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ABSTRACT This paper proposes an RGB-D sensor-aided ray-tracing simulation framework for indoor
radio map construction that models indoor information, such as walls and obstacles, as a set of cuboids.
Radio maps can accelerate indoor wireless systems, including resource optimization and fingerprint-based
localization. We can construct an accurate radio map using a ray-tracing algorithm with precise indoor
structures and obstacles information. However, it is challenging to acquire this indoor information because
manual observations of these are expensive. To mitigate this critical drawback, we propose utilizing three-
dimensional information obtained from RGB-D images for ray-tracing simulation. The proposed method
semi-automatically models indoor information as cuboids from three-dimensional information with RGB-D
images. The proposed method then feeds these cuboids into a ray-tracing simulation. Indoor experiments
using wireless LANs over 5180 and 2452 MHz clarified that the proposed method accurately constructs the
radio map.

INDEX TERMS Radio map construction, RGB-D sensor, 3D reconstruction, point cloud.

I. INTRODUCTION
Radio maps visualize the average received signal power
values [1]. Although related discussions were initiated in the
field of dynamic spectrum sharing [2], [3], [4], [5], recent
results have shown their advances in various indoor wireless
applications, such as wireless resource optimization [6], [7],
[8], localization [9], [10], [11], [12], [13], [14], [15], and
navigation [16]. Because the accuracy of radio maps affects
the performance of these applications, it is crucial to develop
an accurate radio map construction method.

Radio map construction methods can be categorized
into (a) crowdsensing-based and (b) simulation-based
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approaches. In the crowdsensing-based approach, mobile
terminals feedback the received signal power values to a
centralized server. The received power information of the
entire area is subsequently estimated by grid-averaging the
observation results and performing spatial interpolation (e.g.,
Kriging [17]). However, the accuracy of this approach
relies on the shadowing correlation distance. Because indoor
channels tend to exhibit a short-range correlation distance
[18], this approach does not necessarily yield an accurate
radio map [19].

Simulation-based approaches include empirical model-
based methods [20] and ray-tracing simulations [21]. The
empirical model-based approach can approximately estimate
a radio map with low complexity; however, its accuracy is
limited owing to the difficulty in estimating the shadowing
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TABLE 1. Classification of radio map construction methods.

factors. In contrast, ray tracing can be used to construct a
highly accurate radiomap that reflects the effects of structures
and obstacles.

However, the ray-tracing-based approach requires precise
information about indoor environments, such as wall size,
furniture deployment, and other obstacles. Although each
piece of structural and obstacle information significantly
affects the received-power performance, obtaining this infor-
mation manually is impractical because of the large number
of elements (e.g., desks, chairs, and computers) and their
rearrangements, which increases the cost of this approach.

To make indoor radio map construction more tractable and
accurate, in this paper, we propose an RGB-depth (RGB-
D) sensor-assisted ray-tracing simulation approach for indoor
radio map construction. The proposed method uses an RGB-
D sensor to model the indoor information as a set of cuboids.
To this end, the colored point clouds are acquired in advance.
After PointNet++ [22] labels semantics to the point clouds,
the indoor information is modeled as a set of cuboids that can
immediately be used for the ray-tracing simulation.

The major contributions of this study are summarized as
follows:
• We develop an image sensor-assisted indoor radio-
propagation simulation framework based on 3D recon-
struction for MHz-GHz systems.

• We demonstrate the proposed method for indoor
wireless local area network (WLAN) scenarios over
5180 and 2452MHz bands. The experimental results
show that our approach can accurately construct the
radio map based on the 3D reconstruction.

• Furthermore, based on the experimental results,
we reveal that the proposed method can construct radio
maps with better accuracy than received signal power
value sensing with Kriging.

The remainder of this paper is organized as follows.
We first review related works in Section II. Subsequently,
Section III gives the proposed RGB-D sensor-aided radio
map construction framework. The measurement config-
uration is detailed in Section IV, and we present the
performance evaluation results in Section V. Finally, Section
VI concludes this work. Note that major notations are listed
in Table 2.

II. RELATED WORKS ON RADIO MAP CONSTRUCTION
There has been a wide range of discussions on radio
map construction. Discussions on radio map construction

TABLE 2. Major notations.

had been initiated in the early 2000s with the term radio
environment map (REM) in dynamic spectrum access (DSA)
[23]. DSA systems must obtain white space information
to decide their communication strategy; however, node-
alone spectrum sensing tends to exhibit a low-accuracy
white space detection owing to multipath fading. REM has
been introduced as side information to (and accurately)
detect white spaces. By storing REMs in a cloud server,
DSA systems allow nodes to estimate spectrum-sharing
opportunities with limited spectrum-sensing capability. Its
discussions have been conducted on outdoor television white
space (TVWS) systems.

REM-based DSA systems have been implemented in
spectrum databases for TVWS in various countries [24].
The spectrum database constructs white space information
estimated by empirical path loss models.1 However, several
studies have highlighted that such empirical path loss model-
based REM construction limits accuracy. In [25], the authors

1For example, spectrum database in the US estimated the white spaces
based on F-curve [24].
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FIGURE 1. Processing flow of the proposed RGB-D sensor-assisted radio map construction framework.

compared various path loss models with actual measurements
in an urban scenario. They revealed that their accuracy was
limited even though the parameters in the models were
tuned. Such experimental works have motivated the use of
crowdsourcing-assisted REM construction. In crowdsourcing
systems, nodes upload their sensing results with the mea-
surement location and time to the server. The server then
averages the instantaneous received signal power over small
grids and compensates for the missing information based on
spatial statistics. Reference [26] proposed a Kriging-based
REM construction for outdoor scenarios; it was shown that
Kriging could improve the accuracy of REM construction.
Furthermore, various studies have evaluated the performance
of such a method and expected it to be a promising technique
for REM construction.

Several studies have been conducted on the application
of radio maps to indoor applications [9], [27], [28], [29],
[30], [31], [32], [33]. The authors in [29] applied a spatial
statistics-based approach to indoor propagation modeling
in 28GHz. Their experimental results showed that the
semivariogram outperforms the other statistics to describe
shadowing statistics in path loss modeling in terms of
the mean absolute error. In [9], the authors proposed
a smartphone-aided radio map adaptation framework for
indoor localization systems, while a study in [30] introduced
a similar concept based on crowdsourcing. These works
demonstrated that the crowdsourcing-based received signal
power measurements could improve indoor localization
accuracy. Additionally, [34] proposed a mechanism for
radio map maintenance and updating in indoor scenarios.
As with outdoor scenarios, such methods focus on esti-
mating unknown received signal power values from limited
measurements. However, their accuracy degrades due to the

short shadowing correlation distance (centimeter to meter
order [35], [36]). For example, an experimental study in [19]
suggested that the accuracy enhancement by Kriging (i.e.,
an optimal spatial interpolation) is negligible compared to
more straightforward approaches such as inverse distance
weighting (IDW). Reference [33] introduced a deep Gaussian
process for indoor localization. Experiments revealed that
offline training with measurement signals from various
access points (APs) could improve localization accuracy.
However, such deep learning-based techniques tend to require
a massive dataset. Unlike outdoor environments with a
global positioning system (GPS), indoor environments are
difficult to accurately measure the receiver location. From
the viewpoint of tractability, it will be preferable to avoid
obtaining the location information in sensing steps.

Radio maps can be constructed based on ray tracing
in indoor and outdoor scenarios. However, the accuracy
of ray tracing depends on the quality of the information
about the structures and obstacles. Several countries actively
develop 3D city models and publish them as vector data
[37], [38], [39], which will help the ray-tracing-based radio
map construction in outdoor scenarios. These models are
classified into four levels according to the detail of the map
(LOD: Level of Detail) and are being developed gradually.
The models currently being converted to open data in various
countries are LOD 1 or 2. Data at these levels store models
that approximate outdoor information as a set of cuboids,
and indoor information is out of focus and not currently
applicable to indoor ray tracing.

The pros/cons of the radio map construction methods are
summarized in Table 1. Among these methods, ray tracing
is the preferred choice for achieving accurate indoor radio
map construction if accurate structural information can be

VOLUME 11, 2023 24865



N. Suga et al.: Indoor Radio Map Construction via Ray Tracing With RGB-D Sensor-Based 3D Reconstruction

obtained; however, it is difficult to obtain it freely. In this
study for an accurate indoor radio map construction, we solve
the drawback of indoor ray tracing simulation using RGB-D
sensor-aided 3D reconstruction.

It is noteworthy that several researchers have focused
on image sensor-aided millimeter-wave communication.
In [40], a proactive received-power prediction method based
on RGB-D images between wireless links was proposed.
Influenced by this concept, the authors in [41] proposed
a robust beamformer, assuming that the path-blockage
probabilities are provided as prior information. However, the
image between the links is not sufficient for bands ranging
from several hundred MHz to GHz because both diffraction
and reflections (i.e., effects of overall indoor objects) must be
considered. To support the MHz-to-GHz bands, we propose
to model the overall room/obstacle information as 3D data
based on deep learning-aided post-processing.

III. PROPOSED FRAMEWORK
We define a radio map as a map that visualizes a transmitter’s
average power received per location. The received power
is managed in each two-dimensional grid, which is several
meters long on the side. The constructed map can be
deployed on a transmitter/receiver or in the cloud, according
to the application (e.g., WLAN resource optimization and
localization).

The proposed framework is shown in Fig. 1 and Alg. 1.
This framework constructs an indoor radio map based on the
following steps: (a) image acquisition, (b) 3D reconstruction
and semantic segmentation, (c) cuboid approximation for an
indoor room, and (d) ray-tracing simulation. Each step is
described in detail below:

A. RGB-D IMAGE ACQUISITION
We first capture K RGB and depth images, which are
denoted as {Ii}Ki=1 and {Di}

K
i=1, respectively. These images are

acquired over all areas in the target room using an RGB-D
camera (Fig. 1(a)). Note that the depth images contain depth
information as a pixel value and the pixel positions of
the RGB and depth images correspond to the image plane
dimension. These images are captured successively so that
there are overlapping areas between the images of each
viewpoint to successfully match the feature points between
the images in the next step. The RGB and depth images, i.e.,
{Ii}Ki=1 and {Di}Ki=1, are converted into colored point-cloud
data, denoted as {Pi}Ki=1, for each view.

B. 3D RECONSTRUCTION AND SEMANTIC
SEGMENTATION
Next, a semantic-segmented 3D point-cloud model is
obtained for the target room from {Pi}Ki=1 (Fig. 1(b)).
To integrate multiple point clouds into a 3D space, we use
the iterative closest point (ICP) algorithm [42], [43], which
is a registration algorithm for {Pi}Ki=1. This algorithm first
finds the corresponding points between a pair of point-cloud
data points and then repeatedly calculates the rotation and

translation parameters, that is, T , to minimize the distance
metrics between the corresponding points. The objective
function for the point clouds p ∈ P and q ∈ Q can be
expressed as

min
T

∑
(p,q)∈K

ξ (p,Tq), (1)

where ξ (·, ·) denotes the distance function of the points.
In addition, K is a set of pairs of points corresponding to
P and Q. The pairs of corresponding points (p, q) ∈ K are
obtained by mapping the nearest point q to each point p ∈ P
at an arbitrary iteration.

To obtain the 3D point-cloud model for the target room,
we iterate the ICP algorithm on the point-cloud data of
all viewpoints, that is, {Pi}Ki=1. The integrated 3D point-
cloud model is expressed as PM . Subsequently, PM is
downsampled such that its density is lower than dmin[m−3]
to reduce computational complexity.

Next, the integrated points are labeled according to the
deep learning-aided semantic segmentation of the point-
cloud data. A pre-trained PointNet++ [22] is used for
semantic segmentation. This network classifies points into
the following labels:L = {ceiling, floor, wall, beam, column,
window, door, table, chair, sofa, bookcase, board, and clutter}.
We denote the semantic-segmented point-cloud data as PS .

C. CUBOID APPROXIMATION FOR INDOOR ROOM
In this step (Fig. 1(c)), the point-cloud data are approximated
as a set of cuboids for ray-tracing simulations. To this end,PS

is divided into (i) a point cloud for walls, ceilings, and floors
and (ii) another point cloud for other objects.

To extract the walls, ceilings, and floors from PS ,
we employ plane estimation [44]. This method finds a plane
equation that minimizes the distance to a given point cloudP:

min
a,b,c,d

∑
p∈P
∥p · (a, b, c)+ d∥22, (2)

where a, b, c, and d are the parameters of the plane equation
and ∥ · ∥2 denotes the ℓ2 norm operator. It is assumed that
the number of walls, ceilings, and floors (as well as their
directions) are known for plane estimation. We extract the
point cloud corresponding to the estimated planes, which are
denoted as {PF

i }
N
i=1 (N represents the number of planes).

Subsequently, by finding the cube of the smallest volume that
covers the point cloud, the cuboid corresponding to the point
cloud for each plane, that is, {CFi }

N
i=1, is obtained.

The remaining point-cloud data contain information
about other objects such as desks, chairs, and displays.
Thus, we approximate the remaining point cloud, that is,
PR
∈ PM

\{PF
i }

N
i=1, as cuboids. In this process, point-cloud

data are grouped for each piece of semantic information, that
is, PR

l (l ∈ L), via segmentation based on the Euclidean
distance between points. If the Euclidean distance between
the point clouds is less than ψ [m], these point clouds are
assumed to be in the same object. The ground point-cloud
data are denoted by {PR

l,i}
Ml
i=1, whereMl represents the number
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Algorithm 1 Proposed Framework

Input: RGB and depth images, {Ii}Ki=1 and {Di}
K
i=1.

1: for all Ii,Di← {Ii}Ki=1 and {Di}
K
i=1 do

2: Convert Ii and Di into point cloud Pi
3: end for
4: Create 3D model PM from {Pi}Ki=1 by ICP
5: Obtain semantic segmented point cloud PS from PM

6: Estimate planes {PF
i }

N
i=1 from P

S

7: Approximate cuboids of walls, ceilings, and floors:
{CFi }

N
i=1, from {P

F
i }

N
i=1

8: Obtain point cloud for rooms by PR
= PM

\{PF
i }

N
i=1

9: for all l ← semantic labels L do
10: Segment objects, i.e., {PR

l,i}
Ml
i=1, according to

Euclidean distance from PR
l

11: for all PR
l,i← {P

R
l,i}

Ml
i=1 do

12: Approximate cuboids of object CRl,i from P
R
l,i

13: end for
14: CRl = {C

R
l,i}

Ml
i=1

15: end for
16: Environmental information C = {{CF }Ni=1, {C

R
l }l∈L}

17: Estimate radio map using C via ray tracing
Output: Estimated radio map

of segmented objects on label l. We obtain the approximated
cuboids CRl ∈ {C

R
l,i}

Ml
i=1 from {P

R
l,i}

Ml
i=1 by finding the cubewith

the smallest volume that covers the points. These cuboids
contain semantic information such as tables or chairs.

D. RAY TRACING WITH APPROXIMATED CUBOIDS
In this step (Fig. 1(d)), the ray-tracing simulation is
performed using environmental information, i.e., C ∈

{{CF }Ni=1, {C
R
l }l∈L}. The cuboids obtained in the previous

step are labeled as their semantic information. Subsequently,
according to the semantic information, we associate each
cuboid with material information, such as thickness,
roughness, conductivity, and permittivity. Furthermore,
we initialize the ray-tracing model, such as the antenna type,
antenna gain, antenna location, frequency, bandwidth, and
transmission power. Finally, we run a ray-tracing calculation
and obtain a radio map.

IV. MEASUREMENT CAMPAIGN
We conducted an indoor measurement campaign to evaluate
the proposed framework using a WLAN system with a pair
of transmitter/receiver devices.

A. MEASUREMENT AREAS
The experiment was conducted in two indoor rooms,
an experimental room and an office room. The experimental
room’s photograph and top-view layout are shown in Fig. 2.
The room size was 8.78m wide, 3.44m deep, and 2.5m high.
The transmitter is deployed on a central desk, as shown in
Fig. 2(b). Red lines indicate the measurement points. The
measurements were conducted at intervals of 0.1m. In this

FIGURE 2. Experimental room: (a) overview, (b) top-view layout.

FIGURE 3. Office room: (a) overview, (b) top-view layout.

room, metallic desks were arranged along both sidewalls, and
small experimental tools cluttered the desks. There were no
blocking objects between the transmitter and receiver; thus,
the setup was a line-of-sight (LOS) environment.

A photograph and a top-view layout of the office room are
shown in Fig. 3. This room was 9.65m wide, 3.25m deep,
and 2.50m high. The transmitter is set beside the window,
as shown in Fig. 3(b). Measurements were conducted along
three lines (notated A–B, C–D, and E–F) in the figure.
Two lockers and one shelf were placed at the center of
the room, and these obstacles blocked the direct path
between the transmitter and the receiver in the right-side
region. Therefore, the right-side region (C–D) is a non-LOS
(NLOS) environment, whereas the remaining region is a
LOS environment. In contrast to the experimental room, the
measurements in this room indicated shadowing effects.

B. MEASUREMENT CONFIGURATION
The measurement targets were the indoor received signal
power values of over 2452 and 5180MHz. For the transmitter,
we used a laptop computer with Ubuntu 20.04 LTS and a
USB WLAN device (Buffalo, WI-U2-433DHP). This device
consists of a monopole antenna with a height of 0.93 m in
the experimental room and 1.10 m in the office room. The
transmission power was set as 20 dBm.

On the receiver side, we mounted another laptop computer
with the sameWLAN device on a two-stage cart with a height
of 0.9m, as shown in Fig. 4. The received signal power of the
beacon signal of the target transmitter wasmeasured ten times
at 2-s intervals at one location using the iwconfig command.2

Note that the iwconfig command can measure the received
signal power value in the integer type in the dB domain.

An Intel RealSense D455 RGB-D camera3 was used for
RGB-D image acquisition. This camera can capture videos at
1280 × 720 pixels at a distance of 0.6-6.0 m. The camera
was moved to capture images of the room at 30 frames
per second (fps). The number of images K was 2296 and

2https://linux.die.net/man/8/iwconfig
3https://www.intel.com/content/www/us/en/products/sku/205847/intel-

realsense-depth-camera-d455/specifications.html
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FIGURE 4. Measurement configuration.

TABLE 3. Parameters in ray-tracing simulations.

FIGURE 5. Antenna pattern of omnidirectional antenna used in
ray-tracing simulation.

3248 for the experimental and office rooms, respectively.
In the cuboid approximation, the density of the point cloud
was set to a value below dmin = 0.025/m3 via downsampling.
The threshold of the segmentation-based Euclidean distance
was set to ψ = 0.025m.

C. COMPUTATION SETUP
The ray-tracing simulation was implemented using Wireless
InSite.4 This simulator uses a propagation model called X3D.
This model is applicable to both outdoor and indoor environ-
ment simulation from 100MHz to 100GHz, which covers
our experimental condition. This model is characterized by
the shooting and bouncing ray (SBR) method [45] and the
exact path calculation. Firstly, this model performs the rough
ray launch method and finds the surfaces where reflection,
penetration, and diffraction occur. Then, the imaging method
is performed to find the paths that exactly reach the received

4https://www.remcom.com/wireless-insite-em-propagation-software

point without a huge amount of path calculation. The electric
field calculation is based on the reflection, penetration, and
diffraction coefficients from the material-specific dielectric
constant and conductivity. These coefficients are multiplied
by the incident electric field when these incidents occur.

The key parameters in the ray tracing simulation are
summarized in Table 3. This simulation assumed an omni-
directional antenna (Fig. 5) for both the transmitter and
receiver (maximum gain 1.76 dBi) with a bandwidth of 16.6
MHz. Furthermore, the maximum number of reflections,
diffractions, and penetrations were 6, 2, and 1, respectively.
The points where the received power was calculated were
placed linearly, as shown in Figs. 2 and 3. The interval
between the received points in ray tracing was 0.01m. In the
proposed framework, the generated cuboid is labeled with
its semantic information, and according to this information,
the appropriate material is associated with the cuboid. The
map information for ray tracing is generated using cuboids
labeled with walls, ceilings, and floors, and we assume
that these cuboids are treated as plaster. In contrast, objects
are assumed to be made of metal. The reflection and
penetration coefficients of the plaster material are shown
in Fig. 6. In this figure, the attenuation of the parallel and
perpendicular electric field is shown against the angle of
incidence to the surface where reflection or penetration
occurs. For metallic materials, no penetration occurs, and the
material is assumed to reflect the ray without attenuation.
The attenuation caused by diffraction has been determined
according to references [46], [47]. The attenuation caused at
the diffraction point is calculated based on Kouyoumijian’s
uniform geometrical theory of diffraction (UTD) [48]. If the
angle of incidence ray is ϕ′ and the angle of diffraction is
ϕ (see Fig. 7), the diffraction coefficient is calculated as a
superposition of the functions D+(ϕ ± ϕ′) and D−(ϕ ± ϕ′)
(see Appendix). Fig. 7 shows the values of the functions
D+(ϕ ± ϕ′) and D−(ϕ ± ϕ′) for the diffraction angle when
the incident angle ϕ′ is 45 degree. As can be seen from the
figure, diffracted ray has peak amplitudes in the incident and
reflected ray directions.

The propagation model used in the X3D model is the
classical one, based on UTD proposed by Kouyoumijian [48],
and more generic or accurate models have been proposed
in recent years. For example, ray-tracing models in the THz
band have been investigated [49], and models that use deep
learning in combination with ray tracing have been studied
extensively [50], [51]. Although we assume ray tracing based
on [48] in this paper, the function of 3D reconstruction is
separated from ray tracing. Therefore, the approach proposed
in this paper can be used in combination with the latest ray-
tracing models, which is one of the future considerations.

V. EVALUATION RESULTS
A. COMPARISON OF MEASURED AND SIMULATED
PERFORMANCES
Fig. 8 presents comparisons between the received-power
measurement and the ray-tracing calculation for four scenar-
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FIGURE 6. Reflection and penetration coefficients.

FIGURE 7. D±(ϕ ± ϕ′) value used in diffraction calculation.

ios (experimental room with 5180MHz, office room with
5180MHz, experimental room with 2452MHz, and office
room with 2452MHz). The performance of the proposed
framework in the LOS environment (experimental room)
is shown in Figs. 8 (a) and (b). The received signal power
was obtained ten times at each measurement position. Since
the iwconfig command outputs the received power with a
granularity of 1 dB, the scatters in Fig. 8 overlap at each
position partially. Although the overall received power levels
at 5180 and 2452MHz were different, the proposed method
captured the shape of the received-power variation against the
distance in both cases.

The results for the LOS/NLOS mixed environment (office
room) are shown in Figs. 8(c)-(f). Metallic obstacles were
installed in the central region of the office room, and the
region betweenC andD in Figs. 8 (c) and (d) was in theNLOS
environment. The proposed method accurately captured the
step-like received-power fluctuations, as observed in the
NLOS region. The proposed framework can accurately esti-
mate site-specific characteristics by using RGB-D images.

B. ACCURACY ANALYSIS
There have been several discussions on radio-map con-
struction based on RSSI crowdsensing [1]. In this method,
receivers provide feedback on the RSSI quality, their sensing
location, time, and channel, to a centralized server. The server
then constructs the radio map while interpolating the missing
areal information. One may question whether image or RSSI
sensing is better for indoor radio map construction.

To discuss this question, we compared the performance of
RSSI sensing using Kriging, an optimal spatial interpolation
approach [19]. Kriging interpolates the received signal power
at coordinate x0 from the training dataset [52], [53]. Let us
define the dataset for Kriging as

D = {[x1,P(x1)], [x2,P(x2)], · · · , [xn,P(xn)]} , (3)

FIGURE 8. Measurement and estimated received-power values. Magenta
cross-mark scatter shows the averaged received power with two
wavelength regions centered at each measurement location.

where n denotes the number of training data points, xi denotes
the i-th measurement location, and P(xi) denotes the received
power at xi. In this context, the task of Kriging involves
accurately estimating the received power at an unmeasured
location x0 from D.
We assume ordinary Kriging in this task; this method can

construct the radio mapwithout the transmitter’s information,
such as transmission power and location. The received signal
power at coordinate x can be modeled as

P(x) = PTx − 10η log10 ∥xTx − x∥2 +W (x), (4)

where PTx represents the transmission power, η is the
path loss index, xTx represents the transmitter location,
and W (x) represents spatially correlated shadowing. This
method estimates P(x) based on the weighted averaging
formulated as P̂(x0) =

∑n
i=1 ωiP(xi), where ωi is the

weighting factor for the i-th measurement. Ordinary Kriging
optimizes the weighting factors such that the error variance is
minimized under a constraint for unbiased estimation, which
is formulated as

min
{ω1,ω2,··· ,ωn}

Var
[
P̂(x0)− P(x0)

]
subject to

n∑
i=1

ωi = 1. (5)

For performance evaluation, we first calculated the radio
map obtained using the proposed method for each scenario at
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1-cm intervals when the parameter ψ was set to 0.025. In this
evaluation, 30 test data points were randomly selected from
the estimation results, and the estimation error was evaluated
for each location. This process was repeated 1000 times, and
the root-mean-square error (RMSE) was evaluated using the
following equation:

RMSE =

√√√√ 1
ntest

ntest∑
j=1

(
P̂(xtest,j)− P(xtest,j)

)
[dB], (6)

where ntest(= 30 [points] × 1000 [trials]) is the number of
test data and xtest,j is the j-th test location. The accuracy
of the RSSI-based method depends on the amount of
sensing data. For the RSSI-based method, we evaluated
by randomly acquiring Ntrain training data, evaluating the
estimation accuracy for test data from 30 randomly selected
instantaneous samples without overlap, and repeating the
above process 1000 times with different numbers of training
data. This study aims to predict the effects of path loss and
shadowing for radiomap construction. To sufficiently remove
the multi-path fading, the ray-tracing simulation results with
the granularity 0.01m were averaged over two wavelengths
centered on each measurement position in advance.

Fig. 9 shows the RMSE performance at (a) 5180MHz
and (b) 2452MHz. The RMSE of Kriging decreased
with an increase in the amount of data. However, the
proposed method was better than the Kriging-based method
in various conditions, specifically in small measurement
sample regions. In indoor situations, we can use ray tracing
with the proposed image-based method to construct radio
maps accurately. The RSSI-based method requires the
measurement of absolute receiver coordinates, making it
crucial to implement an accurate positioning method, such
as Wi-Fi round-trip time.5 In contrast, the proposed method
acquires 3D point clouds in relative coordinates based on
consistency between images. This feature implies that the
proposed method is advantageous regarding the sensing cost.
Therefore, this feature can reduce the evaluation cost in
the pre-evaluation task, e.g., access point (AP) deployment
optimization.

C. EFFECTS OF EXPERIMENTAL PARAMETERS
If parameterψ increases, the number of point clouds assigned
to a single cuboid tends to increase; consequently, only a few
large cuboids are generated. In contrast, a small ψ may result
in many small cuboids. Because the accuracy of ray tracing
is significantly affected by the size and number of cuboids,
we evaluated the impact of ψ on the estimation accuracy.
Table 4 shows the effects of ψ on RMSE performances.

For all settings, decreasing ψ (i.e., increasing the number
of cuboids) tends to improve the estimation accuracy. Several
settings failed to perform ray tracing (we denoted these
results as NaN) because the transmitter or received points
were located in a cuboid. Although the smaller ψ tends

5https://developer.android.com/guide/topics/connectivity/wifi-rtt

FIGURE 9. RMSE performance.

FIGURE 10. Object location and received position for ψ = 0.05
(experimental room).

to improve the accuracy, NaN happened with ψ = 0.05.
This is because metal objects fully covered a few receiver
points, and no path reached these points. The ray-tracing
result could not be obtained in such an area; thus, the
RMSE calculation failed (see Fig. 10). For such failed points,
we indicated 1) the RMSEwhen the invalid ray-tracing results
are excluded, and 2) the percentage of successfully achieved
ray-tracing results. For example, received signal power values
at 36.5% evaluation points were successfully computed at
the office scenario with 2452MHz and ψ = 0.5 [m].
Even in such cases, the received power could be computed
for most receiver points with an accurate approximation
of the experimental data. This phenomenon can occur
with any threshold value, depending on the relationship
between the cuboids and the receiver points. Whether the
transmitter/receiver is covered can be visually confirmed
from the layouts of the approximated cuboids, and we can
avoid it by taking a smaller ψ with better accuracy. Thus,
this phenomenon will be acceptable in practical propagation
simulations.

Fig. 11 illustrates 3D reconstruction examples with ψ =
0.500, 0.100, 0.050, and 0.025 [m]. Increasing ψ frequently
generates large objects. If an object covers the transmitter,
no receiver can measure the signal power values because
all the transmitted rays are closed in the metallic object.
This phenomenon can also occur when ψ is small (e.g.,
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FIGURE 11. 3D reconstruction examples in office room.

ψ = 0.05 and 5180 MHz in an experimental room).
Fortunately, the possibility of ray tracing can be confirmed
when the transmitter/receiver is plotted on a 3D reconstructed
map. In practice, taking ψ as small as 0.025m and visually
confirming the 3D reconstruction results before the ray-
tracing simulation is preferable.

We verified the approximation accuracy of cuboids as a
benchmark [54]. We define a metric for the approximation
accuracy as the mean absolute error (MAE) of the Euclidean
distance between the point cloud contained by the cuboid
contains and the nearest surface of the cuboid. The MAE for
a cuboid C and its corresponding point cloud P is defined as

MAE =
∑
p∈P

min
{a,b,c,d}∈�(C)

∣∣∣∣p · (a, b, c)+ d√
a2 + b2 + c2

∣∣∣∣ , (7)

where�(C) is an operator that obtains a set of parameters (a,
b, c, and d) of the plane equation for cuboid surfaces of
cuboid C.

Fig. 12 shows the box plot for the accuracy of the cuboid
approximation. The MAE performance was improved as the
parameter ψ became smaller. The accuracy of walls, floor,
and ceiling was almost constant without depending on ψ .
These results indicate that the proposed method can obtain
good accuracy of the cuboid approximation as parameter ψ
becomes smaller.

We show the effects of fps on the RMSE in Table 5.
The influence of fps was evaluated by extracting images
from videos captured at 30 fps at equal intervals. Further,
as with Table 4, we indicated RMSEs when the invalid
ray-tracing results are excluded and the percentage of
successfully achieved ray-tracing results. Table 5 shows
that the ray-tracing simulation was stable at 15 fps or
higher for all settings. However, when the fps is small, ray
tracing cannot be performed in the low-fps region. This

FIGURE 12. MAE performances for the cuboid approximation. The
boxplots depict the lower and upper quartiles, and the red line represents
the median values. The top and bottom ends of the whiskers represent
the maximal and minimal values of nonoutliers, respectively. The top and
bottom edges of the notch region correspond to the 95% confidence
interval of these median values.

FIGURE 13. Effect of fps on the computation time at the office room.

is because the 3D reconstruction using the ICP algorithm
(Fig. 1(b)) is not accurate when fps is small. If the fps
is small, the amount of frame-to-frame motion increases.
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TABLE 4. Effect of ψ on RMSE performances. We highlighted the best performance in each set by bold. Element with ‘‘NaN (A, B%)’’ indicates that the
RMSE was not available since received signal power values could not be computed in part: A is the RMSE [dB] when the invalid ray-tracing results are
excluded, and B% is the percentage of successfully achieved results by the ray tracing.

TABLE 5. Effect of fps on RMSE performances. How to read each element is as with Table 4.

TABLE 6. Effects of fps on the size of point clouds (office room).

In such cases, it is difficult to estimate the rotation and
translation parameters in the ICP algorithm; thus, the 3D
reconstruction is inaccurate. Therefore, the accuracy of
the cuboid approximation deteriorates in small fps cases.
Although the accuracy at 30 fps is not necessarily the best,
the difference between the best value and RMSE at 30 fps
is sufficiently small. Table 6 summarizes the effects of the
fps on the number of points. It is observed that the number
of point clouds has an increasing trend with lower fps. This
is primarily because the parameters cannot be estimated
correctly, as described above, and the corresponding point
clouds between frames do not match and merge.

Finally, we show the effects of fps on the computation time
in Fig. 13. This figure shows the computation time required
for the 3D reconstruction (Fig. 1(b)), which is dominant in the
proposed method. We implemented the simulation program
with Python 3.8.11 and ran it on a computer with Ubuntu
20.04.4 LTS. This computer was equipped with an Intel Core
i9-10980XE (18 cores, 36 threads with 4.80 GHz clock at
the maximum) and DDR4 128 GB memory. The case with
30 fps required the longest computation time (approximately
80 min), whereas the shortest time was realized at three fps
(approximately 20 min). The computation time tends to be
smaller for more petite fps, but the accuracy is degraded
in the lower fps case described above; thus, there is a
trade-off relationship. To summarize the influence of fps in
practice, because reducing the fps of an image captured at a
high fps requires only equally spaced image sampling, it is
preferable to take images at 30 fps and adjust the fps during
3D reconstruction according to the required accuracy of ray
tracing.

VI. CONCLUSION
This study proposed a new framework for indoor radio map
construction based on image sensing, 3D reconstruction,
deep learning, and ray tracing. The proposed method models
indoor information from RGB-D images as a set of cuboids.
Both room materials and obstacles can be converted into
vector data, and thus, we can realize a ray-tracing simulation
with precise indoor information.

Based on WLAN systems, we performed indoor exper-
iments for two scenarios, over 5180 and 2452 MHz. The
experimental results indicated that the proposed method
achieved better accuracy than the RSSI sensing-basedmethod
for various scenarios. The image-based method can construct
indoor radio maps via ray-tracing simulations once the
images are acquired. This feature can reduce the evaluation
cost of a pre-evaluation task, for example, AP deployment
optimization.

APPENDIX
A. CALCULATION OF DIFFRACTION COEFFICIENT
In general, the diffraction coefficient is calculated in the edge-
fixed coordinate system [55]. We define the unit vector l,
which is parallel to the wedge. The propagation vector of
the incident ray is also defined as k′ Then, the following unit
vectors are obtained as:

φ′ =
−l × k′

|l × k′|
, (8)

β ′ = φ′ × k′. (9)

The incident field Ei is decomposed into φ′ and β ′

components as E i
φ′
= Ei · φ′ and E i

β ′
= Ei · β ′, respectively.

The φ′ and β ′ components of the diffracted field is given by:[
Edβ
Edφ

]
=

[
Dss Dsh
Dhs Dhh

][E i
β ′

E i
φ′

]

·

√
rTD · rDR
rTD + rDR

e−jβrDR

rDR
(10)

where rTD is the distance between the source of the incident
ray and the diffraction point, and rTD is the distance between
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the diffraction point and the receiver location. The valuesDss,
Dsh,Dhs, andDhh are known as diffraction coefficient and can
be calculated as:

Dss = D+
(
ϕ − ϕ′

)
+ D−

(
ϕ − ϕ′

)
−

(
R0
∥
cos2 α1 − R0⊥ sin

2 α1

)
D−

(
ϕ + ϕ′

)
−

(
Rρ
∥
cos2 α2 − R

ρ
⊥
sin2 α2

)
D+

(
ϕ + ϕ′

)
, (11)

Dhh = D+
(
ϕ − ϕ′

)
+ D−

(
ϕ − ϕ′

)
+

(
R0
∥
sin2 α1 − R0⊥ cos

2 α1

)
D−

(
ϕ + ϕ′

)
+

(
Rρ
∥
sin2 α2 − R

ρ
⊥
cos2 α2

)
D+

(
ϕ + ϕ′

)
, (12)

Dsh = −
(
R0
∥
+ R0
⊥

)
cosα1 sinα1D−

(
ϕ + ϕ′

)
−

(
Rρ
∥
+ Rρ
⊥

)
cosα2 sinα2D+

(
ϕ + ϕ′

)
, (13)

Dhs =
(
R0
∥
+ R0
⊥

)
cosα1 sinα1D−

(
ϕ + ϕ′

)
+

(
Rρ
∥
+ Rρ
⊥

)
cosα2 sinα2D+

(
ϕ + ϕ′

)
. (14)

The 0 and ρ superscripts represent the two sides of the
wedge as in [46] and [47]; ϕ and ϕ′ are the diffraction and
incidence angles as shown in Fig. 7(a). The angles α1 and
α2 are determined from sinα1 = e0

∥
· φ′ and sinα2 = eρ

∥
· φ′,

where the unit vectors e0
∥
and eρ

∥
are the ray-fixed vectors

parallel to the plane of incidence. The functions D±
(
ϕ ± ϕ′

)
are given by:

D±
(
ϕ ± ϕ′

)
=
−e−jπ/4

2ρ
√
2πk

cot

(
π ±

(
ϕ ± ϕ′

)
2ρ

)
· F
(
kLa±

(
ϕ ± ϕ′

))
(15)

where F
(
kLa±

(
ϕ ± ϕ′

))
is the Fresnel integral, defined in

several references [46], [48].
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