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ABSTRACT Coverage Path Planning (CPP in short) is a basic problem for mobile robot when facing a
variety of applications. Q-Learning based coverage path planning algorithms are beginning to be explored
recently. To overcome the problem of traditional Q-Learning of easily falling into local optimum, in this
paper, the new-type reward functions originating from Predator-Prey model are introduced into traditional
Q-Learning based CPP solution, which introduces a comprehensive reward function that incorporates three
rewards including Predation Avoidance Reward Function, Smoothness Reward Function and Boundary
Reward Function. In addition, the influence of weighting parameters on the total reward function is discussed.
Extensive simulation results and practical experiments verify that the proposed Predator-Prey reward based
Q-Learning Coverage Path Planning (PP-Q-Learning based CPP in short) has better performance than
traditional BCD and Q-Learning based CPP in terms of repetition ratio and turns number.

INDEX TERMS Coverage path planning, predator-prey model, reinforcement learning, Q-learning
algorithm, mobile robot.

I. INTRODUCTION
With the rapid development of computer and automatic
control technology, mobile robots have been applied to
industrial manufacturing, medical services, logistics sorting
and other fields. As one of the important research directions
in the field of mobile robots, Coverage path planning (CPP)
[1], [2] has received much focus from researchers due to
its great applications in many fields, such as air cleaning
robot, exploration robot, demining robot, lawn mower and
automatic harvester, so it has recently become an increasingly
popular research topic. As we know, researches on coverage
path planning play an important role in improving the
working efficiency for mobile robots. Traditionally, for
coverage path planning, it is required to generate appropriate
paths that mobile robot can visit all points in the target area
completely. Moreover, mobile robot needs to fill the region
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without overlapping paths and repetition of paths. However,
in complex environments, enabling mobile robots to perform
coverage path planning is still a challenging problem.

As far as we know, the existing CPP solutions can be
divided into two categories: classic methods and heuristic
methods [1], [2]. In the field of classic methods, the simple
random walk algorithm (RW) [3], as a random covering
algorithm, does not need to know the detailed environment,
but it is hard to ensure high coverage and low repetition
ratio. As a special randommotion considering Levy flight [4],
coverage is improved by using variable step size with
gradient. The Boustrophedon Cellular Decomposition (BCD)
algorithm [5] decomposes free space into simple, non-
overlapping cells, and each unit is covered by ox plow path.
The famous BCD method can be applied to various scenarios
flexibly, but its inter-regional path planning often determines
the repetition ratio. In the online BCD [6], critical points of
each region are recorded by proximity searching algorithm,
and inter-regional planning is realized by A* algorithm.
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Reinforcement learning is used to learn inter-regional path
planning and reduces the repetition ratio or original BCD [7].
Spinning Tree Coverage (STC) [8] is often used for small-
scale maps, where the workspace is subdivided into a finite
sequence of disjoint cells using either a cell decomposition
based approach or a grid-based approach, which constructs
a graph spanning tree in the corresponding giant cell and
divides it into four subunits, where the size of corresponding
cell is equal to the size of mobile robot. The STC algorithm
uses tree traversal algorithm to find optimal paths so that the
robot can cover every unoccupied unit. Unfortunately, STC
algorithm has lower repetition ratio, but higher turns number.
The single-robot STC algorithm is extended to multi-robot
with region partition algorithm [9]. Huang et al. [10] use
quadtree algorithm to decompose regions and STC algorithm
to reduce coverage time and repetition ratio in sub-regions.

In recent years, some heuristic algorithms are widely used
to solve CPP problems. Biological Inspired Neural Network
(BINN) based CPP algorithm [11] calculates the activity of
each grid in the grid map, and mobile robot will design
specific path according to the activity level. An improved
BINN based CPP algorithm [12] is proposed to overcome
the dead zone problem through backtracking technology and
neural network, thus improving the computational efficiency
of activity value. However, these CPP algorithms based on
BINN are easy to fall into the dead zone. A predator-hunting
coverage algorithm based on the relationship between the
starting point and the prey is proposed in [13]. The predator-
prey model sets the starting point in the environment,
and the prey, namely the robot, would be rewarded for
escaping from the starting point and performing relevant
behaviors, so as to achieve full-coverage path planning.
Genetic algorithm (GA) is a kind of meta-heuristic random
algorithm based on population, inspired by the natural law
of biological genetics and the survival and reproduction
of the fittest, so as to solve the search problem [14].
Genetic algorithm based CPP algorithms have good global
search ability, but they require high computation time due
to the large search space and poor stability [15]. Multi-
objective genetic algorithm with dynamic programming is
proposed to improve the speed of convergence to optimal
value [16]. Particle swarm optimization (PSO) is a meta-
heuristic algorithm based on biological social behavior
patterns, involving clustering of natural populations [17].
In the field of coverage path planning, the famous PSO
algorithm has global search ability in the initial stage, but
tends to trap into local optimal value in later search process,
and the convergence speed is slow. Couceiro et al. [18] divide
groups into several small cooperative groups (subgroups),
which provides the ability to evade local optimal solutions
based on reward and punishment mechanisms. Ant colony
algorithm (ACO) is a probabilistic technology that simulates
the behavior of ants and the process of searching for food
to solve complex optimization problems [19]. ACO based
CPP algorithms have the advantages of strong robustness and
parallel operation, but they are easy to trap into local optimum

and the convergence speed is slow too. In [20], pheromone
update rules is provided to avoid falling into local minima.
A novel multi-agent coverage path planning algorithm is
proposed in [21] inspired by the social behaviors in the
biological world. To avoid falling into the local optimum,
a cooperation mechanism is designed to improve the system
adaptability.

Reinforcement Learning [22] is also a kind of heuristic
algorithm, which has been widely applied in the field
of robots, but is still in its infancy in solving CPP
problems. A full-coverage path planning algorithm based on
Q-Learning is proposed in [23], which optimizes coverage
paths using raster graphs. Robot reward and punishment
mechanism in DQN (Deep Q-Network) is proposed in [24]
for full-coverage of UAV. Jin et al. [25] use reinforcement
learning to achieve coverage of three-dimensional object
representation, and demonstrate that ϵ-greedy strategy is
better than pure greedy strategy. Zhang et al. [26] propose
a multilevel humanlike motion planning approach is pro-
posed for indoor mobile robots. Moreover, a new velocity-
adjustable trajectory planning algorithm is put forward which
is provably complete and time optimal considering multiple
constraints from both the robot and the environment. In [27],
an optimization based approach is proposed to obtain an
optimal and robust path planning solution by assigning a
potential function for each individual obstacle. In addition,
there is obvious problem with the existing methods: there are
few related literature with outdoor experiments and most of
them focus on pure simulations.

At present, many experts believe that CPP solution based
on Reinforcement Learning can obtain better performance.
However, reward function related designs for Reinforcement
Learning CPP methods are relatively simple. Although the
Q-Learning based CPP algorithm can obtain optimal trajec-
tory, it does not take into account the unsatisfactory results of
repetition ratio and turns number. In this paper, an improved
Q-Learning coverage path planning algorithm with new-
designed comprehensive reward function is proposed. The
mobile robot is guided to complete coverage by introducing
the far from the starting point prize, the linear reward
and the covering behavior reward to make the robot walk
along a straight line as much as possible and reduce
the repetition ratio. Simulation and experimental results
show that the improved Q-Learning coverage path planning
algorithm can complete the coverage task perfectly, and it
has lower repetition ratio and fewer rotations than BCD and
Q-Learning-based coverage path planning algorithms.

The main contributions of this paper mainly include
following three-folders:

(1) Comprehensive Predator-Prey reward based
Q-Learning coverage path planning algorithm is introduced
in this paper, which considers multiple factors such as scene
features, obstacles, and mobile robot. Different weighting
factors associated with the smoothness reward and the
boundary reward are simulated and analyzed to verify their
impacts on the results.
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FIGURE 1. UWB positioning based mobile robot.

(2) As unexpected stationary obstacles make the coverage
problem challenging, we adopt Reinforcement Learning
method to obtain optimal full coverage path on the basis of
unexpected stationary obstacles.

(3) Different to pure software simulation, this paper also
tests the proposed CPP algorithm on the mower platform to
verify the actual performance.

The rest of this paper is organized as follows.
Section II describes problem formulation of coverage path
planning based on reinforcement learning. Then, Predator-
Prey Reward based Q-Learning coverage path planning
algorithm is introduced in Section III. Simulation results
are presented in Section IV under static and dynamic
environments. Finally, the conclusion remarks are given in
Section V.

II. PROBLEM FORMULATION
This section defines some assumptions and definitions
needed to address the CPP problem. The mobile robot is
a two-wheeled robot and its motion obeys a nonholonomic
constraint with velocity vector. In this paper, the robot is
assumed to obtain its location using UWB (Ultra wide
Band) positioning method [28]. The UWB positioning based
coverage path planning is described in Figure 1, where four
UWB stations are distributed at the corners of coverage
region, and one UWB label is equipped in the mobile robot
to output its location.

As an essential for robotic tasks, Coverage Path Planning
of mobile robot is to find a motion path for the robot to
pass over all points in a given region, which is illustrated
in Figure 2. As we know, solving traditional CPP with
minimal cost problem that are subject to unexpected changes
is challenging, this is because: (1) mobile robot is initially
unaware of the obstacles or the changes to coverage area;
(2) mobile robot is not only expected to achieve complete
coverage and unexpected changes, but also needs to do so
with minimal cost.

For the convenience of description, the following assump-
tion is proposed in this paper.

FIGURE 2. The principle of CPP problem.

Assumption 1: In the region of W × L, the two-wheeled
mobile robot with the center O(t) = (x, y) and motion
radius r obeys a nonholonomic constraint with velocity vector
expressed as vr (t). The position and velocity of mobile robot
are a function of time since the mobile robot is continuously
moving.

The Predator-Prey based CPP (PPCPP) approach [14] is
inspired by the predator-prey behavior, which is developed
that is efficient to respond to changes in real-time while
aiming to achieve complete coverage with minimal cost.
As we know, the concept of PPCPP has been investigated
for coverage path planning problem [29], where the prey
represents the coverage spot of robot’s end-effector tool,
and the predator is a virtual stationary point that the prey
continually maximizes its distance between them while
covering the target areas. As a result, this approach accounts
for improving the path length and smoothness by rewarding
the prey to continue its motion in a straight direction and
covering the boundary as much as possible. In addition, the
method can learn from prior environmental information and
use the learned parameters to perform adaptive local planning
in real time. In short, the above Predator-Prey model is very
suitable for traditional CPP.

As we know, unlike stationary obstacles, unexpected
dynamic obstacles further complicate the problem since the
robot needs to avoid the obstacles and efficiently re-plan the
trajectory while still aiming to achieve complete coverage
with minimal cost. The CPP problem addressed in this article
involves unexpected changes occurring during the real-time
deployment process, and we adopt Reinforcement Learning
method to obtain optimal full coverage path on the basis of
specific reward function from Predator-Prey model.

III. PREDATOR-PREY REWARD BASED Q-LEARNING
COVERAGE PATH PLANNING
A. Q-LEARNING BASED COVERAGE PATH PLANNING
Reinforcement learning is one kind of machine learning
technologies, which includes five basic elements: agent,
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FIGURE 3. Q-Learning principle.

FIGURE 4. Q-table example.

environment, state, action and reward. The relationship
between them is described in Figure 3, where the agent
obtains learning information and updates model parameters
according to its own state and receives rewards from the
environment for performing actions, so as to maximize
benefits [30].
Q-Learning based Reinforcement Learning algorithm will

establish a Q-table Q(S,A), where S represents the state
and A represents the action. In the traditional CPP problem,
S represents the position grid of mobile robot and A
represents different actions of mobile robot, such as four
motion directions: forward, backward, turn left and turn right.
Figure 4 shows a simple Q-table initialized by a 2 × 2 raster
map.

In addition, ϵ-Greedy strategy is introduced, i.e. the
random action strategy is implemented with probability ϵ,
and the optimization strategy is implemented under the
condition of 1 − ϵ. The main flowchart of Q-Learning based
CPP approach is described in Algorithm 1.
At the beginning of learning process, all elements in Q-

table are set to 0 and updated by Equation (1) during iterative
learning.

Q(S,A) = R(S,A) + τ ×Max(Q(S∗, ; ) (1)

where R(S,A) denotes the reward brought by performing
the action A under state S, τ represents the decay rate,
Max(Q(S∗, ; )) represents the largest Q-value in the previous
state S∗. R(S,A) is defined as Equation (2). Rfinish will be
obtained if and only if the mobile robot completes total

Algorithm 1 Q-Learning based CPP Problem
Initialize R(S,A) for all S,A
Initialize Q(S,A) = 0 for all S,A
#Q-Learning Training
Repeat
Repeat
S = start_point;
ϵ = random();
if ϵ < ϵ0
A = random(A);
else
A = argmax(Q(S, ; ))
end
S∗ = Perform(A);
Q(S,A) = R(S,A)+τ × max(Q(S∗, ; ))
S = S∗;
Until finish CPP
Until the number of episodes is reached;
#Q-Learning based Coverage Path Planning
S = start_point;
Repeat
S = start_point;
A = argmax(Q(S∗, ; ))
S∗ = Perform(A);
Until finish CPP

coverage path planning, i.e.,

R(S,A) =

{
Rfinish,if CPP finish

0,otherwise.
(2)

Although Q-Learning based full coverage path planning
algorithm can solve the problem perfectly, it is easy to
cause too many turns number and high repetition ratio in
the environment with many obstacles or large maps. As far
as we know, selecting the appropriate return function can
improve the performance of the algorithm. Therefore, this
paper discusses how to set appropriate reward function to
improve the effect of coverage path planning.

B. PREDATOR-PREY REWARD
As a typical Cyber-Physical interactive system between
mobile robot and environment, Predator-Prey model is
inspired by the concepts of foraging and risk of predation in
predator-prey relation, which is described as Figure 5. 8, ok
and oj denote the predator, the current prey target and target
gird j in the grid setO, respectively. Hence, the newly defined
reward function is discussed as follows.

1) TOTAL REWARD
A total reward function R is designed as a heuristic for
the prey to select its next best move at each step k(k =

1, 2, . . . , nk ) where ideally nk is equal to nO, which is the
total number of targets in the set O. Thus, at step k , the
prey evaluates R for all neighbors and moves to the neighbor
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FIGURE 5. Predator-prey model.

with maximal reward. The derived function R comprises of
three rewards: (1) Predation Avoidance Reward Function
Rd

(
oj

)
for maximizing the distance to the predator; (2)

Smoothness Reward Function Rs
(
oj

)
for continuing motion

in a straight direction; (3) Boundary Reward Function Rb
(
oj

)
for covering the boundary [14]. The total reward for moving
to an uncovered neighbor oj ∈ O is the sum of all the rewards
previously stated, i.e.,

R
(
oj

)
= Rd

(
oj

)
+ λsRs

(
oj

)
+ λbRb

(
oj

)
(3)

where λb and λs are the weighting factors associated with the
smoothness reward and the boundary reward, respectively.
The weighting factors govern the extent to which each
reward is emphasized by the prey when deciding on the next
movement.

2) PREDATION AVOIDANCE REWARD FUNCTION
Clearly, the prey will maximize its reward by moving toward
a neighbor that is uncovered (not yet covered) and that has the
farthest distance from the predator at each step. The predation
avoidance reward function for the prey moving to the j-th
neighbor oj is formulated as,

Rd
(
oj

)
=

D(oj) − Dmin(ok )
Dmax(ok ) − Dmin(ok )

(4)

where D(oj) =∥ oj − 8 ∥ gives distance from oj to the
predator8,Dmax(ok ) = maxj ∥ oj − 8 ∥ gives the maximum
distance from one of the neighbors of the current prey target
to the predator, and similarly, Dmin(ok ) = minj ∥ oj − 8 ∥

gives the minimum distance.

3) SMOOTHNESS REWARD FUNCTION
For mobile robots’ applications, having a path that has more
straight lines (fewer turns) can be beneficial, e.g., mobile
robots that consume more energy or time due to frequent
turns. Hence, the smoothness reward function is formulated
as follows:

Rs
(
oj

)
=

̸ ok−1okoj
180◦

(5)

FIGURE 6. Three examples for different reward functions.

where Rs
(
oj

)
∈ (0, 1] is the reward associated with the

j-th neighbor oj of the current prey target ok due to the angle
̸ ok−1okoj ∈ (0◦, 180◦] which is the angle between the
vectors (ok−1−ok ) and (ok−oj), and ok−1 is the target covered
by the prey at the previous step (k − 1).

4) BOUNDARY REWARD FUNCTION
The boundary reward function is formulated as follows:

Rb
(
oj

)
=
nNmax − nN (oj)

nNmax
(6)

where Rb(oj) ∈ [0, 1] is the reward associated with the j-th
neighbor oj of current prey target ok and nN (oj) calculates
the number of uncovered neighbors of the target oj, nNmax is
the maximum possible number of neighbors for a target.

Detailed settings of these parameters used in our algorithm
refer to Ref [14]. Three examples for three different reward
functions are shown in Figure 6. As Figure 6(a), prediction
avoidance reward values of four optional grids are 0, 0, 1,
1 according to the principle of keeping away from the starting
point as far as possible. Two grids with reward value 1
are much far away than two grids with reward value 0.
Smoothness reward value will be greater than that of turning
any angle if mobile robot goes straight. In Figure 6(b), it is
obvious that the straight grid has larger smoothness reward 1.
As Figure 6(c), the smaller the number of uncovered neighbor
grids of certain target, the higher the boundary reward
value. Therefore, the upper grid has larger boundary reward
value 2

3 .

C. TOTAL ALGORITHM FLOW
To summarize, the proposed Predator-Prey reward based
Q-Learning CPP method for mobile robot is described as
Figure 7.

IV. RESULTS AND DISCUSSION
In this section, Matlab platform is used to conduct sim-
ulations. Three different CPP solutions including BCD,
Q-Learning CPP, PP-Q-Learning CPP are introduced to com-
pare their performance. The famous BCD (Boustrophedon
Cellular Decomposition) is an exact cellular decomposition
approach, where each cell in the boustrophedon is covered
with simple back and forth motions. BCD based CPP
algorithm will decompose the map into several regions, and
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FIGURE 7. The flowchart of total algorithm.

cover each sub region according to the cattle plowing path.
The sub regions are connected with each other in the order of
depth first traversal. Two main coverage cases with region
size 10 × 10 and 20 × 22 are applied to validate the
proposed approach. Due to the long training time of deep
learning, this paper selects two smaller scenes for algorithm
verification.

Since the coverage ratios of these three CPP algorithms are
close to 1, another two metrics including repetition ratio Rr
and turns numberNt are applied tomeasure performance. The
turns number is defined as the number of turns in the total full-
coverage path. The repetition ratio Rr is defined as following
equation:

Rr =
Na − Ng
Na

(7)

where Na and Ng denote the number of actually passed
grids and the total number of girds, respectively. Lower
repetition ratio and turns number should be achieved with
better coverage path planning approach.

TABLE 1. Parameter.

A. SIMULATION SETUP
The main simulation parameters are listed in Table 1.

B. COVERAGE PATH PLANNING RESULTS
Firstly, full-coverage path planning trajectories are compared
in details. In the first case with size of 10 × 10, the CPP
trajectories derived from BCD, Q-Learning based CPP, and
PP-Q-Learning based CPP are demonstrated in Figure 8,
Figure 9 and Figure 10, respectively. It is obvious that the
full coverage path of our algorithm is better than that of BCD
and original Q-Learning based CPP algorithms.

29678 VOLUME 11, 2023



M. Zhang et al.: Predator-Prey Reward Based Q-Learning CPP for Mobile Robot

FIGURE 8. Coverage trajectory with BCD based CPP (10 × 10).

FIGURE 9. Coverage trajectory with Q-Learning based CPP (10 × 10).

FIGURE 10. Coverage trajectory with PP-Q-Learning based CPP (10 × 10).

Similarly, in the other case with size of 20 × 22, the
CPP trajectories derived from BCD, Q-Learning based CPP,
and PP-Q-Learning based CPP are described in Figure 11,
Figure 12 and Figure 13, respectively. As a result, extensive
simulation results in different scenarios verify the superiority
of the proposed algorithm.

Furthermore, repetition ratio and turns number met-
rics are calculated to compare performance quantitatively.
As Figure 14, the repetition ratio and turns ation number
are significantly reduced compared to BCD and Q-Learning

FIGURE 11. Coverage trajectory with BCD based CPP (20 × 22).

FIGURE 12. Coverage trajectory with Q-Learning based CPP (20 × 22).

FIGURE 13. Coverage trajectory with PP-Q-Learning based CPP (20 × 22).

based CPP algorithm. In other words, the proposed PP-Q-
Learning based CPP algorithm outperforms traditional BCD
and latest Deep Learning method. The repetition ratio and
turns number will improve more than 50%. In conclusion,
these numerical results verify the effectiveness of proposed
approach.

C. PARAMETER COMPARISON RESULTS
The proposed reward function has two parameters λs and λb,
and so we will discuss how to determine these parameters.
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FIGURE 14. Comparison of repetition ratio and turns number.

FIGURE 15. CPP results with λs = 0 and λb = 0.

FIGURE 16. CPP results with λs = 0 and λb = 0.4.

A case study is presented in this section to validate the usage
of each reward function and demonstrate how the parameters
affect the performance. Different parameter combinations of
λs and λb are used to simulate in the other case with size
of 20 × 22, and the final trajectory results under typical
parameter combinations are derived as Figure 15 to Figure 20.

To clarify the influence of parameters on path results, the
repetition ratios under different parameters are compared in
Figure 21. Furthermore, these numerical results are listed in
Table 2.

Similarly, the turn numbers under different parameters
are compared in Figure 22. For the sake of clarity, these
numerical results are listed in Table 3.

FIGURE 17. CPP results with λs = 0.2 and λb = 0.6.

FIGURE 18. CPP results with λs = 0.6 and λb = 0.

FIGURE 19. CPP results with λs = 0.6 and λb = 0.2.

TABLE 2. Repetition ratio under different weight parameters.

From the above simulation results, it is evidently that
the effect of proposed algorithm is different under different
parameters. Obviously, two weighting parameters λb and λs
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FIGURE 20. CPP results with λs = 0.6 and λb = 0.6.

FIGURE 21. The relationship between repetition ratio and weight
parameters.

FIGURE 22. The relationship between turns number and weight
parameters.

have irreplaceable influence on the CPP results. In conclu-
sion, by comparing the results under the different parameters,
it can provide a guidance for the selection of weighting
parameters.

TABLE 3. Turns number under different parameters.

FIGURE 23. Hardware framework.

FIGURE 24. Mobile robot.

FIGURE 25. Experimental scenario.

D. PRACTICAL EXPERIMENT RESULTS
Finally, the proposed Predator-Prey reward basedQ-Learning
coverage path planning algorithm is realized on the self-
designed lawn mower, which is two wheeled mobile robot
with obstacle avoidance ability. The hardware architecture
and actual photo of the lawnmower are exhibited in Figure 23
and Figure 24, respectively. The self-designed lawn mower is
equipped with LiDAR, INS, UWB label and WiFi module,
which is ideal for performance validation.

With the experimental scene as Figure 25 in the school
playground, the actual full-coverage path is displayed in
Figure 26. It is obvious that the error between actual trajectory
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FIGURE 26. Practical trajectory results.

and planned trajectory is comparatively small. Therefore, the
practical trajectory and error results verify that the actual
performance of proposed approach.

V. CONCLUSION
The objective of coverage path planning is to ensure persistent
coverage of target area for mobile robots. To reduce repetition
ratio and turns number during coverage path planning, this
paper introduces the Predator-Prey model into Q-Learning
based CPP problem. Three rewards including predation
avoidance reward function, smoothness reward function and
boundary reward function are combined to determine opti-
mization strategy. Extensive simulation results and practical
experiments verify that the performance of proposed PP-Q-
Learning based coverage path planning algorithm is better
than that of traditional BCD and Q-Learning based CPP
methods. In our future work, actual performance of the
proposed algorithm will be examined in the presence of
mobile obstacles.
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