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ABSTRACT Vehicle re-identification is an important feature of an intelligent transportation system as part
of a smart city application. Vehicle re-identification aims at matching vehicles from images acquired by
surveillance cameras at different locations. During rush hours, vehicles are densely occupied across regions
such as entry/exit of gated campuses, railways, airports, educational institutions, etc. Due to this uneven
flow of traffic, there is a possibility of violation of traffic rules by the vehicles that lead to a security breach.
In such scenarios to speed up the re-identification process, it is justified to look into a specific group of
surveillance cameras to detect and re-identify vehicles on day to day basis in near real-time. However,
the existing vehicle re-identification datasets do not contain zone specific information and therefore can
not be used to evaluate the performance of re-identification algorithms in different zones. In the proposed
work for re-identification, a framework is developed that performs vehicle re-identification across a group
of cameras that monitors varying traffic movements over an area. These areas defined as ‘‘strategic zones’’
comprise a subset of non-overlapping cameras that are installed to monitor non-uniform vehicle movements.
The re-identification framework is evaluated on a novel dataset developed to understand the performance
of vehicle re-identification across strategic zones. The dataset consists of videos of vehicles captured
through 20 CCTV surveillance cameras that are grouped into four different zones. Various experiments
are conducted to study the performance of re-identification across four zones using a deep neural network
with triplet loss, L2 regularization, and re-ranking. The experiments conducted with an image dimension of
224× 224 have demonstrated an overall mAP of 77.22%. Also, for each of the four zones a mAP of 82.16%,
69.1%, 66.5%, and 75.76% is achieved. The experimental results demonstrate huge variations in the accuracy
of vehicle re-identification method across different zones. Therefore, the study assess the possible measures
that can be taken to improve the performance in individual zones for an accurate vehicle re-identification in
intelligent transport system.

INDEX TERMS Keyframes, regularization, surveillance, triplet loss, vehicle re-identification.

I. INTRODUCTION
A great deal of attention has been paid to surveillance in pub-
lic areas where pedestrians and vehicles are more prevalent.

The associate editor coordinating the review of this manuscript and

approving it for publication was Haixia Cui .

Providing robust security measures is a primary concern
for any government and supporting organization due to the
increasing cases of thefts, vandalism, etc. To provide robust
security, remote monitoring systems, mainly CCTV cameras,
are widely used. Applications of surveillance systems include
smart transportation, monitoring, controlling traffic signals
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and traffic movements [1], agriculture [2], and wildlife
monitoring [3].

In recent years, a trend has been followed in major
cities to develop it as ‘‘smart cities’’. The motive of the
smart city is to strengthen economic growth, improve the
quality of living for people, and harness technology that
yields better outcomes. Among the initiatives taken under
the smart city development, providing a robust infrastruc-
ture for Intelligent Transportation Systems (ITS) in traffic
surveillance is still a primary concern. ITS aims to relieve
major problems that frequently affect road transportation,
such as minimizing the congestion to ease the traffic flow,
avoiding potential accidents that impact the environment,
and improving the air quality by reducing the travel delay.
It also guides the travelers with preliminary information about
traffic and real-time traffic density information that enables
the user to minimize their daily travel time. ITS processes
the information acquired by surveillance cameras to auto-
mate traffic monitoring, thereby guiding the traffic authori-
ties to take advert possible mishaps caused by commuters.
The acquired surveillance footage is useful in ITS to carry
out vehicle detection [4], [5], vehicle counting [6], vehicle
re-identification [1] and tracking [7], [8]. Currently, more
efforts are put in place in computer vision to develop a robust
vehicle re-identification framework. Vehicle re-identification
aims to match and retrieve an identical vehicle that is
appeared across a network of surveillance cameras [9]. Using
surveillance camera information, the presence of a vehicle
observed at a particular camera is queried across all surveil-
lance cameras. Vehicle re-identification is challenging due
to variation in viewpoint, illumination, scale, etc. Besides,
vehicles of the same model and color pose a tough task for
re-identification.

For traffic surveillance, a network of surveillance cameras
is usually installed across accidental prone areas such as
highways, freeways, intersection/junction points, etc. It is
also commonly seen around the entry and exit of gated
campuses such as railways, airports, educational institutions,
etc., to monitor the traffic daily. However, the distribution
of vehicles around these areas need not be uniform. During
rush hours, more vehicles will be along the significant inter-
sections and junction points compared to an arterial road.
Additionally, due to the occurrence of unanticipated events,
dense occupancy of vehicles accumulated at arterial regions
could result in a roadblock. In the context of ITS, deploying
ample surveillance cameras to monitor every possible event is
costly. However, an adequate number of surveillance cameras
must be put in place at precise locations to gather rich infor-
mation on traffic flow. The information gathered by these
surveillance cameras should be sufficient enough for ITS to
make proper future decisions that are unanticipated.

The existing re-identification methods do not dissect indi-
vidual regions under surveillance; rather, they utilize the
entire set of surveillance cameras to re-identify the vehicles.
For an areamonitored by a group of cameras that are regularly
exposed to traffic breaches, the global approach to re-identify

vehicles fails to understand the impact of re-identification
models. Therefore, there is a need to analyze the performance
of re-identification algorithms for individual regions. In this
study, the entire surveillance area is divided into regions
that are referred to as zones. These zones comprise a subset
of non-overlapping cameras installed within a few meters
of separation as commonly observed at intersection/junction
points, entry/exit of a gated campus, etc. This study focuses
on studying the performance of vehicle re-identification algo-
rithms in each zone rather than the entire surveillance area.
This approach enables ITS to focus only on a group of surveil-
lance cameras where there is a breach of traffic due to unfore-
seen events and subsequently detect and re-identify those
vehicles in individual zones. In such scenarios, tracking these
vehicles across different zone specific cameras is applicable
if the information about vehicles traveling in these zones is
known in advance. Specifically, this study attempts to answer
this question: Is the performance of vehicle re-identification
algorithm dependent on the location/placement of the surveil-
lance cameras?. This finer zone-wise analysis would pro-
vide useful insights into the performance of the vehicle
re-identification algorithms and any corrective measures to
further improve the re-identification accuracy. Further, zones
with high traffic density/traffic breach can be targeted as
strategic zones. In ITS for these strategic zones, an utmost
priority can be given to providing a robust traffic measure for
a smoother movement of vehicles. Though the datasets such
as VehicleID [10], VeRi-776 [11], VeRi-Wild [12] contains
vehicle information observed across a network of surveil-
lance cameras, they utilize entire surveillance cameras to
supervise the task of re-identification. To the best of our
knowledge, these datasets lack the zone specific vehicle infor-
mation that is useful for re-identification across a group of
cameras. A first-of-its-kind study is conducted to facilitate
such scenarios by developing a re-identification framework
to re-identify the vehicles across different zones.

In this study, videos acquired from CCTV surveillance
cameras of an educational institute are analyzed for zone
specific vehicle re-identification. For this study, the entire
educational institute is divided into four zones. For a given
query vehicle image, the features are computed from the
re-identification network and matched with the features of
the gallery images from the same zone as the query image
(Figure 1). The major contributions of this paper can be
summarized as follows:

• A novel zone specific vehicle re-identification dataset
is developed for performing vehicle re-identification.
Dataset consists of 81 vehicle identities observed at
20 different surveillance cameras. 2,300 manual anno-
tations are provided for vehicle identities observed in
37,722 keyframes.

• A zone specific vehicle re-identification framework is
proposed for re-identifying the vehicles across four
zones. A standard CNN ResNet50 [13] architecture is
used to train the re-identification network with triplet
loss and L2 regularisation.
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FIGURE 1. Outline of zone specific vehicle re-identification for CCTV videos. For a given vehicle query during inference, its presence is determined by
extracting the features of the query vehicle with those vehicles observed across individual zones. Finally, the gallery images are ranked with the vehicles
resembling the query at the top.

• An ablation study is conducted to evaluate the perfor-
mance of vehicle re-identification across the zones for
different sets of parameters.

II. RELATED WORK
Computer Vision-based approach has been used to analyse
images/videos for various applications such as remote sens-
ing [14], [15] precision agriculture [16], [17], surveillance
[18], [19], [20], bio-medical imaging [21], [22], etc. In the
past few years, several works are contributed to conduct
vehicle re-identification using surveillance cameras. In the
present study, a zone-specific vehicle re-identification frame-
work is designed to re-identify vehicles that appear in subsets
of surveillance cameras in different zones. The developed
framework utilizes the detected instances of vehicles using
a standard CNN object detector. There have been several
developments in developing vehicle detectors that are used
along with vehicle re-identification and tracking. Since the
present study focuses on vehicle re-identification, a summary
of vehicle detection methods is provided that aid in perform-
ing re-identification. The following paragraphs summarise
recent developments in vehicle re-identification that utilize
the bounding boxes of vehicles generated by state-of-the-art
object detector models.

A. VEHICLE DETECTION FOR RE-IDENTIFICATION
Object detection, in the traditional approach, involves select-
ing the regions of interest (vehicles in the present study) and
extracting the visual and semantic features from HOG [23],
SIFT [24], and Haar-like features [25] and then classifying
these features using Support Vector Machine, Deformable
Part-Based Models, and AdaBoost Classifiers, etc. Notable
contributions are contributed to detecting vehicles using these
traditional approaches [26], [27], [28].

With the advancement of convolutional neural net-
works, many object detector networks have been devel-
oped to address vision applications. The object detectors
fall into two categories: region proposal based methods and

regression/classification based methods [4]. The methods
based on region proposals are divided into two phases. Region
proposals are generated using different strategies [4] and
these regions are utilized to classify and localize objects
using CNN extractors. Prominent detectors that fall under
these categories are R-CNN [29], Fast-RCNN [30], Faster-
RCNN [31] and Mask-RCNN [32]. R-CNN and Fast-RCNN
methods are computationally expensive since each region
proposal has to be predicted to determine if an object is
present. Moreover, the Mask-RCNN approach contains a
classification and regression branch and additional branches
to predict the segmentation mask. Some of the recent arti-
cles made use of Faster-RCNN and Mask-RCNN that dealt
with triggering vehicle actions for autonomous vehicles [33],
to generate segmentation masks for vehicles for multi-camera
vehicle re-identification and tracking [34], [35].

Regression/classification-based object detectors are one-
step object detectors that map the image pixel information
directly to predict the bounding box coordinates and class
probabilities, thereby reducing a considerable amount of
time compared to region proposal methods. Notable object
detectors such as variants of YOLO and SSD. YOLO was
introduced by Redmon et al. [36] contains an end-to-end
framework that comprises feature extraction which aids in
predicting the confidence scores for different class categories
and bounding box coordinates. Authors proposed YOLOv2
in [37] that adopts strategies such as batch normalization,
dimension clustering, anchor boxes, and multi-scale train-
ing. Authors developed Single-Shot Detectors in [38] which
add feature extractor layers at the end of the backbone net-
work to determine the offsets of bounding boxes for differ-
ent scales and aspect ratios. YOLOv3 [39] uses a deeper
feature extractor network, Darknet-53 that performs predic-
tions at three different scales. It outputs the bounding box
coordinates of the object with a class confidence score.
Researchers conducted a study in [40] that aimed to detect
vehicles observed by UAV’s. They compared the vehicle
detection performance of both YOLOv3 and Faster-RCNN.
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Authors concluded their study by stating that YOLOv3 out-
performs Faster-RCNN by faster execution and processing
time. In [41], authors developed a modified implementation
of YOLOv3 to address the vehicle bounding box localiza-
tion uncertainty for autonomous driving. To improve speed
and accuracy in detecting objects, YOLOv4 [42] introduced
Spatial Pyramid Pooling (SPP), which chooses the most
important contextual information. CSPDarkNet53 is used as
a backbone feature extractor network along with Path Aggre-
gation Network for detecting objects at different levels. The
Bag-of-Freebies (BoF) and Bag-of-Specials (BoS) strategies
are introduced to improve object detection. Authors in [43]
made use of the YOLOv4 object detector to identify vehicles
for re-identification and tracking across surveillance cameras.
Authors in [44] modified the YOLOv4 architecture mainly
to detect target objects in remote sensing images. For aerial
images present in the DOTA dataset, their modified frame-
work aims to detect four different types of targets. To improve
detection accuracy for each target object, a Non-maximum
Suppression (NMS) threshold with varying values for each
category is chosen. Additionally, rather than having a unified
anchor box dimension at various scales, they proposed divid-
ing the targets into three distinct scales. This was done using
an anchor frame distribution that applies K-means clustering
to group these into three distinct scales.

YOLOv5 [45] has similar components to YOLOv4 with
CSP-DarkNet53 as the backbone feature extractor network
and SPP and PANet. A focus layer is integrated by replac-
ing the first three layers of the backbone network to
improve mean Average Precision (mAP). Different variants
of YOLOv5 are available that have minor differences in the
number of layers used in the network architecture. Some
notable contributions toward vehicle detections are presented
in [46] and [47]. YOLOv6 [48] is primarily designed for
industrial applications. YOLOv6 uses a hardware-friendly
backbone network, and decoupled head architecture for cal-
culating regression, objectness, and class confidence scores.
The architecture usesVariFocal loss as classification losswith
SIoU or GIoU loss as regression loss. YOLOv7 is the most
recent variant of the YOLO object detector family. YOLOv7
[49] is developed based on modifying the Efficient Layer
Aggregation Network (ELAN) named E-ELAN (Extended-
Efficient Layer Aggregation Network). The modified archi-
tecture aims to increase detection performance at inference
time without affecting the gradient flow paths of the network.
YOLOv6 and YOLOv7 are presented recently as an object
detector framework with a contribution limited to a study
presented in [50] for vehicle re-identification and tracking.

Transformers in computer vision have grown significantly
in recent years, addressing problems related to object classi-
fication, detection, segmentation, etc. Frameworks that rely
on transformers learn the features of objects by computing
multi-head attention scores that determine the weightage of
patches over neighboring patches. Some of the notable trans-
former based object detectors are ViT [51], Swin [52], DINO
[53], DETR [54] etc. However, these transformer based object

detectors are data intensive for effective learning along with
larger inference time than compared to CNN based object
detectors for performing predictions.

B. VEHICLE RE-IDENTIFICATION WITH SUPPLEMENTARY
INFORMATION
Authors in [55] developed a vehicle tracking frame-
work, namely constrained multiple-kernel (CMK) tracking,
to address the scenarios of a vehicle subjected to occlu-
sion. The developed framework uses a vehicle localization
approach by modeling multiple kernels and associating these
with different forms of 3D deformable vehicle models along
with camera calibration. They evaluated their framework on
the NVIDIA AI CITY Challenge dataset. To detect vehi-
cle instances, they combined the predictions generated by
YOLO9000 [37] and SSD [38] object detectors. They esti-
mate camera calibration by using segmentation to generate
foreground blobs of humans appearing in frames. For track-
ing vehicles, their framework combines the predictions of
the Kalman-filtering framework with CMK. Their approach
of utilizing 3D models also aids in localizing the license
plates of vehicles to perform re-identification. The authors
extended the above work by presenting a vehicle tracking
and recognitionmethod to track and recognize vehicles across
cameras [56]. To re-identify the vehicle, the method utilizes
a 3-D deformable vehicle model to extract vehicle attributes
such as license plate information, type of vehicle, and color.
In cases where the resolution of the license plate is good
enough, the license plate is segmented and recognized using
OCR-based License Plate Recognition (LPR). For vehicle
recognition, they have used SSD to detect the license plate
and estimate the similarity of the detected plate across frames.
Re-identification of vehicles may be enhanced by using
license plate information. In any case, every license plate is
regarded as uniquely identifiable information that may breach
the privacy of the user [57]. In certain multilingual countries,
despite strict government regulations, some drivers misuse
the norms and have license plates with different characters.
Therefore, it will be challenging to scale and adapt LPR to
learn non-uniform license plate information. While vehicle
attributesmay aid in better re-identification, the trade-off may
be seen in providing/modeling this additional information
with annotations and labeling, which requires considerable
effort and time.

In [58], the authors addressed vehicle re-identification
problems such as data annotation difficulties and visual
appearance mismatch across two vehicle re-identification
datasets. Here the authors have proposed an adaptive fea-
ture learning method for vehicle instances observed across
different datasets. To re-identify the vehicles for datasets
that do not contain ground truth labels, authors made use
of available vehicle re-identification datasets such as VeRi
[59], CompCars Surveillance [60], and BoxCars [61] which
contain ground truth information such as identity of a car,
model, and other supplement information. A CNN model is
further trained using this information to learn vehicle features
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to improve the re-identification of vehicles. To generate pairs
of vehicles that convey a positive match, those vehicles
appearing in successive frames are considered, while with
the fact that the exact vehicle cannot appear at multiple loca-
tions, vehicle detection pairs for a given frame at a specific
timestamp are considered as negative pairs. Their method
fails in re-identifying the vehicles containing discriminative
information. Authors in [62], incorporated the discriminative
local cues and global information of the vehicles to perform
multi-scale attention for re-identifying the vehicles. A bilin-
ear interpolation is used to obtain features at different scales
fused with feature maps generated by attention blocks. These
blocks are utilized to mine discriminative features of vehicle.

A dual attention re-identification network is proposed by
authors in [63] that selectively scores the vehicle parts with
higher attention scores. The framework extracts the vehicle
features by using a dual branch CNN network. This network
makes use of self-attention layers that learns to identify the
different region of interest in vehicle. Sub-networks later
refine regional features of the ROIs to obtainmore coarse/fine
level vehicle recognition. Recently several works to perform
vision-related tasks such as image recognition detection and
segmentation using the transformer network have been con-
tributed. ACNNand transformer-based vehicle feature fusion
is performed to re-identify the vehicles [64]. ResNetmid
learns semantic and global features, and a Swin transformer
[52] is used to extract the vehicle features at different scales.
Vehicle features are extracted and fused at inference to rank
the gallery vehicle images for a given query. The authors
in [65] compared vehicle re-identification models for trucks
utilizing axle spacing and vehicle lengths. They formulated
the re-identification as a mathematical assignment problem
where models such as Naïve Bayes, Bayesian models, and
Gaussian mixture models.

To address a generalization problem associated with
cross-dataset vehicle re-identification, authors in [66] pre-
sented a framework that fuses both visual and spatio-temporal
information. The authors highlighted the drawbacks when
a re-identification network trained on a single dataset may
fail to generalize the representation of vehicles for differ-
ent vehicle re-identification datasets. Their framework com-
prises a siamese network that consists of parallel networks
of shared CNN feature extractor layers. Data augmentation
is performed on vehicles appearing in the source dataset.
These networks aim to learn vehicle features from the source
dataset and the augmented version of the vehicle from the
same dataset using a siamese classifier. Furthermore, for a
pair of images appearing in an unlabeled dataset, knowledge
about spatio-temporal features of vehicles is learned using
transfer learning techniques from a siamese network.

Vehicle re-identification and abnormality detection are
performed in [67]. Their approach consists of three mod-
ules: a deep metric embedding module, vehicle attribute
extraction module, and re-ranking. Authors utilized the infor-
mation of vehicles such as vehicle category, vehicle type,

and pose information to train a classifier for performing
re-identification. They have estimated the pose of the vehicles
to determine the similarity of a query vehicle image across
the collection of vehicles observed in the gallery. As a part of
optimization, authors have used the bag-of-words approach
to re-rank the matched gallery-query images.

Authors in [68] have proposed a framework to perform
vehicle re-identification using vehicle location and time
stamps. They have addressed how re-identification is chal-
lenging to achieve by considering just image information.
A feature ensemble technique to increase discriminative
information of the vehicle, a system to extract the location and
time information by considering raw video input, and a time
stamps to remove incorrect images during re-ranking were
developed. As a part of extracting feature representations,
they have used CNN-based DenseNet-121, which is trained
using triplet and cross-entropy loss. The network has been
trained under three scenarios to generate a discriminative rep-
resentation of the vehicle. A temporal pooling is performed
on the gallery images to obtain temporal information. The
query and the gallery images are matched with location and
time stamps information to perform re-identification. The
camera locations are used to infer the presence of a vehicle
in the scene. The number of gallery images considered has
been restricted by constructing a transfer matrix. This matrix
provides information about the distance between cameras
installed to perform re-identification. Using this distance
matrix, the maximum time required for a vehicle that appears
in a pair of cameras can be determined, thereby eliminating
those images that exceed the threshold distance. The matrix
refines the gallery images by eliminating redundant images
that do not contribute toward vehicle re-identification.

As a part of the AI City challenge [69], [70] several works
were contributed by considering the subset of cameras to
track and identify anomalous activities observed at different
areas where CCTV cameras are installed. In [71], authors
developed a locality-aware multi-camera tracking algorithm.
Here the vehicles are initially detected, and reliable tracklets
are computed from initial detections. For each scene that
contains a crossing or a turn, the trajectories are linked to per-
form cross-camera re-identification and tracking. The vehi-
cles in the scenes are selected using ROI refinement, spatial-
temporal smoothness, and scene division technique. In [72],
as a part of the AI City challenge, authors have addressed how
to identify anomalous activities such as identifying stalled
vehicles in a scene. Here a road mask is created to identify the
vehicles on the street. From the known fact that the movement
of anomalous vehicles compared to other slower vehicles,
these vehicles are flagged with fewer movements than others.
A pre-trained Mask-RCNN [32] is used to generate a bound-
ing box for vehicles appearing in the scene. Stalled vehicles
are then identified where there is an increase in overlap of a
bounding box for vehicles appearing in successive frames.

Apart from the above works for re-identifying vehi-
cles in CCTV cameras, studies specific to re-identifying

29238 VOLUME 11, 2023



B. A. Holla et al.: Enhanced Vehicle Re-Identification for Smart City Applications

vehicles using UAVs have been performed in recent years
[73], [74]. Along with these works, a vehicle re-identification
framework is presented in [75] to re-identify the vehicles
observed across two different modalities(CCTVs and UAV).
However, the current study focuses on the impact of vehi-
cle re-identification across zones monitored by surveillance
cameras.

The approaches mentioned above dealt with issues of
improving re-identification performance. In many cases,
re-identification methods considered complete surveillance
camera information to address different use cases. Nev-
ertheless, there is a lack of study that performs vehicle
re-identification over a given area with a subset of cam-
eras. Performing zone specific re-identification enables us
to analyze which area is heavily exposed to traffic mishaps,
abnormal events, violations of traffic rules, etc. In doing so,
stringent measures can be taken in the future in those areas
that are subjected to severe traffic outbreaks.

Note that most existing works on available datasets such as
Comprehensive Cars [60], VehicleID [10], VeRi [59] etc., the
vehicle information is queried across all surveillance cameras
to estimate the presence of a vehicle. To the best of our
knowledge, no existing dataset studies the performance of
vehicle re-identification algorithms for individual zones.

III. METHODOLOGY
The surveillance data is acquired from an educational insti-
tution to study the performance of vehicle re-identification
algorithms. The details of surveillance data used for
re-identification are discussed in Section III-A. As a pre-
processing step, a shot boundary detection (Section III-B)
is applied to generate keyframes. For the detected identi-
cal vehicle instances using a standard object detector, the
license plate is blurred and assigned a unique vehicle iden-
tification number. Subset of identical vehicles are used for
performing vehicle re-identification (Section III-C). During
the inference, the presence of the identical vehicle given as
a query is looked upon as the vehicle appeared in each zone
(Section III-D).

FIGURE 2. Outline of a map with zone specific CCTV camera locations.

A. ZONE SPECIFIC VEHICLE RE-IDENTIFICATION DATASET
The videos for this study have been acquired from the
surveillance cameras (CCTV) installed on the campus of
our educational institute (Manipal Institute of Technology,
Manipal, India). Of the entire cameras available on the

campus (Total area: 188 acres), the cameras considered for
this study are taken such that the probability of traffic move-
ments is non-uniform. Camera locations include entry/exit of
campus, academic section, hostel premises, etc. The zones are
manually identified for each of the chosen 20 cameras, and
the subset of cameras is grouped in each zone. On average,
each zone comprises 4 to 6 cameras. Figure 2 shows the
camera identities corresponding to each zone. Zone 1 and
2 are comprised of surveillance cameras that are located in
the academic area within the campus, where dense traffic
movements are observed very often. Zone 3 consists of a
fleet of cameras situated near roads that connect different
hostel blocks, and zone 4 contains group surveillance cameras
at the entry/exit point near the hostel premises. The data is
gathered from Hikvision surveillance cameras with a reso-
lution of 1920 × 1080p at 20fps. Table 1 summarizes the
CCTV surveillance data information gathered for two days.
Also, Figure 3 illustrates the sample images from surveillance
cameras particular to each zone.

During the inference, vehicle re-identification is evaluated
for each zone individually. Two days of videos regarding
traffic movements are collected using surveillance cameras.
81 identical vehicles were identified across 20 cameras for
two days of collected data. During data acquisition, there
were dense traffic movements across zones 1, 2, and 4 com-
pared to zone 3. Using these observations, during infer-
ence, for every probe vehicle image the performance of
the re-identification framework is analyzed for non-uniform
vehicle movements across zones.

TABLE 1. Description of data acquisition for CCTV videos.

B. DATA PREPROCESSING: SHOT BOUNDARY DETECTION
Vehicle re-identification involves identifying a vehicle of
interest in the respective installed surveillance camera and
thereby querying the identified vehicle to check for its pres-
ence if other surveillance cameras observe it. Table 1 shows
that the data acquired by CCTV surveillance cameras are at
20 fps. Hence the change of information from frame to frame
is minimal.

Processing every frame for performing vehicle re-
identification is expensive, and it can be minimized by
considering specific frames called keyframes using a shot
boundary detection algorithm.Moreover, the duration of each
video ranges from 15 to 40 min. Hence processing every
frame with its original frame dimension for shot boundary
detection is computationally expensive. Initially, every frame
is resized to a dimension of 512 × 512. The frames are
further divided into a non-overlapping grid of 16 × 16. For
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FIGURE 3. Few keyframes from the various cameras along the four zones studied in this work. The CCTV cameras are numbered as ci .

two consecutive frames, the histogram difference is computed
using the Chi-Square distance as given in the equation (1)

Di =
1
N

N∑
k=1

(Hi(Ik ) − Hi+1(Ik ))2

Hi(Ik )
(1)

where Hi(Ik ) denotes the histogram of k th image patch Ik of
ith frame. Similarly, Hi+1(Ik ) represents the histogram of k th

image patch Ik of (i + 1)th frame, Di represents the average
histogram difference between ith and (i + 1)th consecutive
image frames andN represents the total number of grids in an
image. For a given input image of size 512× 512, 1024 grids
are obtained. The difference Di is calculated for every pair of
consecutive frames and shot boundary is identified as given
in equation (2)

Shot_boundary =

{
True Di − Di+1 > Tshot
False otherwise

(2)

The value for Tshot is determined experimentally. Figure 4
shows the variation of this distance for a particular video.
It can be seen that the shots can be identified by selecting
Tshot = 0.2. If Di − Di+1 is greater than the threshold
value Tshot a shot boundary is identified. This study iden-
tifies the middle frame within a shot as a keyframe. Later
re-identification of vehicles is carried out for the identified
keyframes by considering it with the original image resolu-
tion (1920 × 1080p).

FIGURE 4. Histogram difference variation (Di − Di+1) for a particular
CCTV video.

The generated keyframes are given as an input to a stan-
dard object detector YOLOv3 [39] to detect the presence
of vehicles in these keyframes. For each detected vehicle
by YOLOv3, those vehicles (identical vehicles) appearing
at a minimum of two surveillance cameras are manually
annotated using the Microsoft Visual Object Tagging tool
(MS Vott). To maintain the privacy of the owner of the
vehicles, the license plate of each vehicle observed in the
selected keyframes is manually blurred. Among the total
identical vehicles observed, a summary of these vehicles’
appearances corresponding to the four zones is shown in
Table 3.

29240 VOLUME 11, 2023



B. A. Holla et al.: Enhanced Vehicle Re-Identification for Smart City Applications

TABLE 2. Data annotation statistics for CCTV videos.

TABLE 3. Details of appearance of identical vehicles across four zones.

C. VEHICLE RE-IDENTIFICATION
An existing deep neural network is used as the backbone
architecture to perform vehicle re-identification. The prin-
ciple behind performing vehicle re-identification is inferred
from work person re-identification [76]. The re-identification
is performed with an initial minimal setup followed by a few
modifications to the architecture to carry out a post-set of
experiments. The workflow of each experiment undertaken
to perform re-identification is summarized below.

1) MINIMIAL SETUP
The Figure 5 describes the overall architectural diagram for
vehicle re-identification. To learn vehicle representations,
ResNet50 [13] is considered a backbone model. The images
of vehicle identities are passed through a ResNet50 archi-
tecture. A global average pooling layer is added after the
fifth residual block of ResNet. This layer squeezes the spatial
dimension of the feature maps. Except for the minimal setup,
the post set of experiments uses a clipping layer inserted
after the pooling layer, which performs an element-wise value
clipping to ensure that the values are in close intervals. These
values are further normalized using a BatchNormalization
[77] layer. The network’s last layer comprises a fully con-
nected dense layer containing hidden units equal to the total
vehicle identities observed in the training phase of vehicle
re-identification. The network is trained using categorical
cross-entropy loss to determine the probability of a vehi-
cle instance belonging to the same vehicle identity. A label
smoothing regularization is adopted while training the model
with categorical cross-entropy loss. The architecture is ini-
tialized with pre-trained ImageNet [78] weights for the first
four residual blocks of ResNet50.

A label smoothing regularization is adopted while training
the model with categorical cross-entropy loss. For a given set
of training samples with ground truth labels y ∈ {1, 2, . . . .K }

the equivalent one-hot encoded label yhe(i) is equal to 1 if
the given index i is as the same as label y and 0 otherwise.
Using the hyperparameter α ∈ (0, 1) the smoothed label

FIGURE 5. Vehicle re-identification architecture. For minimal setup
experiment, the blocks colored green are excluded.

is calculated as

y′he(i) = (1 − α)yhe(i) +
α

K
(3)

Here α determines the amount of label smoothening, and
K denotes the number of class labels. The random erasing
[79] technique is adopted while training the network, which
considers a rectangular portion of an image and erases its
pixels with random values. It is used to handle those vehicle
images subjected to partial occlusion. At the inference stage
for all vehicle re-identification experiments, the vehicle fea-
ture embeddings after global average pooling are extracted as
the representations, and the cosine similarity distance metric
is adopted to quantify the correlation among vehicle images.

2) VEHICLE RE-IDENTIFICATION+TRIPLET LOSS
Apart from theminimal setup, the re-identification network is
trained with the triplet loss [80]. As illustrated in the Figure 5,
for the generated feature embeddings after applying global
average pooling, the re-identification network utilizes these
embeddings to compute triplet loss. Given an anchor image of
a vehicle instance, triplet loss minimizes the distance between
the anchor and the vehicle instance of the same identity while
maximizing the distance of a vehicle instance belonging to
a different identity. Triplet loss formulates the decision to
classify the vehicle identity belonging to a particular class
using a margin parameter.

3) VEHICLE RE-IDENTIFICATION+TRIPLET LOSS+L2
REGULARIZATION
Another set of experiments conducted for vehicle re-
identification is the utilization of L2 regularization. Here the
selected regularization factors are updated adaptively through
backpropagation. For a set of neural network parameters
T = {wm | m = 1, . . .M}, a lower regularization factor is
applied to initial and higher regularization factors at deeper
layers. wm denotes either network parameters such as kernel,
gamma, bias, beta and dense. The regularization factor λm is
associated with each network parameter such that

Lλ(T ) = L(T ) +

M∑
m=1

(λm||wm||
2
2) (4)

Here the L(T ) is the weighted sum of triplet loss and cate-
gorical cross entropy loss and Lλ(T ) is the revised function
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after applying regularization. The regularization parameter
λm ∈ R+. To ensure the regulraization factors λm always
have positive values, a hard sigmoid function is applied. It is
defined as

f(x) =


0, if x < −c
1, if x > c
x
2c

+ 0.5, otherwise
(5)

During experimentation, the value for c is taken as 2.5.
Further details regarding the L2 regularization can be

found in [76].

D. ZONE SPECIFIC VEHICLE RE-IDENTIFICATION
The performance of vehicle re-identification during infer-
ence is studied using the vehicle information gathered by a
group of cameras particular to each zone. As pointed out,
the 20 surveillance cameras are clustered into four zones.
As illustrated in the Figure 1, vehicle re-identification is
evaluated for each zone. Here the gallery set consists of those
images of vehicle identities observed by cameras belonging to
individual zones. The appearance of a query vehicle is deter-
mined by verifying its vehicle identity and camera identity
with those zone specific vehicle identity images appearing
in the gallery. Further, using the gallery and query embed-
dings, a similarity score is computed to rank the appearance
of query images to zone specific vehicle images. Vehicle
re-identification scores are estimated individually for each
zone using the computed similarity matrix.

IV. RESULTS AND DISCUSSION
The section highlights the experimental details carried out to
perform vehicle re-identification. Also, the subsequent sec-
tions give the particulars of re-identification scores obtained
using the available metrics.

A. IMPLEMENTATION DETAILS OF RE-IDENTIFICATION
NETWORK
The annotated vehicle instances observed on two days are
considered for vehicle re-identification experiments. To train
the re-identification network, 46 vehicle identities appearing
across 20 surveillance cameras are considered. The exper-
iment is carried out for two different image dimensions,
128 × 128 and 224 × 224, respectively. Accordingly, the
ResNet50 architecture is implemented separately for two
different image dimension vehicle identities. The network
is trained using the Batch Hard [81] triplet loss variant for
different batches of inputs. For each experiment, the vehicle
identities, i.e., (P) [81] considered training the triplet loss
network, are taken at multiples of 3 beginning from 3 to 15.
Adam optimizer is used to train the network with the learning
rate of 2e−4 for 200 epochs. The learning rate is divided
by ten once after the performance on the validation plateaus.
The selected regularization factors λm in Equation 4 are set to
0.005 in the experiment. A probability of 0.5 is taken to per-
form Random Erasing data augmentation. During inference,

983 gallery images comprising 35 vehicle identities observed
at 20 surveillance cameras are taken as gallery/test set.
35 vehicle identities are considered in the inference phase
to determine their existence in the gallery set. To improve
the accuracy of re-identification, k-reciprocal re-ranking [82]
is adopted to refine the initial query to gallery set ranking.
Starting with the minimal setup for vehicle re-identification,
the performance of re-identification is studied for each zone
individually. Further the network is evaluated for post-set
of experiments using Triplet Loss, L2 regularization, and
re-ranking techniques.

TABLE 4. mAP and rank-k score for minimal setup.

1) EVALUATION METRICS
To evaluate the performance of vehicle re-identification,
available metrics such as the mean-average-precision (mAP)
and rank-k accuracy are adopted. For each query, a distance
matrix is computed with all the gallery images. The distance
matrix measures the similarities of a query to gallery images.
It is sorted such that all vehicle instances similar to the query
appear at the initial entry of the matrix, and different vehicle
instances appear at last. Existing vehicle re-identification
datasets such as VehicleID [10], [59], VeRi-776 [11], VeRi-
Wild [12] does not include zone specific information. Hence
the proposed re-identification framework cannot be evaluated
on these datasets. In this work, the re-identification metrics
for a given set of query images are calculated for two cases
1) Entire 20 surveillance cameras 2) zone specific surveil-
lance cameras.

1) Entire 20 surveillance cameras: Here the occurrence
of a given query is determined across each surveillance
camera. From the distance matrix estimated for each
query image, the gallery samples are discarded if they
have been retrieved from the same surveillance camera.
As a result, more focus is laid on performing cross-
camera re-identification. Accordingly, both mAP and
rank-k accuracy are calculated.

2) Zone specific surveillance cameras: Here the appear-
ance of a given query is determined by looking into
individual zone camera information. While calculating
the metrics such as mAP and rank-k scores, solely
for each zone, the identity of the query vehicle is
verified with vehicle images that appeared across con-
sidered zone cameras. Apart from the minimal setup
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TABLE 5. mAP and rank-k score for ResNet50+Triplet loss.

undertaken to perform re-identification, a post set of
experiments such as Triplet loss and Triplet Loss with
L2 regularization are implementedwith andwithout the
re-ranking strategy.

For each of the experiments conducted the computed
scores are tabulated in the Tables 4,5,6,7,8 respectively. Also
Figure 6 illustrates the top-10 match for different query iden-
tities observed across entire 20 surveillance cameras.

V. ABLATION STUDY
An analysis of vehicle re-identification algorithms performed
across four zones is examined for different sets of experi-
ments. For each experiment, the parameter P (total vehicle
identities considered in a batch) [81] is varied in multiples of
3 to study the re-identification performance.

1) Minimal Setup: The re-identification network is
trained using categorical cross-entropy loss as a min-
imum setup. During the inference, the presence of
query vehicle images is determined by verifying it
with vehicle identity images appearing in each zone.

TABLE 6. mAP and rank-k score for ResNet50+Triplet Loss+Re-Ranking.

Accordingly, the metrics are calculated. The network
trained with input dimension 224× 224 generates bet-
ter scores than with the network trained with input
dimension of 128× 128 as shown in Table 4. An mAP
of 59.82% is obtained during the inference of query
images across entire surveillance cameras. An mAP
score of 59%, 41.01%, 13.21%, and 55% are obtained
while inferring the presence of query vehicle instances
for each of the chosen four zones.

2) ResNet50+Triplet Loss: The addition of triplet loss
enables the re-identification network to distinguish
positive and negative labeled vehicles using the gener-
ated feature embeddings. The vehicle re-identification
experiment with backbone ResNet50 trained with
triplet loss is shown in Table 5. It is observed that
re-identification performance is significantly better
than the network trained with minimal setup. The per-
formance of the vehicle re-identification for a network
trained with triplet loss gives better results for inputs
of dimension 224 × 224 for a chosen parameter P = 3.
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TABLE 7. mAP and rank-k score for ResNet50+Triplet Loss+L2
regularization.

Concerning the above parameters, an mAP of 62.37%
is obtained when the query image is looked at across
the 20 surveillance cameras. Similarly, for each of the
four zones, an mAP of 71.27%, 65.97%, 31.24%, and
55.31% is obtained.

3) ResNet50+TripletLoss+Re-ranking: Re-ranking is
widely used to increase the re-identification perfor-
mance to obtain a better rank-k score for a given
query image. It is used to improve the generated rank-
ing results for a given query. Using the re-ranking
technique for ResNet50 trained with the triplet loss
improves re-identification results by a significant per-
cent. For the same parameters observed in the previous
experiment, i.e., ResNet50+Triplet Loss, an mAP of
77.07% is obtained considering the entire surveillance
cameras for re-identification (Table 6). Also, an mAP
of 80.6%, 74.4%, 39%, and 77.89% is obtained when
the query images are inferred to each of the four
zones.

TABLE 8. mAP and rank-k score for ResNet50+TripletLoss+L2
Regularization+Re-ranking.

TABLE 9. Overall summary of top vehicle re-identification results for
different experiments.

4) ResNet50+TripletLoss+L2 Regularization:
Experiments with L2 regularization are also conducted
for vehicle re-identification. The regularizer penalizes
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the network to avoid overfitting and allow a better
generalization of vehicles while learning the vehicle
representation. The re-identification scores, when com-
pared for both image dimension, it is observed from
Table 7, for input dimension of 224 × 224 with triplet
loss parameter P = 6, an mAP of 61.47% is obtained
when considering complete surveillance camera infor-
mation to infer the presence of query images. Similarly,
an mAP of 66.51%, 58.73%, 32.75%, and 58.83% is
obtained for each of the four zones.

5) ResNet50+TripletLoss+L2 Regularization+Re-
ranking:
Similar to the experiment (ResNet50+TripletLoss+re-
ranking), the use of re-ranking notably improves the
mAP scores. From the Table 8 for the network trained
with an image dimension of 224 × 224 with the
batch hard triplet loss parameter, P = 9 yields a
mAP of 77.22% for inferring the query images across
20 surveillance cameras. Also for each zone, the mAP
of 82.16%, 69.1%, 66.5%, and 75.76% are obtained.

TABLE 10. Comparing average execution time for re-identification of
vehicles across zones for ResNet50+TripletLoss+L2
Regularization+Re-ranking.

The re-identification scores in the above experiments were
significantly better for the network trained with an image
dimension of 224 × 224 . The network trained with smaller
image dimensions, i.e., 128 × 128 , cannot learn the precise
vehicular representations required to distinguish the vehicles
during inference. Also, while propagating through ResNet50
architecture to train an image of 128×128, the feature embed-
ding generated at deeper layers is of lower spatial dimension
than the network trained with an image of 224×224. It leads
to a poor generalization of vehicle representation required to
rank the gallery vehicle information for a given query image
during inference.

It can be observed that the performance of vehicle
re-identification is significantly less for zone 3 compared
to other zones. From inferring the surveillance camera data
particular to zone 3, it is observed that zone 3 has fewer
vehicle movements than the other three zones. Due to limited
vehicle movements, a vehicle that appeared in zone 3 traveled
at a higher speed resulting in limited vehicle data acquisition
by surveillance cameras in zone 3. Hence the pre-processing
step of identifying keyframes results in the generation of
fewer frames (Figure 7) with the appearance of identical
vehicles required to perform re-identification. Hence, deter-
mining a given probe image in zone 3 that contains limited

vehicle instances appearing in keyframes results in lower
re-identification scores. Compared to other zones, vehicles
appearing in zone 3 are observed from different perspectives
making the network difficult to distinguish similar vehicle
feature embeddings observed in zone 3. It is illustrated in
Figure 8. Due to these variations in viewpoints that are signif-
icantly high in zone 3 compared to other zones, it is observed
that the vehicle re-identification algorithm is dependent on
the location/placement of surveillance cameras.

The minimal setup yields a lower performance among the
different experiments conducted to perform re-identification
across zones. Here the re-identification network is trained
using categorical cross-entropy loss that performs a pairwise
match. However, the network fails to obtain a match for
a given identical query if other cameras observe the query
vehicle image from different viewpoints. For those experi-
ments that are trained using triplet loss, the network’s per-
formance is influenced by the parameter P. The performance
of the re-identification network gave lower results when the
parameter P was large. For a larger value of P, in each
iteration, triplet loss considers P vehicle identities to train the
triplet loss network. Since the number of vehicle identities
considered for the experimentation is small in number, the
triplets generated for each batch to train the network may
contain overlapping identical vehicle instances. The use of
L2 regularization for re-identification (Table 7) resulted in
satisfactory scores when compared with the network trained
solely on triplet loss (Table 5). It can be observed that for
larger values of P (i.e. P=12 and P=15 for image dimension
224 × 224 in Table 5 and Table 7) network trained with
L2 regularization yields a better re-identification score. The
regularization factor penalizes the network from overlearning
the same representation of vehicles when a batch of images
is fed to the network for a higher value of P. Experiments
with the re-ranking approach as a post-optimization step
yield a higher re-identification score. The network trained
with triplet loss with the application of L2 regularization
and re-ranking yields a good re-identification score for larger
values of P (i.e. P=12 and P=15 in Table 6 and Table 8) than
comparedwith the network trained triplet loss and re-ranking.
Table 9 summarizes the overall top vehicle re-identification
scores yielded in each of the experiments conducted for vehi-
cle re-identification. As highlighted, vehicle re-identification
scores for each experiment were significantly better for
images of dimension 224 × 224. For each of the experi-
ments conducted, the performance of vehicle re-identification
is found to be superior with ResNet50 backbone network
trained with Triplet Loss+L2 regularization and re-ranking
(Table 9).

Sometimes, it might be difficult to process the vast amount
of surveillance information necessary for re-identifying a
vehicle in the real world due to many vehicles moving at the
same time. Moreover, looking at all the surveillance videos
to re-identify a vehicle of interest can take a great deal of
time, thus causing a delay in the re-identification process.
Zone specific re-identification can minimize this setback by
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FIGURE 6. Top-10 match for query vehicle identities. Here the first column of every row is a query vehicle image for which the top-10 matches obtained in
the gallery set are shown in subsequent columns. Images with green border and red border are the possitve matches and negative matches, respectively.

FIGURE 7. Selected keyframes for a given vehicle identity observed in zone 3 surveillance videos. The first row illustrates the raw frames with the
presence of the vehicle. The second row highlights only the selected keyframes using shot-boundary detection.

FIGURE 8. Illustration of a vehicle (vehicle with red bounding box) observed at surveillance cameras of zone 3 with significant viewpoint changes.

considering a subset of surveillance data. In a small exper-
iment (Table 10), the average re-identification time for
35 query vehicles is computed when they are re-identified
using the entire surveillance cameras (20 cameras). This is
determined by estimating the average time required for a
given query vehicle that needs to be re-identified across all
zones. Also, the average execution time for re-identifying
the vehicles in each zone is also shown in Table 10. The

model was executed on Intel Xeon Silver 4110 processor
clocked at 2.10 GHz, 32 GB of RAM, and a Nvidia GeForce
GTX 1080Ti GPU. The average re-identification time is
calculated for query vehicles by calculating the time spent
extracting features of each query vehicle and features of
vehicles appearing in individual zones, and then ranking
the gallery vehicles according to their near similarity to the
query. Using all surveillance cameras, it takes an average
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of 0.862 seconds to re-identify a query vehicle. It can also
be observed that among the four zones, zone 3 contains a
relatively small number of keyframes. Consequently, the time
taken to re-identify the vehicles across zone 3 gallery images
is minimal (0.211 seconds) compared to the rest. While
considering zone specific surveillance information there is
a 65.7% (Zone 1), 50.7% (Zone 2), 75.6% (Zone 3) and
34.6% (Zone 4) of reduction in processing the surveillance
information than considering entire surveillance cameras.
The significant reduction in the execution time for vehicle
re-identification using zones based approach will result in
faster identification of vehicles. Indeed, the execution time
depends on the total number of frames available as gallery
images. The proposed work utilizes shot boundary detection
method to identify key-frames thereby reducing the total
number of gallery images. This process of eliminating the
redundant frames in gallery images reduces the execution
time of the vehicle re-identification method. As a result,
zone specific surveillance would lead to faster execution,
thus cutting down on the time needed to re-identify the
vehicles. Using zone specific surveillance, re-identification
is performed using a similar methodology as traditional
re-identification; however, only a subset of cameras are pro-
cessed at a time, allowing for faster vehicle re-identification.
Therefore, zone specific re-identification is preferred in ITS
over the traditional method of re-identification when design-
ing robust traffic management systems for major metropoli-
tan areas.

VI. CONCLUSION
Intelligent Transportation Systems play a prominent role in
providing robust traffic management and security to improve
transportation network safety and sustainability. In the event
of a traffic breach or the cause of an unforeseen event occur-
ring around an area monitored by a group of surveillance
cameras, a strategic decision has to be taken by ITS to avoid
any damage to the environment or commuters. This paper has
undertaken a study to perform vehicle re-identification algo-
rithms across zones with non-uniform vehicle movements.
This study assesses the need for vehicle re-identification
with a subset of surveillance cameras in a region exposed
to traffic breaches. A dataset has been developed to per-
form zone-specific vehicle re-identification that comprises
81 vehicle identities observed across 20 surveillance cameras.
The surveillance cameras are grouped into four zones to mon-
itor non-uniform traffic movements. The re-identification is
conducted using a standard CNN backbone architecture for
two different image dimensions using triplet loss, L2 regu-
larization, and re-ranking. The network trained with triplet
loss alongwith L2 regularization and re-rankingwas robust in
re-identifying vehicles across zones. Re-identifying vehicles
incorrectly may occur when there is a significant change
in viewpoint and poor placement of certain cameras in a
zone where human intervention may be possible. In addition,
zone-specific re-identification reduces the execution time for
re-identifying vehicles in surveillance systems. Zone specific

re-identification is therefore an option for ITS that minimises
the major trade-offs that need to be made in comparison to the
traditional approach of re-identifying the entire surveillance
system.
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