, II, III).
Since each lead of the 12-lead ECG focuses on the heart
from a different direction, ECG waveforms recorded from
different leads appear quite different from each other even if
the heartbeat they focus on is exactly the same.

Regarding the chest leads (i.e., V1 to V6), this apparent
difference is easily observable, especially in the shape of the
QRS complexes (Fig. 7(a)). In general, an R wave reaches the
maximum at V5, whereas an S wave reaches the maximum
at V2. Because these apparent waveform changes are caused
by the difference in the electrode placement position in the
horizontal plane, the changes in both the R wave and S
wave corresponding to the chest leads seem sequential. The
height of an R wave and the depth of an S wave become
approximately the same in the transitional zone, which is
normally located around V3 to V4.

B. MEASURES FOR SIGNAL QUALITY ASSESSMENT
1) SIGNAL-TO-NOISE RATIO (SNR)
We used the signal-to-NOISE ratio (SNR) as the reference
index to assess signal quality in experiment 1, in which we
have independent data of the signal (i.e., ECG), noise, and
artifacts. In this SNR calculation, we regard the QRS complex
as the signal. Note that we use the capitalized term ‘‘NOISE’’
to mean components other than heart activity; as described
in the manuscript, the lowercase ‘‘noise’’ means the ECG
with a low-frequency component (i.e., ‘‘baseline wander’’ in
NSTDB [43], [44], [45]) in which we can visually recognize
a QRS complex only on the basis of the waveform.

SNR is calculated as the ratio of the amplitude of the signal
to the one of NOISE, as

SNR =
Vmax(QRS)

Vmax (NOISE) − Vmax(NOISE)
, (B1)

where Vmax(QRS) stands for the maximum voltage ampli-
tude of the QRS complex among all the QRS complexes
obtained from ECG (i.e., MITDB [43], [47], [48]), and
Vmax(NOISE) and Vmin(NOISE) stand for the maximum
and minimum voltage amplitude of the NOISE, respectively.
Hence, the denominator means the difference between the
maximum and minimum voltage amplitude of NOISE.

Since NOISE refers to components other than heart activ-
ity, we obtain it as

NOISE = ECG (ISO) + k × irregularWave. (B2)

Comparing (4) to (B2), the only difference is the first term,
ECG(ISO), which is calculated here by subtracting the ECGs
corresponding to P-QRS-T from the originalECG used in (4).
On the basis of the clinically known normal duration range in
healthy participants [17], we subtracted 0.25 s before the R
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wave as the P-R duration and 0.40 s after the R wave as the
R-T duration, while assuming that the R wave is located at
the center of the QRS complex.

2) SIGNAL-TO-ARTIFACTS RATIO (SAR)
We used the signal-to-ARTIFACTS ratio (SAR) as the
index to assess signal quality in experiment 2, in which
we cannot necessarily isolate noise and artifacts from the
recorded ECGs. In this SAR calculation, the QRS complex is
regarded as the signal. Note that we use the capitalized term
‘‘ARTIFACTS’’ to mean the possible components other than
heart activity; as described in the manuscript, the lowercase
‘‘artifacts’’ means the ECGwith a high-frequency component
in which we cannot recognize a QRS complex only on the
basis of the waveform (defined as ‘‘electrodemotion artifact’’
or ‘‘muscle artifact’’ in NSTDB [43], [44], [45]).

As in the study by [58], we calculate SAR as the ratio of
the amplitude of the signal to one of ARTIFACTS, as

SAR =
Vmax(TPs)

Vmax (ARTIFACTS) − Vmax(ARTIFACTS)
, (B3)

where Vmax(TPs) stands for the maximum voltage amplitude
of a detected point among all the detected points considered
as TPs obtained from targetECG. Because FPs are not related
to heart activity in theory, using only Vmax(TPs) instead of
Vmax(detected points) can prevent the overestimation of the
numerator as well as the underestimation of the denomina-
tor. Vmax(ARTIFACTS) and Vmin(ARTIFACTS) stand for the
maximum and minimum voltage amplitude of ARTIFACTS,
respectively. Hence, the denominator means the difference
between the maximum and minimum voltage amplitude of
ARTIFACTS.

Since ARTIFACTS means the possible components other
than heart activity indicated as the sequence of TPs, we obtain
it as

ARTIFACTS = targetECG (ISO[TPs]) . (B4)

TargetECG(ISO[TPs]) is calculated by subtracting the ECGs
corresponding to P-QRS-T of the detected points regarded as
TPs from the original targetECG. The rules for subtracting
the P-QRS-T part are the same as those used in the SNR
calculation.

In theory, the accuracy of SAR depends on the performance
of the algorithm used for the QRS complex detection as
well as the determination criteria of TPs. To calculate SAR
as appropriately as possible, we used the detected points
obtained by SCWF [24], which was confirmed to better
suppress FPs due to noise/artifacts compared to PTA [20].
Regarding the determination criteria of TPs, as we did in the
manuscript, only detected points classified as ‘‘clean’’ are
regarded as TPs.

C. SAR VALIDATION TARGETING PSEUDO ECG DATASET
As an initial validation of SAR, we calculated both the
SNR and SAR targeting the pseudo ECG dataset used in
experiment 1. Table 6 shows all the calculated target indices.

TABLE 6. SNR and SAR calculated in each condition of experiment 1.

Steel-Dwass tests revealed no significant difference between
the two groups (p = 0.512).

Before discussing our use of SAR for the signal quality
assessment of real ECGs, we would like to clarify its poten-
tial issues. Although no significant difference was observed
between SNR and SAR, SAR sometimes resulted in obtain-
ing a different value from SNR (e.g., condition (iv) MA).
To calculate the SAR more accurately, we need to come
up with a new determination criterion for ‘‘artifact’’ that
can appropriately evaluate muscle artifacts, which do not
necessarily have a larger voltage amplitude than the QRS
complex. However, ‘‘radio exercise no. 1 [52], [53]’’ used
in experiment 2 rarely suffered from this issue in consid-
eration of the workout movement: it does not include any
workout that involves only isometric contraction of the trunk
part. We therefore use the SAR defined in Appendix. B.2
for the signal quality assessment of real ECGs used in
experiment 2.

D. SAR OF REAL ECG DATASET
Table 7 shows all the SAR values calculated from the seg-
mented real ECGs. Steel-Dwass tests revealed there were
significant differences between participants 1 and 3 (p =

0.001) and participants 2 and 3 (p= 0.001), and no significant
difference between participants 1 and 2 (p= 0.9). Among the
three, participant 3 was the most stable from start to finish.
Conversely, participant 1 was the most unstable: although
he had the best signal quality (SAR = 20.6) in workout
no. 1, he also had the worst one (SAR = 0.057) in workout
no. 8.

As for the SAR in each workout, Friedman tests revealed
no significant difference among the 13 workouts (p= 0.283).
However, the average SAR was lower than 1.00 in work-
out nos. 6, 7, 8, 10, and 11, which indicates that artifacts
were larger than the signal (i.e., the voltage amplitude of the
QRS complex). The electrodes of the single-channel shirt-
type wearable ECG device we used were located around the
pit of the stomach, which means it was probably suscep-
tible to the trunk movement: e.g., bending back and forth
(workout no. 6), twisting (workout nos. 7 and 10), or move-
ment that may induce slipping up of the shirt (workout
nos. 8 and 11).

Since the signal quality of this real ECG dataset varied in
each participant as well as in each workout, we were able to
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TABLE 7. SAR during radio exercise no. 1.

validate the performance of the proposed method assuming
a situation targeting an ECG recorded by a wearable ECG
device under the daily life environment.

E. AUXILIARY EVALUATION ON FP IDENTIFICATION
As we confirmed in the experimental results of the RRI
sequence and HRV features, the performance of the practi-
cal FP identification proposed in this study could not reach
the same level as its theoretical performance. Although
the FP identification performance evaluation was not our
main focus, we briefly summarize its current performance
here.

From the perspective of FP identification (i.e., misde-
tected QRS complex identification), the correspondence of
each class used in each formula becomes as follows: TP,
correctly identified misdetected QRS complex; TN, cor-
rectly overlooked QRS complex (i.e., accurately detected
QRS complex); FP, falsely misidentified point as misdetected
QRS complex; and FN, falsely overlooked misdetected QRS
complex.

To evaluate the performance of FP identification in terms of
misdetection and overlook regardless of the number of target
FPs, this evaluation uses the following five measures: F1
score, precision, recall, and specificity [34], [35], as well as
Matthew’s correlation coefficient (MCC) [59]. Each measure
is calculated from the following formula.

• Precision (aka positive prediction value): the measure
that quantifies how well the evaluation target (e.g.,
model, algorithm) avoids false positives.

Precision =
TP

TP+ FP

• Recall (aka positive rate, sensitivity): the measure that
quantifies how well the evaluation target (e.g., model,
algorithm) avoids false negatives.

Recall =
TP

TP+ FN

• F1 score: Harmonic mean of the precision and recall
measures into a single score [34], [35].

F1score =
2 × Recall × Precision
Recall + Precision

=
2TP

2TP+ FN + FP

• Specificity (aka true negative rate): the measure that
quantifies how well the evaluation target (e.g., model,
algorithm) correctly retains true negatives as they are
while avoiding false positives.

Specificity =
TN

TN + FP

• MCC: the measure for binary classification that gener-
ates a high score only if the binary predictor is able to
correctly predict the majority of positive data instances
and the majority of negative data instances. Unlike other
target measures, the value range of MCC is from –1
to 1, where –1 indicates complete mismatch, 1 indi-
cates complete match, and 0 indicates similar to at
random.

MCC =
TP · TN−FP · FN

√
(TP+FP) · (TP+ FN ) · (TN+FP) · (TN + FN )

1) EXPERIMENT 1: PSEUDO ECG DATASET
Tables 8 and 9 list the results obtained from PTA and from
SCWF, respectively. In both tables, N/A indicates target
measures that could not be calculated mainly because of
the FP overlook. Regardless of the algorithm, we confirmed
that there were no detected points classified as ‘‘artifacts.’’
All five evaluation measures thus indicate the performance
of the dubious QRS complex identification by the fail-safe
approach.

Overall, the target measures indicate that the proposed
practical FP identification performed better in PTA than in
SCWF, possibly because PTA had a greater number of target
FPs. Regardless of the algorithm, the proposed practical FP
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TABLE 8. FP identification performance in each condition of experiment 1 (PTA).

TABLE 9. FP identification performance in each condition of experiment 1 (SCWF).

TABLE 10. FP identification performance in each condition of experiment 2 (PTA).

TABLE 11. FP identification performance in each condition of experiment 2 (SCWF).

identification could not identify FPs in condition (iv) MA:
since MA does not necessarily cause a change in amplitude,
our proposed method utilizing the amplitude of each detected
point might overlook FPs.

2) EXPERIMENT 2: REAL ECG DATASET
Tables 10 and 11 list the results obtained from PTA and
from SCWF, respectively. In both tables, N/A indicates target
measures that could not be calculated mainly because of the
FP overlook. In contrast to when the pseudo ECG dataset was
targeted, we confirmed here that several detected points were
classified as ‘‘artifacts.’’ All five evaluation measures are thus
independently calculated from the dubious QRS complex
identification by the fail-safe approach (p1) and by the fail-
soft approach (p2).

As we confirmed in experiment 1, overall, the target mea-
sures indicate that the proposed practical FP identification
performed better in PTA than in SCWF, presumably for the
same reason as in experiment 1 (i.e., the number of target

FPs). Comparing the two practical FP identification methods
(i.e., condition p1 by the fail-safe approach and condition p2
by the fail-soft approach) based on specificity, regardless of
the algorithm, the fail-soft approach performed better than the
fail-safe approach.
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