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ABSTRACT Session-based recommendation is a crucial task aiming to predict users’ interested items
based only on anonymous user behaviors. Most recent solutions for session-based recommendation
comprehensively consider the interactive information of all sessions but bring the problem of imbalanced
positive and negative samples on model training. In this paper, we propose a novel approach, named
Attention-enhanced Graph Neural Networks with Global Context for Session-based Recommendation
(AGNN-GC), to learn and merge item transitions of all sessions in a cleverer way to enhance the
recommendation effects. AGNN-GC first constructs global and local graphs based on all training sequences.
Next, it uses graph convolutional networks with a session-aware attention mechanism to learn global-level
item embedding in all sessions. Then it employs a graph attention networks module to learn local-level item
embedding in the current sessions. After that, it fuses the learned two-level item embedding to enhance
the feature presentations of items in the current session by a novel attention mechanism. Finally, applying
the focal loss to balance positive and negative samples on model training accomplishes the prediction. Our
experiments on three real-world datasets consistently show the superior performance of AGNN-GC over
state-of-the-art methods.

INDEX TERMS Recommender systems, session-based recommendation, graph neural network, information
fusion.

I. INTRODUCTION However, Markov-based methods only model the sequential

Most existing recommenders depend on the user-item
historical interactions [1]. In many online platforms, user
identification may be anonymous, only with historical actions
during the current session. To solve this problem, session-
based recommendation (SBR) is proposed, which is a crucial
task based only on limited and anonymous user behavior.
It predicts interested items of users by implicit user feedback.
Therefore, with insufficient user-item interaction data, SBR
methods show better performance than the conventional
recommendation methods.

Therefore, SBR has attracted extensive attention from
researchers. Markov-based methods [2], [3], [4] treat the
recommendation as a sequential optimization problem and
deduces the user’s next behavior by solving the problem.
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transition of two consecutive items, disregarding other
historical interaction information, which affects predic-
tion accuracy. Probabilistic matrix factorization (PMF) [5]
decomposes a user-item evaluation matrix into two low-rank
matrices, where each low-rank matrix can represent the latent
features of the user or item. However, it represents user
preferences by considering positive user clicks, which cannot
achieve fulfilling results.

Due to the impact of deep learning, recurrent neural
network (RNN) has been successfully used in SBR. For
instance, Hidasi et al. used RNN with gated recurrent units
(GRUs) [6] in SBR for the first time and obtained promising
performance [7]. And then Tan et al. further proposed
an improved version by data augmentation to improve
the robustness of training by pre-training to sufficiently
consider the transitions of user behavior over time [8], [9].
Li et al. proposed NARM, a new method adding an attention
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mechanism to RNN, which can simultaneously capture the
users’ continuous behaviors and interests [9], [10]. Consid-
ering the users’ global and current preferences, Liu et al.
proposed STAMP, which applies an attention mechanism and
multilayer perceptron (MLP) networks [11]. Recently, RNN
and variational auto-encoder (VAE) are integrated to extract
user preferences in session by Song et al. [12]. Besides,
Wau et al. proposed SR-GNN, which applies a graph neural
network (GNN) combined with RNN in SBR [13]. Similarly,
Xu et al. presented GC-SAN, using GNN and a self-attention
mechanism to learn the long-term dependence between items
in session sequences [14]. Qiu et al. proposed FGNN, which
computes the information flow between items in the session
using the multi-weight graph attention layer (WGAT) to
achieve the item representation and then aggregates the
item representation through the feature extractor to extract
features [15]. Wang, Z et al. proposed GCE-GNN to learn
the whole transitions of items from the current and historical
sessions by enlarging the range of helpful information,
achieving outstanding performance [16]. Chen, Y et al.
presented MAE-GNN to select significant node information
and capture user preferences from multiple dimensions by
combining a dual-gated graph neural network and multi-head
attention mechanisms [17]. More recently, Dong et al.
presented GPAN, which obtains each item embedding of the
current session by the high-low order session perceptron,
combines the position embedding of the items to obtain
short-term user preferences, and passes it to the self-attention
layer to obtain long-term user preferences [18]. However,
it does not achieve better results than GCE-GNN and
MAE-GNN.

Compared with other SBR methods, GNN-based methods
have achieved outstanding performance, but they still have
some limitations. GCE-GNN, MAE-GNN, and GPAN started
modeling user preferences based on all sessions while
bringing the problem of imbalanced positive and negative
samples on model training.

To this end, we propose a novel approach named
Attention-enhanced Graph Neural Networks with Global
Context for Session-based Recommendation (AGNN-GCOC).
Global and local graphs are constructed based on all training
sequences. Then it uses graph convolutional networks
(GCNs) with a session-aware attention mechanism to learn
global-level item embedding in all sessions. And it employs
a graph attention networks (GAT's) module to learn local-level
item embedding in the current sessions. Particularly, It uses
a novel attention mechanism to enhance fused information
after learning global-level item embedding in all sessions and
local-level item embedding in the current session. Besides,
it applies the focal loss to balance positive and negative
samples in model training. The main contributions of our
work are summarized as follows:

o« We propose a novel attention mechanism to pro-
cess fused features after learning and merging the
information of the global-level and local-level item
embedding representations, which helps learn the final
representation of a session sequence.
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« We apply the focal loss to update the function for opti-
mizing the model to solve the problem of imbalanced
positive and negative samples on model training.

« We conduct extensive experiments on three real-world
datasets, which consistently show the superior perfor-
mance of AGNN-GC over state-of-the-art methods.

Il. RELATED WORK

This section reviews the related work on SBR, including
conventional methods, deep-learning-based methods, and
graphs-based neural network methods.

A. CONVENTIONAL METHODS

There are many conventional studies on SBR, mainly based
on the Markov chain or PMF. Markov-based methods [2],
[3], [4] treat the recommendation as a sequential optimization
problem and solve it to deduct a user’s next behavior using
the previous one. However, Markov-based methods can only
model the sequential transition of two consecutive items,
which cannot achieve fulfilling results. PMF [5] is common
on SBR. It decomposes a user-item evaluation matrix into two
low-rank matrices, where each low-rank matrix can represent
the user’s or item’s latent features. However, it leads to user
preferences being represented only by positive user clicks,
which has certain limitations.

B. DEEP-LEARNING-BASED METHODS

For SBR, Hidasi et al. proposed a recurrent neural network
(RNN) approach for the first time [7]. In the same year, they
proposed a parallel RNN approach, which considers the basic
information of clicked items and uses some other features
to improve the recommendation result [19]. On this basis,
Tan et al. enhanced the performance of the model above
by data augmentation, pre-training, and taking temporal
shifts in user behavior into account [8]. Li et al. proposed
NARM [10], similar to the Transformer [20], which is
commonly used in natural language processing. It has an
encoder-decoder neural network structure and uses an RNN
approach with an attention mechanism to capture users’
sequential behavior features. Liu et al. proposed STAMP,
using simple multilayer perceptron (MLP) networks and
attention mechanisms to achieve users’ global preferences
and current preferences [11]. To account for shifts in
user interest, RNN and variational auto-encoder (VAE)
are integrated to extract user preferences in session by
Song et al. [12].

C. GNN-BASED METHODS

Recently, graph neural network (GNN) performs well in
SBR models, which shows a promising direction for SBR.
Most GNN-based methods construct a session sequence as a
session graph and then utilize GNN to aggregate information
on adjacent nodes.

For SBR, SR-GNN combines RNN, GGNNs, and attention
network [13], [21]. It constructs user-item sequences into
graph-structured data and captures underlying transitions of
the items in sessions. Similarly, Xu et al. presented GC-SAN,
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FIGURE 1. An example of global graph and local graph.

which utilizes GNN and the self-attention mechanism to
learn long-term dependencies between items in session
sequences [14]. Following SR-GNN, TAGNN improves the
attentive module, further considering the relevance of the
historical behaviors given a specific target item [22]. Qiu et al.
presented FGNN, using the multi-weight graph attention
layer (WGAT) to compute the information flow between
items in the session to learn the item representation and
then aggregate the item representation through the feature
extractor to extract features [15]. Wang, Z et al. proposed
GCE-GNN to learn the whole transitions of items from
current and historical sessions by enlarging the range of
helpful information, achieving outstanding performance [16].
Chen, Y et al. presented MAE-GNN to select significant
node information and capture user preferences from multiple
dimensions by combining a dual-gated graph neural network
and multi-head attention mechanisms [17]. More recently,
Dong et al. presented GPAN, which uses the high-low order
session perceptron to model directed and undirected graphs
respectively to obtain high-order and low-order item transi-
tions in session, and session position information to enhance
the relevance of sequence order to user preferences [18].

IIl. PRELIMINARIES

This section first defines the problem statement and then
introduces two approaches of constructing graphs, the global
graph that describes the sessions and the local graph that
illustrates the current session [16].

A. PROBLEM STATEMENT

The purpose of the SBR is to predict the user’s next click
item, using only the user’s historical session sequences
rather than the long-term preference profile. Let V =
{vi, va, ..., vy} contain all user-clicked items in the session.
In addition, the timestamp sorted s = [vy,1, V52, ..., Vs,n] is
used to represent an anonymous session sequence, and the
length of S is /. Let vy 4,41 denote the next user-click item.
Ultimately, a probability ranking list of all candidate items
is generated, and the top-k probability items will become
the recommended candidate items. For example, FIGURE 1
illustrates three different session sequences labeled Sessionl,

VOLUME 11, 2023

Session2, and Session3. They include all clicked items in the
according sessions, with arrows describing the order of clicks
one by one.

B. GLOBAL GRAPH AND LOCAL GRAPH

This subsection introduces two graph models, the global and
the local graphs, to describe the transitions between items in
current sessions at different levels [16]. FIGURE 1 shows an
example of the global and the local graphs. From the figure,
the image after the left arrow is the constructed global graph
with different sequences of sessions circled by dotted lines
of different colors. The image after the right arrow is the
constructed local graph, corresponding to the three session
sequences on the top of the figure.

1) GLOBAL GRAPH
Deep-learning-based methods (e.g., RNN-based SBR meth-
ods [7], [8], [10], [12]) aim to model the sequential patterns
to learn the item representation of sessions. Different from
RNN-based SBR methods, GNN-based SBR methods [13],
[14], [15] learn item embedding of sessions by constructing
the historical interaction sequence of a session into a
session graph to capture information about adjacent nodes.
Therefore, we choose to construct the global graph to model
the global-level item transitions between items in all sessions.
We consider global-level item transitions for global-level
item representation learning by integrating all pairwise item
transitions over sessions [16], [23]. We define a concept (i.e.,
e-neighbor set) for modeling the global-level item transition.
For eachitem vf’ in session S, the e-neighbor set of vf’ denotes
a set of items, as follows:

Ne(F) = {7 1) =] e s, N5 e 5y
jeli—ei+e];Sy #8,

where vf is the /’-th item in session S, ¢ is the hyperparameter
that controls the modeling scope of item transitions between
vf and other items in §,. Besides, we use vf to represent each

item in &-neighbor set N (1v)).

Based on e-neighbor set, for item v; global-level item
transition is defined as {(vi,vj) | vi,vj € V;vj € Ne ()}
Note that, to improve efficiency, we do not consider the
direction of the global-level item transitions [16].

Next, the global graph is defined as G, = (Vg Eg)
which is an undirected weighted graph, where V, represents
the graph node set which has all items in V, and E, =
{ef;. (v,-, vj)iv,-, vi € Viv; € No (vi) represents the set of
edges corresponding to two pairwise items in all sessions.
Besides, we generate a weight for v;’s adjacent edges to
emphasize the significance of its neighbors. The frequency of
all the sessions is used as the weight of each corresponding
edge, and we only keep top-k edges with the highest
importance for each item v; on graph G, [16].

2) LOCAL GRAPH
The target of constructing a local graph is to model the
transitions of adjacent items in the current session to learn
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local-level item embedding. Inspired by [13] and [22], each
session sequence is modeled into a directed local graph,
which describes the click order of items in the session. It is
defined as G; = (V}, E;), where V; denotes the item set and
E; denotes the edge set. That is, each node v} € V; in G;
represents an item, and each edge (vf._1 , vf. ) € E; denotes that
the user clicks the item vf_l and item vf in sequence, which
is called local-level item-transition pattern. Like [15], each
node has a self-loop to fuse its information in the following
modeling.

Inspired by [16], there may be four types of edge
connections in the local graph, which are represented as

(vf v/‘),
rin denotes there is only a single transition from v to vi.
Similarly, r,,; means there is only a single transition from v}
to vjf , and r;,_ o, indicates there are both transitions between

vi and vf. ; T'self TEpresents its transiting information.

Yins Youts Yin—ow and Fyeyr. For example, in edge

IV. PROPOSED METHOD

This section covers our proposed method in detail.
AGNN-GC aims to utilize global-level and local-level
item transitions to capture the user preferences of the
current session for recommendation. At first, based on the
global graph structure, it uses graph convolutional networks
(GCNs) with a session-aware attention mechanism to learn
global-level item embedding in all sessions. Then it employs
a graph attention networks (GATs) module to learn the
local-level item embedding in the current sessions. After that,
it fuses the learned two-level item embedding for modeling
the user preference of the current session with a novel
attention mechanism to process fused features. Ultimately,
it outputs the probability that the top-k candidates are
recommended. The overview of the proposed AGNN-GC
method is shown in FIGURE 2.

A. LEARNING GLOBAL-LEVEL ITEM EMBEDDING
Referring to previous methods [24], [25], this module is
based on GCNs, and we calculate the attention weights
according to the importance of each connection. Since a
single item may involve multiple sessions, from which we can
obtain useful item transitions that are helpful for subsequent
recommendation task. By mean pooling to obtain the first-
order neighbor’s features of item v is a simple and effective
solution. However, not all items in v’s e-neighbor set are
related to the user preferences of the current session, so we
consider using session-aware attention to emphasize the
importance of items in its Ny(v) [16]. In terms of session-
aware attention, each item in Ng(v) is linearly combined,
which is as follows:

thi = Z T (v,',Vj) th (2)
vjeNs;

where 7 (v;, v;) denotes the weight of different neighbors,
and h,; denotes the representation of item v; in the unified
embedding space. The closer an item is to the preference of
the current session, the greater the significance of the item
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is to the recommendation, which is consistent with empirical
judgment. Hence, 7 (v,-, Vj) is formulated as follows:

T (v,-, Vj) = qr{ LeakyReLU (Wl [(S O hy; ||Wij)]) &)

Here w;; € R! represents the weight of the edge vy, vz, ©
denotes element-wise product, || represents the concatenation
operation, g1 € R*! and Wy e RI*T1x4+1 are trainable
parameters. And we choose LeakyReLU as the activation
function [23]. s represents the features of current sessions.
And it can be obtained by calculating the mean value of the
current session’s item representation:

1
§=— hy,
IS1

v;ieS

“

After that, the coefficients across N.(v) connected with v;
are normalized by the softmax function:

exp (r (vi, v}))
D8 e exp (T (vi, vi))

v,‘EN‘%’[

&)

7 (vio vy) =

Finally, we aggregate the item representation h, and
its neighbor representation hgv, the k-th representation of
multiple aggregator layers is implemented as follows:

18 ® — ReLU (Wz(k) [hﬁ"_l) ||h1(v’zg_1)]) (6)
)

from previous k — 1 steps, and the initial hvo) is the same as
h, when k = 1. Besides, W2(k) € R4*2d g the k-th layer
aggregation weight.

Through the operations above, each global-level item
embedding representation is dependent on itself and the
connectivity information representation of the current
session [16].

. . . . k—1) .
where ReLU is the activation function, hs is generated

B. LEARNING LOCAL-LEVEL ITEM EMBEDDING

According to [25] and [26], we adopt GATs to learn
the local-level item embedding representation. Specifically,
the attention mechanism of GATs is used to compute the
significant weights of different nodes. Given a node v;,
the significant weight of v; on it can be calculated by
element-wise product and non-linear transformation:

ejj = LeakyReLU (arT,-,- (v, © hy; )) @

where r; indicates the relationship between v; and
Vi, @x € R4 represent the weight vectors, and LeakyReLU
is the activation function.

Referring to [16], according to the relationship of each
node v;, we train four weight matrices, @i, @out, Ain—out
and ag,r respectively, which can describe the impact of all
nodes over v;. And to make the weights of different nodes
comparable, the softmax function is utilized to normalize
them, and the attention weights coefficient o;; is as follows:

exp )
2 ens €Xp (LeakyReLU (ar, ™ (hy; © hy,)))

®)

Qjj =
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FIGURE 2. Overview of the proposed method. (a) Firstly, based on the global graph, global-level item embedding in all sessions is learned by graph
convolutional networks with a session-aware attention mechanism. (b) Then, based on the local graph, a graph attention networks module learns
local-level item embedding in the current sessions. (c) Then, the model fuses the learned two-level item embedding with a novel attention mechanism

for processing fused features. (d) Finally, candidate items will be scored.

Due to different neighbors, «;; is asymmetric. Hence,
we need to calculate a linear combination of features of each
node v; to get the feature representations:

hf’i = Z aijh"f

.eNS
Vi ENVi

©)

After aggregating the critical information of the node
itself and its neighbors in the current session, we obtain the
local-level item embedding representation for each node.

C. INFORMATION FUSION

After obtaining the global-level and local-level item embed-
ding representations, we need to fuse the information before
making recommendation. With the dropout [27] on the
global-level item embedding, the two-level information is
extracted by sum pooling, which is as follows:

h;, = SumPooling (dropout (h‘f’," (k)) ,hvil) (10)

where h;“i is the item representation with two-level informa-
tion in the session.

Considering noise filtering and the items clicked later in the
session show the greater significance for the recommenda-
tion [13], [22], we design a new position attention mechanism
to compute soft-attention weights on all items in the session,
which fuses two-level information with position information
of items in the session.

Next, we can get the representations of items among the
session, i.e., H L :‘l,h,’fz, ,h"fl] We also employ
reverse position embedding matrix P = [p1,p2,...,p1] to
reveal the position information embeddings for all the items
involved in the session, where p; € R is the first position
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vector, p; € R is the last position vector [16].After these
operations above, we leverage concatenation and non-linear
transformation to generate the fused position embedding:

fi* = tanh (W3 [hy,*Ip;_i11] + b) an

where Wy € R9%24 and p e RY are the trainable
parameters and || denotes the concatenation operation.
Referring to [16], the reversed position information can more
accurately suggest the significance of each item than the
forward position information. In our work, the two-level
information of items in the session is averaged:

I,
T2,
i=1
Based on (11) and (12), different from previous work,
we apply a novel attention mechanism to calculate soft-
attention weights:

Bi = g5 ReLU (Waf;* + Wss™* +¢c) (13)

where Wy, W5 € R*d and ga2,c € R? are learnable
parameters. Exceptionally, to release the vanishing gradient
problem [28], we choose ReLU as the activation func-
tion [29].

Next, it is normalized by a softmax function:
exp (Bi)
2im1exp (B)

Ultimately, the session embedding representation can be
generated through linear combination operations:

1
Py
i=1

s* (12)

«; = softmax (B;) = (14)

(15)
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The session embedding representation F can represent
the session features, by fusing the global-level and local-
level information and considering the order and position
information of all involved items.

D. MAKING RECOMMENDATION

Based on the obtained session embedding representation F,
let y; denote the final recommendation probability for each
item v; based on the original embedding representation and
the current session embedding representation. We first take
dot product and next add a softmax function to get the results:

¥i = softmax (F Thvi) (16)

Different from the previous work, to solve the problem
of imbalanced positive and negative samples, the focal
loss [30] is innovatively applied to replace the conventional
cross-entropy loss for optimizing the model, which is defined
as follows:

o _ [ e X (4 =30 logFi, yi = 1

£ = [ —aZapriog( =5, yi=0 17
where y is the one-hot vector, which denotes the ground
truth of the target item, o« is a factor that can balance the
ratio of positive and negative samples, and y is a factor that
can solve the problem of imbalance between distinguishable
and indistinguishable samples. Hence, it ensures that in the
training process, the model will pay more attention to those
small and indistinguishable samples, reducing the impact
of the gradient superposition of a significant number of
distinguishable samples on model training.

V. EXPERIMENTS

This section describes the experiments’ datasets, base-
line methods, evaluation metrics, and parameter settings.
To verify the validity of the proposed model AGNN-GC,
we conducted a range of experiments by answering the
subsequent questions:

« RQI1: Does AGNN-GC outperform state-of-the-art
methods on real-world datasets?

e RQ2: Does the focal loss perform better than the
conventional cross-entropy loss in training AGNN-GC?
Does our novel scheme for representing user interests
improve the performance?

« RQ3: How do different hyperparameters settings of the
focal loss affect the performance of AGNN-GC?

« RQ4: How do different hyperparameters settings of
dropout affect the performance of AGNN-GC?

A. EXPERIMENTAL SETUP

1) DATASETS

We conducted extensive experiments on three representative
public datasets, i.e., Diginetica, Nowplaying, and Tmall.
Diginetica dataset comes from CIKM Cup 2016, and we
only select the public transactional data. Nowplaying dataset

IData files of CIKM Cup 2016: https://competitions.codalab.org/
competitions/11161
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TABLE 1. Statistics of the datasets.

Dataset Diginetica Nowplaying Tmall

total clicks 982961 1367963 818479

training sessions 719470 825304 351268

test sessions 60858 89824 25898

total items 43097 60417 40728
average session length 5.12 7.42 6.69

comes from [31], which contains users’ music-listening
behavior. Tmall dataset comes from IJCAI-15 Competition,2
which records the shopping logs of anonymous users on
Tmall e-commerce platform [16].

Following previous methods [16], [32], we conduct the
same data preprocessing step on the datasets above to make
it fair. Notably, we filter out the sessions with a length of
1 and items with less than five occurrences, and we choose
the sessions of last week (latest data) as the test set. Besides,

we split a sequence of session data S = [s1,52,..., S,]
into a series of sequences and corresponding labels,
i‘e-» ([Sl] I S2) ’ ([sls S2] ’ 33) LI} ([S17 52, MR snfl] ’ Sn) fOr

training and testing on all three datasets. After preprocessing,
the statistics of the datasets are shown in TABLE 1.

2) BASELINES

We compare the proposed AGNN-GC method with the
following representative baseline methods, including three
conventional and ten latest deep-learning-based recommen-
dation methods.

o POP: It always recommends the most popular items in
the training set.

o Item-KNN [33]: It is a conventional recommendation
method based on cosine similarity between session
vectors.

o FPMC [3]: It is a Markov-based recommendation
method.

o GRU4REC [7]: Itis the first SBR method based on RNN
that uses Gated Recurrent Units (GRUs).

« NARM [10]: It is a deep-learning-based method that
extracts sequential action features of users by an
attentive RNN-based network.

e STAMP [11]: It is an SBR method with short-term
attention memory priority that effectively captures user
preferences.

e SR-GNN [13]: It is the first GNN-based SBR method
that captures the user’s global and current preferences.

o CSRM [34]: It applies the memory networks to learn the
latest m sessions for better predicting the intentions of
the current session.

e GC-SAN [14]: It is an SBR method with self-attention
networks to learn global and local dependency informa-
tion between items in a session.

o FGNN [15]: It employs a weighted attention graph layer
to learn the item representations and utilizes a graph
feature encoder to extract the final representation of the
session.

2Data files of IICAI-15 competition: https://tianchi.aliyun.com/dataset/42
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TABLE 2. Comparisons of HR@20 and MRR@20 between AGNN-GC and baselines.

Method Diginetica Nowplaying Tmall
HR@20 MRR @20 HR@20 MRR @20 HR@20 MRR @20

POP? 0.89 0.20 0.86 2.00 0.90
Item-KNN 35.75 11.57 15.94 491 9.15 3.31
FPMC 26.53 6.95 2.82 16.06 7.32
GRU4REC 29.40 8.31 448 10.93 5.89
NARM 49.70 16.17 18.59 6.93 23.30 10.70
STAMP 45.64 14.32 17.66 6.88 26.47 13.36
SR-GNN 50.77 17.62 18.87 7.47 27.57 13.72
CSRM 50.55 16.38 18.14 6.42 29.46 13.96
GC-SAN 48.58 16.55 17.31 6.80 19.14 8.54
FGNN 50.58 16.84 18.78 7.15 25.24 10.39
GCE-GNN 54.22 19.04 22.37 8.40 33.42 15.42
MAE-GNNP 51.61 17.77 - 33.44 15.37
GPAN 53.96 18.84 22.64 7.66 28.37 13.86
AGNN-GC 54.35 19.00 23.07 8.62 33.68 15.54

a The results of POP are quoted from SR-GNN and GCE-GNN.

b The authors of MAE-GNN do not release the results on Nowplaying dataset. We only refer to the results on Diginetica and Tmall datasets.

¢ GCE-GNN [16]: It utilizes GNN to learn two levels
of item embeddings from global and session graphs,
and next aggregates the learned item representations
considering the position embeddings.

e MAE-GNN [17]: It combines a dual-gated graph neural
network and multi-head attention mechanisms for SBR
to select significant node information and capture user
preferences from multiple dimensions.

o GPAN [18]: It utilizes the high-low order session
perceptron to model directed and undirected graphs
respectively to obtain high and low order item transitions
in session, and session position information to enhance
the relevance of sequence order to user preferences.

3) EVALUATION METRICS

Following previous methods [13], [15], [16], [17], [18],
we adopt the commonly used HR@20 (Hit Rate)® and
MRR@20 (Mean Reciprocal Rank) as evaluation metrics
[91, [35].

4) PARAMETER SETTINGS
All the experiments below were run on Ubuntu 16.04.6 LTS
docker system with pytorch 1.10.1.

In our experiments, the dimension of embedding vectors is
set to 100, and the batch size is set to 100, the L2 penalty is
setto 107>, The dropout ratio is set to 0.5 in Diginetica, 0.7 in
Tmall, and no dropout in Nowplaying. The hyperparameters
a and B of the focal loss are set to 0.9 and 2, respectively.
Moreover, we select a random 10% subset of the training set
as the validation set. All parameters are initialized using a
Gaussian distribution with a mean value of 0 and a standard

3Note that [101,[11],[13],[17],[18], and [22] used different metric names
for HR@20 (e.g., Precision@20 and Recall@20). However, they used the
same formula to obtain this measurement (i.e., the proportion of cases when
the desired item is among the top-20 items in all cases).
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deviation of 0.1. After that, the mini-batch Adam optimizer
with the initial learning rate of 0.001 is adopted, which will
decay at arate of 0.1 every three epochs. Besides, the number
of neighbors and the maximum distance of items are set to
12 and 3, respectively. Otherwise, for fairness, the parameters
are also set as the ones when the model performs best.

B. COMPARISON WITH BASELINES (RQ1)

To verify the overall performance of AGNN-GC, we compare
it with existing representative baselines. The overall perfor-
mance in HR@20 and MRR@20 is shown in TABLE 2,
where the best results are highlighted in bold.

As shown in TABLE 2, compared with the baselines, it can
be observed that AGNN-GC achieves superior performance
in most metrics across all three datasets, which shows the
superiority and effectiveness of AGNN-GC.

From TABLE 2, conventional methods generally do not
perform well. POP and Item-KNN are early conventional
recommendation methods, while FPMC is recommended
based on the Markov chain [13]. Their performance is inferior
to AGNN-GC because they are not based on advanced deep
neural networks.

Compared with conventional methods, the latest deep-
learning-based methods significantly perform better due to
their greater ability to capture complicated user behav-
iors. Although GRU4REC performs inferior to Item-KNN
on Diginetica and Nowplaying datasets, it still ensures
the effectiveness of RNN in modeling sequences. Since
GRU4REC only considers sequential relationships rather
than the remaining information in the sequence, missing
the meaningful shift of user preferences, it performs worse
than NARM and STAMP. NARM is a sequence method
based on RNN, which considers the unidirectional transitions
between adjacent items. STAMP uses an attention mechanism
and multilayer perceptron (MLP) networks to achieve the
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TABLE 3. Performance of different session embedding strategies.

Strategy Diginetica Nowplaying Tmall
HR@20 MRR @20 HR@20 MRR @20 HR@20 MRR@20
AGNN-GC-S-C 54.22 19.04 22.37 8.40 33.42 15.42
AGNN-GC-T-C 54.16 18.90 22.30 8.49 33.30 15.51
AGNN-GC-L-C 54.09 18.90 22.47 8.57 33.40 15.37
AGNN-GC-R-C 54.29 18.90 22.53 8.54 33.62 15.41
AGNN-GC-D-C 51.14 17.37 20.93 6.99 31.04 14.56
AGNN-GC-S-F 54.30 19.01 22.50 8.54 32.73 15.19
AGNN-GC-T-F 54.08 18.86 22.53 8.56 32.89 15.19
AGNN-GC-L-F 54.19 18.92 22.57 8.57 33.02 15.16
AGNN-GC 54.35 19.00 23.07 8.62 33.68 15.54
AGNN-GC-D-F 51.17 17.36 21.08 7.09 30.63 14.31
] : j;
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FIGURE 3. Performance effects of varying hyperparameters on Diginetica.

user’s global and current preferences. The following CSRM
method outperforms NARM and STAMP on Diginetica and
Tmall. CSRM regards other sessions as a whole, showing the
effectiveness of using item transitions from other sessions.

According to TABLE 2, it is obvious that after introducing
GNN to SBR, the performance of methods can be observably
improved, especially on Diginetica and Nowplaying. This is
because constructing session sequences into graph-structured
data is adequately capable of considering the complex tran-
sitions among items in sessions rather than just considering
the unidirectional transitions between adjacent items. In other
words, GNN has a more excellent capability than RNN of
capturing more complex inter-item dependencies in a session
sequence. SR-GNN, GC-SAN, and FGNN construct each
session sequence as a simple graph and employ GNN to
encode the items, which verifies the effectiveness of using
GNN in SBR.

Following GNN-based methods, GCE-GNN makes a
significant breakthrough in performance on the three datasets.
GCE-GNN can learn two levels of context information
and incorporate relative position information, achieving
better performance than previous methods [16]. Besides,
MAE-GNN filters out the noise interference of irrelevant
nodes [17]. However, the performance of MAE-GNN on
Diginetica is not satisfactory. This is because most sessions
are too short, and the performance of MAE-GNN will
deteriorate.

Our proposed method AGNN-GC performs better than
GPAN and MAE-GNN on all datasets and outperforms
GCE-GNN on Nowplaying and Tmall. It applies a novel
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FIGURE 4. Performance effects of varying hyperparameters on
Nowplaying.
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FIGURE 5. Performance effects of varying hyperparameters on Tmall.

attention mechanism to process fused features and the focal
loss to update the function for optimizing the model. It can
solve the problem of imbalanced positive and negative
samples, which is why AGNN-GC has superior performance.

C. COMPARISON WITH VARIANTS OF THE PROPOSED
MODEL (RQ2)

To demonstrate the impact of different strategies on the
recommendation results, we compare AGNN-GC with
several variants of AGNN-GC, AGNN-GC-S-C, AGNN-GC-
T-C, AGNN-GC-L-C, AGNN-GC-R-C, AGNN-GC-D-C,
AGNN-GC-S-F, AGNN-GC-T-F, AGNN-GC-L-F, and
AGNN-GC-D-F, which are tested on three datasets, Dig-
inetica, Nowplaying, and Tmall. The evaluation metrics
are HR@20 and MRR@20, respectively. The detailed
description of the variants above is as follows:

o AGNN-GC-S-C: AGNN-GC-S-C adopts the sigmoid-
adding attention mechanism to process fused features
and retains the conventional cross-entropy loss in
training.
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FIGURE 6. Impact of different dropout settings on recommended performance.

o AGNN-GC-T-C: AGNN-GC-T-C adopts the tanh-
adding attention mechanism to process fused features
and retains the conventional cross-entropy loss in
training.

o AGNN-GC-L-C: AGNN-GC-L-C adopts the leakyrelu-
adding attention mechanism to process fused features
and retains the conventional cross-entropy loss in
training.

¢ AGNN-GC-R-C: AGNN-GC-R-C adopts the relu-
adding attention mechanism to process fused features
and retains the conventional cross-entropy loss in
training.

o AGNN-GC-D-C: AGNN-GC-D-C adopts the dot prod-
uct attention mechanism to process fused features and
retains the conventional cross-entropy loss in training.

o AGNN-GC-S-F: AGNN-GC-S-F adopts the sigmoid-
adding attention mechanism to process fused features
and applies the focal loss in training.

o AGNN-GC-T-F: AGNN-GC-T-F adopts the tanh-adding
attention mechanism to process fused features and
applies the focal loss in training.

o AGNN-GC-L-F: AGNN-GC-L-F adopts the leakyrelu-
adding attention mechanism to process fused features
and applies the focal loss in training.

o AGNN-GC-D-F: AGNN-GC-D-F adopts the dot prod-
uct attention mechanism to process fused features and
applies the focal loss in training.

It can be found from TABLE 3 our proposed method
AGNN-GC performs best. Obviously, with the focal loss
rather than the conventional cross-entropy loss in the training
process, AGNN-GC achieves better performance on three
datasets, especially on Nowplaying and Tmall datasets, which
indicates that using the focal loss in the training process
can better train the positive samples and samples that are
difficult to be trained and classified. Besides, on Nowplaying
and Tmall datasets, the relu-adding attention mechanism
outperforms other methods with the same loss function
in the training process, which suggests the superiority
of the relu-adding attention mechanism to process fused
features in information fusion module. On Diginetica dataset,
the method that uses the relu-adding attention mechanism
performs close to other methods with the same loss function
in the training process, which may be because the average
length of sessions in Diginetica dataset is shorter than that in
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the other two datasets. Therefore, it can help the information
fusion module to compute soft-attention weights.

D. IMPACT OF FOCAL LOSS SETTING (RQ3)

In the training process, we use two hyperparameters, o and
y, to control the focal loss. From FIGURE 3, FIGURE 4,
and FIGURE 5, taking the factor y = 2 achieves the best
performance than taking the factor y from {0, 0.5, 1, 5} on
the three datasets. Due to the extreme imbalance between
positive and negative samples in the training process, the
model generally achieves better performance as « increases.
On the one hand, when setting « = 0.25, both HR@20 and
MRR @20 reach the bottom, which is because it exacerbates
the imbalance between positive and negative samples. On the
other hand, when setting « = 0.9, both HR@20 and
MRR @20 reach the peak, but increasing « will degrade the
performance of the model.

E. IMPACT OF DROPOUT SETTING (RQ4)

We apply the dropout regularization strategy to prevent
our model from overfitting, referring to GCE-GNN [16].
Specifically, the dropout regularization strategy randomly
drops neurons with probability p during training, where all
neurons are in the test set. FIGURE 6 illustrates the impact of
the dropout setting of (10) on Diginetica, Nowplaying, and
Tmall datasets. It is easy to find that our model performs
poorly when the dropout ratio is small on Diginetica and
Tmall datasets. It reaches peak performance when the dropout
ratio is 0.5 on Diginetica and 0.7 on Tmall because it is
prone to overfitting on the two datasets. However, as the
dropout ratio increases, its performance worsens because it is
challenging to learn from data with few accessible neurons.
Besides, it gets the best performance without any dropout
setting on Nowplaying because it is challenging to overfit.

VI. CONCLUSION

This paper presents a novel approach for session-based
recommendation based on graph neural networks. Specif-
ically, it first constructs global and local graphs based
on all training sequences. Next, it learns global-level and
local-level item embedding information and fuses them
to enhance the feature presentations of items by a novel
attention mechanism. Finally, applying the focal loss to
balance positive and negative samples on model training
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accomplishes the prediction. Our experiments over three
real-world datasets prove the superiority over most advanced
methods.
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