IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 14 February 2023, accepted 7 March 2023, date of publication 9 March 2023, date of current version 15 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3255164

== RESEARCH ARTICLE

Hyperspectral Image Classification: An Analysis
Employing CNN, LSTM, Transformer, and
Attention Mechanism

FELIPE VIEL''-2, (Student Member, IEEE), RENATO COTRIM MACIEL 3,
LAIO ORIEL SEMAN"'1-2, CESAR ALBENES ZEFERINO "', (Member, IEEE),
EDUARDO AUGUSTO BEZERRA 2, (Member, IEEE),

AND VALDERI REIS QUIETINHO LEITHARDT 43, (Senior Member, IEEE)

!Laboratory of Embedded and Distributed Systems, University of Vale do Itajaf, Itajai 88302-901, Brazil

2Space Technology Research Laboratory (SpaceLab), Federal University of Santa Catarina, Florianopolis 88040-370, Brazil

3Department of Production and Systems Engineering, Federal University of Santa Catarina, Florianopolis 88040-370, Brazil
4COPELABS, Luséfona University of Humanities and Technologies, 1749-024 Lisbon, Portugal

SVALORIZA, Research Center for Endogenous Resources Valorization, Instituto Politécnico de Portalegre, 7300-555 Portalegre, Portugal

Corresponding author: Felipe Viel (viel @univali.br)

This work was supported in part by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Agéncia Espacial Brasileira
(AEB), under Grant 436.982/2018-8, Grant 313.513/2021-0, Grant 140368/2021-3, and Grant 308361/2022-9; in part by the National
Funds through Fundagido para a Ciéncia e a Tecnologia, I.P. (Portuguese Foundation for Science and Technology) by the Project
“VALORIZA—Research Center for Endogenous Resource Valorization” under Grant UIDB/05064/2020; and in part by Fundacéo para a
Ciéncia e a Tecnologia under Project UIDB/04111/2020.

ABSTRACT Hyperspectral images contain tens to hundreds of bands, implying a high spectral resolution.
This high spectral resolution allows for obtaining a precise signature of structures and compounds that
make up the captured scene. Among the types of processing that may be applied to Hyperspectral Images,
classification using machine learning models stands out. The classification process is one of the most
relevant steps for this type of image. It can extract information using spatial and spectral information and
spatial-spectral fusion. Artificial Neural Network models have been gaining prominence among existing
classification techniques. They can be applied to data with one, two, or three dimensions. Given the
above, this work evaluates Convolutional Neural Network models with one, two, and three dimensions
to identify the impact of classifying Hyperspectral Images with different types of convolution. We also
expand the comparison to Recurrent Neural Network models, Attention Mechanism, and the Transformer
architecture.. Furthermore, a novelty pre-processing method is proposed for the classification process
to avoid generating data leaks between training, validation, and testing data. The results demonstrated
that using 1 Dimension Convolutional Neural Network (1D-CNN), Long Short-Term Memory (LSTM),
and Transformer architectures reduces memory consumption and sample processing time and maintain a
satisfactory classification performance up to 99% accuracy on larger datasets. In addition, the Transfomer
architecture can approach the 2D-CNN and 3D-CNN architectures in accuracy using only spectral
information. The results also show that using two or three dimensions convolution layers improves accuracy
at the cost of greater memory consumption and processing time per sample. Furthermore, the pre-processing
methodology guarantees the disassociation of training and testing data.

INDEX TERMS Hyperspectral imaging, CNN, LSTM, transformer, remote sensing.

I. INTRODUCTION A Hyperspectral Image (HSI) is a 3D data cube composed of
Hyperspectral imaging is one of the several methods for 2D images that represent a scene at different electromagnetic
capturing data from a scene in remote sensing systems. wavelengths (bands) [1], [2], [3], [4], [5]. In HSIs, electro-

magnetic wave spectra captured by sensors range from tens
The associate editor coordinating the review of this manuscript and to hundreds, depending on the sensor used. Furthermore, the
approving it for publication was Qiangqiang Yuan. spectrum ranges from visible (400 nm) to infrared (2500 nm)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
VOLUME 11, 2023 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 24835

https://orcid.org/0000-0002-0972-2160
https://orcid.org/0009-0008-0069-1274
https://orcid.org/0000-0002-6806-9122
https://orcid.org/0000-0003-3039-4410
https://orcid.org/0000-0002-2191-6064
https://orcid.org/0000-0003-0446-9271

IEEE Access

F. Viel et al.: Hyperspectral Image Classification

wavelengths, with a nominal spectral resolution of 10 nm
[1], [4]. Thus, an HSI is an image with a high spectral
resolution that provides more information about a single
point than other types of image used in remote sensing
(61, [71, [81, [9].

The large amount of data in HSIs produces practical
implications, such as identifying compounds and materials
in the scene. This data volume also has implications against
computational restrictions in sensing platforms, such as
limited memory and processing. The relationship between
processing large volumes of data and space applications,
especially with onboard processing, has been the subject of
several investigations in recent years [10], [11], [12], [13].
This issue mainly affects the use of more complex onboard
computers (OBC) in spacecraft, which have been the subject
of study and constant evolution in various parts of their
architecture [10].

One of the main processes applied to HSIs is classification,
which mainly benefits from the high spectral resolution of
these images. This high resolution creates a unique spectral
signature at each point (pixel) of the scene, which allows
the extraction of which compounds are in the scene [14].
Among the models used to classify HSI, the Convolutional
Neural Network (CNN) models stand out. The CNN models
process the data in various ways and can be one-dimensional,
two-dimensional, or three-dimensional. Using one or more
dimensions directly impacts processing and computational
resource requirements, such as the memory used by the CNN
and the model inference time [15], [16], [17].

CNN is a type of artificial neural network that is
particularly well-suited for analyzing and processing data
with a grid-like structure, such as images. A CNN consists
of a series of hidden layers, each one performing a
convolution operation on the input data. The convolution
operation involves applying a set of weights (also called
filters) to a small region of the input data and producing
a transformed output. The weights are learned through
training and are used to extract features from the input data.
The transformed output is then passed through a nonlinear
activation function and is used as input to the next hidden
layer [15], [18].

One of the key benefits of CNNs is their ability to
learn hierarchical features from the input data. Multiple
convolutional layers achieve this learning, and each layer can
learn more complex features based on the features learned by
the previous layer. Additionally, CNNs can process data with
a large spatial size (such as an image) much more efficiently
than fully connected neural networks, which require many
weights to process the data. This property makes CNNs
particularly well-suited for tasks such as image classification
and object detection [18].

One Neural Network architecture that compares to
1D-CNN is the Recurrent Neural Network (RNN). RNNs
are particularly useful for processing sequential data because
they allow the model to incorporate information from

24836

previous time steps. This approach contrasts traditional
feedforward neural networks, which process input data
independently and do not consider any information from
previous time steps. One of the key advantages of RNNs
is that they can process data of variable length, unlike
feedforward neural networks, which require fixed-length
input. This characteristic makes RNNs useful for tasks such
as natural language processing, as text length can vary
significantly. RNNs can be unrolled in time, meaning that the
same network architecture is applied to each time step in the
sequence. This property allows the network to learn long-term
dependencies between time steps, which is important for
language translation or speech recognition tasks. There are
several variants of RNNs, and one of the most important is
Long Short-Term Memory (LSTM) [17], [18], [19].

Transformer is an architecture that has been gaining
popularity for 1-dimensional data applications and replacing
RNN [20]. Generally, natural language processing (NLP)
processing applies the Transformer architecture, including
machine translation, language modeling, and text summa-
rization. However, Transformer architecture can also be
employed for time series processing. Using the Trans-
former design, image processing operations can also be
accomplished. The processing of visual features utilizing a
2D self-attention mechanism, as opposed to the 1D self-
attention mechanism used in NLP tasks, is a standard method.
This method allows the network to dynamically weigh
the importance of different visual regions when making
predictions. The Transformer architecture is a versatile
method for processing grid-like and sequential data. It has
shown promising performance in various image processing
applications, such as image classification, segmentation, and
generative modeling [20], [21], [22].

Works in the literature report the classification of HSIs with
CNN. Among the existing literature, some solutions address
comparisons between ID-CNN and 2D-CNN approaches
applied to HSI with their own architectures [15], [23], [24],
[25]. Other works expand the comparison or integration of
CNNg, including 1D, 2D, and 3D architectures for images
originated from remote sensings, such as [26], [27], [28],
[29], and [30]. Works such as [14], [31], [32], [33], [34], [35],
[36], and [37] compare distinct architectures focusing mainly
on spatial information from remote sensing images, including
HSIs. The authors of these works propose approaches or
CNN architectures that fuse spatial information with spectral
information. Another point worth highlighting and relevant
to CNN is how to generate and split the training and testing
dataset. The works of [38], [39], [40], [41], [42], and [43]
show different techniques to split the dataset or demonstrate
techniques for data augmentation to present a better balance
and dissociation between training and testing data.

Other works explore and combine RNN architectures for
HSI classification, including LSTM and Gated Recurrent
Unit (GRU). The authors of [44] propose an architecture
combining a Dense Connected Convolutional Network with

VOLUME 11, 2023

F. Viel et al.: Hyperspectral Image Classification

IEEE Access

a bidirectional RNN with an attention mechanism network.
In [45], a bidirectional-convolutional long short-term mem-
ory architecture is proposed that explores spatial-spectral
features for HSI classification. The work of [46] presents
two RNN architectures using LSTM and GRU for HSI.
Also, it proposes a new activation function called Parametric
Rectified Tanh (PRetanh) focused on RNNs. Finally, in [47],
a combination of convolutional layers with GRU-type RNN
layers is also presented to combine spatial-spectral features
present in HSI for more robust classification.

The Transformer architecture is already being applied to
the classification of HSIs with an option for the CNN and
RNN architectures. The works [48], [49], [50], [S51] classify
HSIs using a spectral-spatial approach, using steps to extract
spatial information and using the spectral signature, and
applying the concept of Vision Transformer (ViT). There are
authors, as [52], [53], and [54], that unite features of CNN and
LSTM architecture with Transformer for HSI classification.
Some works like [55] and [56] also present an extensive
comparison of the transformer architecture with other types
of architectures, comparing approaches using spectral and
spatial information.

In this context, the main contribution of the present work
relies on:

o Evaluating three types of CNN (1D, 2D, and 3D),
considering performance, processing time, and memory
consumption metrics. This evaluation identifies which
models concomitantly balance accuracy, resource con-
sumption (required memory and number of parameters),
and processing time.

o An extensive comparison among 1D-CNN, LSTM,
and Transformer architectures for classifying HSIs
using only spectral information. The comparison is
also expanded, adding Attention Mechanism Layer in
1D-CNN and LSTM architectures.

o A proposed pre-processing methodology that performs
a total dissociation of training and testing data, avoiding
poor generalization and metrics overestimation to 2D
and 3D architectures.

o Demonstration that 1D architectures are faster, require
less memory, and can achieve 99% accuracy. We also
demonstrate a correlation between the size of the
training dataset and the accuracy that allows the 1D
architectures to be equivalent to the 2D architecture and
the 3D architectures of reference in the literature, even
using less information.

The remainder of this work is structured as follows.
Section II describes the materials and methods used in the
work development, providing details about the implemen-
tation and verification steps, with the main point being
the methodology used to split the training and testing data
in the pre-processing stage. Section III presents the CNN
architectures, Section IV presents the LSTM architectures,
and Section V presents the Transformer architecture used and
explored in work. Section VI discusses the results obtained

VOLUME 11, 2023

and analyzed. Concluding, Section VII presents the final
remarks.

Il. MATERIALS AND METHODS

A. DATASET

The datasets used are literature benchmarks available in [57].
Those datasets represent aerial views captured by three dis-
tinct sensors, NASA/JPL AVIRIS (Airborne Visible/Infrared
Imaging Spectrometer), Hyperion on NASA Earth Obser-
vation 1 (EO-1), and the ROSIS (Reflective Optics System
Imaging Spectrometer) sensor. The HSIs used as datasets
and benchmarks were Indian Pines, the University of Pavia,
the Center of Pavia, Kennedy Space Center, Botswana, and
Salinas Valley. The AVIRIS sensor captured Indian Pines,
Salinas Valley, and Kennedy Space Center images. The
ROSIS sensor captured the University of Pavia and the Center
of Pavia scenes. In contrast, the Hyperion sensor on NASA
EO-1 satellite captured the Botswana scene [57].

Indian Pines (IP), Salinas Valley (SA), and Kennedy Space
Center (KC) scenes have 224 spectral bands covering the
electromagnetic spectrum from 400 to 2500 nm. However,
24 bands are removed because they are in water absorption
regions for IP and SA. For the HSI KC, 176 bands were
utilized for the analysis after water absorption, and low
Signal-to-Noise Rate (SNR) bands were eliminated. The IP
scene has a spatial dimension of 145 x 145 pixels and
comprises two-thirds agriculture and one-third forest or other
perennial natural vegetation. This scene has some of the
corn and soybean crops in the early stages of growth, two
main dual-lane highways, a railway line, some low-density
housing, other built structures, and more minor roads. This
HSI has 16 previously mapped classes in an 145 x 145x224
hypercube. The SA HSI represents the region of the same
name in California, with a spatial resolution of 512 x
217 pixels and the hypercube being 512 x 217 x224. This HSI
includes vegetation, bare soil, and vineyards, with 16 mapped
classes. The KC scene 512 x 614 pixels comprises different
spectral fingerprints of vegetation species in 13 classes
representing the various land cover types that occur in this
ecosystem [57].

The Botswana (BT) scene has a spatial resolution of 1476 x
256 pixels and 242 bands that covers the 400-2500 nm region
of the spectrum in 10 nm windows, representing the region
Okavango Delta in Botswana. After preprocessing to reduce
the impacts of subpar detectors, inter-detector miscalibration,
and sporadic abnormalities, only 145 bands remain. Their
observations from 14 recognized classes represent the various
forms of land cover in the distal seasonal wetlands, occasional
swamps, and dry forests. Finally, the University of Pavia (UP)
and Center of Pavia (CP) scenes also represent the region
of Pavia in Italy. CP has a spatial resolution of 1096 x
1096 pixels and 102 bands, with the hypercube being 1096 x
1096 x 102. UP has a spatial resolution of 610x 610 pixels and
103 spectral bands, with the hypercube being 610 x610x 103.
These HSIs are previously mapped and divided into nine
classes ranging from asphalt to bare soil [57].

24837

IEEE Access

F. Viel et al.: Hyperspectral Image Classification

B. DEVELOPMENT PLATFORM AND LANGUAGE

The development of the machine learning models was
performed using Python version 3.8, with the NumPy, Keras,
TensorFlow, Spectral, and Time libraries. Keras is a high-
level user-friendly Application Programming Interface (API)
running on top of TensorFlow, enabling the development
of machine learning models with great ease. In contrast,
TensorFlow is a robust library focused on DNN training,
inference, and serving. NumPy library is used to manipulate
arrays and create tensors for CNN models. Spectral is
employed to manipulate the HSIs used as the dataset. Finally,
the Time library enables the capture of execution time from
the prediction.

We used the Google Collaboratory Pro cloud service
platform for training, inference, and evaluation. Three
configurations were used: CPU only, CPU4+NVIDIA Tesla
T4 GPU, and CPU+NVIDIA A100 GPU. The CPU-only
infrastructure offers three Intel Xeons running at 2.2 GHz,
25 GB of main memory, and 225 GB of disk. The
CPU+NVIDIA Tesla T4 GPU infrastructure offers three Intel
Xeons at 2.2 GHz, 25 GB of main memory, 166 GB of disk,
and an NVIDIA Tesla T4 GPU with 15 GB of memory.
Finally, The CPU+NVIDIA A100 GPU infrastructure offers
a computational infrastructure with an Intel Xeon CPU with
2.2 GHz of operating frequency and 11 processors, 83.78 GB
of main memory, 166 GB of disk storage, and an NVIDIA
A100-SXM4 oftboard graphics card with 40 GB of memory.
This setup enables the execution of experiments with high
performance, mainly due to the use of a dedicated graphics
card.

C. BASELINE, DATA PREPROCESSING, AND EVALUATION
METRICS

The CNN architectures used [14] as a baseline. Also,
a distinct HSI dataset-splitting methodology is proposed. The
purpose is to enable splits that do not contaminate training
data in testing data and testing data in training data. This
splitting methodology aims to improve the classification
process, avoiding over-optimistic model metrics and resulting
in increased confidence in the precision results displayed
in [14]. In [14], the authors use a data split methodology for
training and testing that, when creating the spatial-spectral
cubes, causes information leakage (data leakage) between
training, validation, and testing sets. This contamination
causes a high degree of distrust regarding the macro precision
of the prediction in the testing set on production in real-world
applications.

This proposed data division process splits the HST into even
and odd rows, with the even rows for training and the odd
rows for testing. After this row division, it generates a column
division. After this splitting, the even rows and columns are
allocated for training and the odd rows and columns are
allocated for testing. Figure 1 illustrates the proposed data
division methodology. It is important to note that 1D-CNN
makes a pixel classification, and this methodology is applied
to maintain a comparison between the three architectures.

24838

Even rows
Even cols

Train

Even rows

Even rows

0dd cols
Original Image

Not used,
those images
contain pixel

signature
information

from both
train and test

0Odd rows
Even cols

0Odd rows
0dd cols

Test

FIGURE 1. Proposed dataset-splitting approach to avoid contamination
between training and testing datasets.

However, the train_test_split function from the scikit-learn
library was also used.

In addition, to achieve efficient training and classification
regarding memory requirements, a transformation using the
PCA (Principal Component Analysis) algorithm is applied
to reduce the number of bands of the HSIs used. The
basic idea behind PCA is to compress the original data
into a lower-dimensional set of variables, called principal
components (PCs), that are orthogonal (i.e., uncorrelated) and
are ranked by their importance in explaining the variance in
the data. The first principal component (PC1) is the direction
in the data that captures the greatest amount of variance,
the second principal component (PC2) is the direction that
captures the second greatest amount of variance, and so
on. The PCA transformation is applied to the training and
testing sets [58]. Exclusively for the 1D-CNN with the Indian
Pines image, class balancing was applied for the architecture
based in [14]. The class balancing aimed to allow equal
training for the IP HSI due to this HSI having classes with
almost 2,000 samples and classes with less than ten samples
during training. In addition, a validation set was applied
to the architectures to observe a prediction result without
compromising the testing set.

The metrics used to extract results were the Overall
Accuracy (OA), Average Accuracy (AA), Cohen Kappa
Score (kappa), prediction time, and the amount of memory
used by the model. The Python libraries Time (prediction
time), Keras (model size in bytes), and scikit-learn (model
accuracy) were used in the results extraction. The OA will
measure the number of correctly classified samples out of
the total samples. Kappa is a statistical measurement metric
that provides mutual information about the strong agreement
between the ground truth map and the classification map.
AA represents the mean of the classwise classification
accuracy. The equations that define each metric are:

tp+in

= (€]
p+in+jfp+fn

VOLUME 11, 2023

F. Viel et al.: Hyperspectral Image Classification

IEEE Access

>4 AccuaracyClass;

AA = @)
Nclasses
Kappa = Po — Pe 3)
- Pe

where fp are true positives, tn are true negatives, fp are false
positives, fn are false negatives, n.lasses indicates the number
of classes present in the HSI, AccuracyClass; indicates the
individual accuracy of the class. In Kappa, p, is the observed
relative agreement between raters (identical to precision)
and p, is the hypothetical probability of chance agreement,
using the observed data to calculate the probability that each
observer randomly sees each category.

Ill. CNN ARCHITECTURE

The basic idea behind convolution is to take a small matrix
of numbers (called a “kernel” or “filter’’) and slide it over
the input data, performing an element-wise multiplication
between the entries in the kernel and the input data and
summing the results. This process is repeated for each
position of the kernel, resulting in a new feature map matrix.
The process of sliding the kernel over the input data and
performing the element-wise multiplication and summing is
called a convolutional operation. Applying a kernel to an
input matrix is called a convolutional layer ina CNN. A CNN
typically consists of multiple convolutional layers. Each layer
is followed by a nonlinear activation function (such as a ReLU
function) to introduce nonlinearity into the model. The output
of the convolutional layers is then often passed through one
or more fully-connected layers (also called ‘““dense layers™)
before a final output layer that produces the predictions [18].

For the implementation of the 1D-, 2D-, and 3D-CNN
architectures, we used the model proposed in [14] as a
reference. However, the CNNs underwent adaptations to fit
the proposed architecture implementation of this work. For
the 1D-CNN, we used 1D convolutional layers and dense
layers. Following, we used 2D and 1D convolutional layers,
as well as dense layers, to implement the 2D-CNN. Finally,
we applied the same architecture proposed in [14] to build the
3D-CNN.

In addition, all CNNs have the Flatten layers to vectorize
the data and Dropout layers to prevent overfitting by
randomly setting a fraction of the activations in the network
to zero during training.

All architectures were subjected to the Adaptive Moment
Estimation (Adam) optimizer with a learning rate ranging
from 0.001 to 0.0001. The first moment, which is an
exponentially weighted moving average of the gradients,
and the second moment, which is an exponentially weighted
moving average of the squares of the gradients, are the
two moving averages that the Adam optimizer employs to
calculate the adaptive learning rates [59], [60]. The following
is how the adaptive learning rates are calculated using these
moving averages:

my = Bimy_1 + (1 — B1)g (4a)
vi = Pavic1 + (1 — Bo)g? (4b)

VOLUME 11, 2023

TABLE 1. 1D-CNN for the IP and KC scenes.

Layer Output Shape Number of Parameters
Input (1,30,1) 0
Convld_1 (1,22,16) 160
Convld_2 (1,16,32) 3,616
Convld_3 (1,12,64) 103,304
Convld_4 (1,11,128) 16,512
Flatten (1024) 0
Dense_6 (256) 360,704
Dropout (256) 0
Dense_8 (128) 32,896
Dropout (128) 0
Dense_10 (16) 2,064

R m

iy = —— (40)

1-5
~ Ve
Vi = ——0b (4d)
1-5
m
Wy =W —« ! (4e)

\/@41

where m; is the first moment at time ¢, v; is the second
moment at time ¢, g; is the gradient at time 7, w; is the weight
at time , « is the learning rate, §; and B, are the exponential
decay rates for the first and second moments, respectively,
and epsilon is a small constant used to prevent division by
Zero.

Below, the architectures for HSI classification are
described in more detail.

A. 1D-CNN

1D-CNN is intended to explore only the spectral characteris-
tics of the HSIs, performing a pixel-wise classification. In its
development, we used an architecture that adapted better to
the two image types after applying PCA. This approach is
due to the number of PCs used for the IP HSI being different
from the number used for the SA and UP HSIs. We used
30 components for the IP and KC scenes and 15 for the SA,
UP, CP, and BT scenes. In both cases, the PCs were generated
by the transformation with the PCA algorithm. The number
of components affects the size of the kernels used in the
convolutional layers, but the number of layers is the same.
For example, the kernels used in the Conv 1D layers (1, 2, 3,
and 4) for the IP HSI were 9, 7, 5, and 2, respectively, while
for the SA, UP, CP, KC, and BT HSIs were 7, 5, 3, and 3,
respectively.

Figure 2 illustrates the architecture of the developed 1D
CNN. Tables 1 and 2 describe the characteristics of the layers
of the models created, respectively, for the IP scene and the
SA, PU, CP, KC, and BT scenes.

In addition, two methodologies for dividing training and
testing data were used, as mentioned in Section II-C.

Subsequently, the proposed architecture for 1D-CNN
was expanded to use the Attention layer in conjunction
with MaxPooling layers. Additionally, the ID-CNN-R and
1D-CNN-RA architectures explore the characteristic of
using few resources, in this case, parameters, to observe
whether accuracy can be satisfactory using fewer storage
resources. The R in 1D-CNN-R stands for Reduced, and

24839

IEEE Access

F. Viel et al.: Hyperspectral Image Classification

Layer 1
CNN 1D
16 filters

Classification

Dropout
—>
Layer 10
Layer 2 Dense
CNN 1D 16 neurons
32 filters Layer 8 Softmax

Dense
128 neurons
Relu

RelLu
Layer 6
Dense

FL 256 neurons
| Relu

64 filters
Relu

\

Layer 4
CNN 1D
128 filters

FIGURE 2. 1D-CNN architecture (based in [14]). We named this architecture 1D-CNN-O (-O stands for original architecture).

TABLE 2. 1D-CNN for the SA, PU, CP, and BT scenes. The values of the last

layer are 2064 (16 classes) to SA scene, 1161 (9 classes) to UP and CP
scenes, 1677 (13 classes) to KC scene, and 1806 (14 classes) to BT scene.
The values in Dense 6 layer are 524,544 to KC scene and 33,024 for other
scenes.

Layer Output Shape Number of Parameters
Input (1,15,1) 0

Convld_1 (1,9,16) 128
Convld_2 (1,5,32) 2,592
Convld_3 (1,3,64) 6,208
Convld_4 (1,1,128) 24,704

Flatten (128) 0

Dense_6 (256) 33,024/524,544
Dropout (256) 0

Dense_8 (128) 32,896

Dropout (128) 0

Dense_10 (16)/(9)/(13)/(14) 2,064/1,161/1,677/1,806

RA in ID-CNN-RA stands for Reduced with Attention.
Figure 3 illustrates the 1D-CNN-RA, with the difference
to 1D-CNN-R being only the absence of the Attention
layer. Tables 3 and 4 show the characteristics of the created
architectures.

It is worth mentioning that the reduced architectures
decrease the number of components after the PCA to 30.
Adding the layers is intended to observe the positive and
negative impacts primarily generated by adding the Attention
layer. For example, in a neural network, the Attention
mechanism allows the model to selectively focus on certain
parts of the input data when processing it rather than using a
fixed weighting or considering all parts of the input equally.
This characteristic is advantageous when dealing with long
sequences of data, such as natural language sentences, where
certain words or phrases may be more relevant to the task at
hand than others [21], [22]. The kernels used in the Conv 1D
1, 2, 3, and 5 layers for the IP HSI were 15, 1, 3, and 2. The
choice of hyperparameters kernels size and number of filters
of the convolutional layers, number of units of the Attention
layer, number of neurons of the Dense layers, and the learning
rate performed were found via Hyperband of the keras_tunner

library.

24840

TABLE 3. Reduced 1D-CNN without Attention layer.

Layer Output Shape Number of Parameters
Input (1,30,1) 0
Convld_1 (16,120) 1,920
Convld_2 (16,104) 12,584
Convld_3 (14,24) 7,512
MaxPollingld_4 (7,24) 0
Convld_5 (6,16) 784
MaxPollingld_6 (3,16) 0
Attention_7 (32) 1,280
Flatten (48) 0
Dense_8 (96) 3,168
Dropout (96) 0
Dense_9 (96) 9,312
Dropout (96) 0
Dense_10 (16) 1,552

TABLE 4. Reduced 1D-CNN with Attention layer.

Layer Output Shape Number of Parameters
Input (1,30,1) 0
Convld_1 (16,120) 1,920
Convld_2 (16,104) 12,584
Convld_3 (14,24) 7,512
MaxPollingld_4 (7,24) 0
Convld_5 (6,16) 784
MaxPollingld_6 (3,16) 0
Flatten (48) 0
Dense_7 (96) 4,704
Dropout (96) 0
Dense_8 (96) 9,312
Dropout 96) 0
Dense_9 (16) 1,552

The attention mechanism works by introducing a set of
“attention weights” that indicate the importance of each part
of the input to the model’s output. These weights are learned
during training and can be thought of as a set of coefficients
applied to the input data before passing through the rest of the
network. There are several different ways in which attention
mechanisms can be implemented in a neural network. One
common approach is to use a separate “attention layer” that
takes the input data and calculates the attention weights based
on some measure of relevance or importance. These weights

VOLUME 11, 2023

F. Viel et al.: Hyperspectral Image Classification

IEEE Access

Layer 2
CNN 1D
104 filters

Pixel

Layer 9
Dense
128 neurons
Relu

Layer 5
CNN 1D Classification
16 filters
Relu %
MaxPoling MaxPoling [
Pool 2 Pool 2 [1| Flatten Dropout
[
=
[
Layer 3] Layer 10
CNN 1D Dense
24 filters Layer 7 16 neurons
RelLu Attention Relu
32 units

Layer 1

CNN 1D

120 filters
RelLu

Layer 8
Dense
96 neurons
RelLu

FIGURE 3. 1D-CNN-RA architecture proposed to explore satisfactory performance with a reduced number of parameters.

are then applied to the input data before it is passed through
the rest of the network [21], [22].
This process involves calculating the dot product between
the query vector and each key vector in the input data, as:
oK" 5
Attention(Q, K, V) = softmax
Q) = softmax(Ja &)
where, Q is the query vector, K is the set of key vectors, and V
is the set of value vectors. The dot product between the query
vector and each key vector is normalized by the square root
of the key vector dimension, di. The resulting dot products
are then passed through a softmax function to produce a set
of weights, which are used to weight the value vectors. The
weighted sum of the value vectors is then returned as the
output of the attention mechanism.

A4

B. 2D-CNN
The 2D-CNN developed in this work relies on the architecture
of the model proposed in [14]. However, unlike that work,
the model uses three 2D convolutional layers and one 1D
layer, followed by three dense layers. This architecture means
that the model is more than just 2D. This architecture allows
decreasing the number of parameters while still exploring the
spatial characteristics of the HSI. A purely 2D model resulted
in a considerable number of parameters (75 times more) for
the same number of convolutional layers. The dense layers
have the same number of units as the proposal in [14], which
is the same architecture used in the 3D approach. In addition,
we used a 19 x 19 spatial filtering window, which is smaller
than the one applied in the reference work (i.e., 25 x 25).
Tables 5 and 6 provide a more detailed description of the
architectures for the IP scene and the SA and UP scenes,
which also differ in the number of components generated by
the PCA algorithm.

VOLUME 11, 2023

TABLE 5. 2D-CNN for the IP scene.

Layer Output Shape Number of Parameters
Input (19,19,30,1) 0
Conv2d_1 (19,13,24,8) 400
Conv2d_2 (19,9,20,16) 3216
Conv2d_3 (19,7,18,32) 4640
Reshape (19,7,576) 0
Convld_4 (19,5,64) 110656
Flatten (6080) 0
Dense_5 (256) 1556736
Dropout_6 (256) 0
Dense_7 (128) 32896
Dropout_8 (128) 0
Dense_9 (16) 2064

TABLE 6. 2D-CNN for the SA, PU, CP, and BT scenes. The values of the last
layer is 2064 (16 classes) to SA scene, 1161 (9 classes) to UP and CP
scenes, 1677 (13 classes) to KC scene, and 1806 (14 classes) to BT scene.

Layer Output Shape Number of Parameters
Input (19,19,15,1) 0

Conv2d_1 (19,13,9,8) 400
Conv2d_2 (19,9,5,16) 3216
Conv2d_3 (19,7,3,32) 4640

Reshape (19,7,96) 0

Convld_4 (19,5,64) 18496

Flatten (6080) 0

Dense_5 (256) 1556736
Dropout_6 (256) 0

Dense_7 (128) 32896
Dropout_8 (128) 0

Dense_9 (16)/(9)/(13)/(14) 2,064/1,161/1,677/1,806

Unlike the methodology used in [14], the division of
training and testing data was done using the methodology
proposed in this work (described in Section II-C).

Figure 4 illustrates the developed 2D CNN architecture
designed to work primarily with spatial characteristics.

24841

IEEE Access

F. Viel et al.: Hyperspectral Image Classification

H

FIGURE 4. Proposed 2D-CNN architecture (based in [14]).

TABLE 7. 3D-CNN for the IP scene.

Layer Output Shape Number of Parameters
Input (19,19,30,1) 0
Conv3d_1 (17,17,24,18) 512
Conv3d_2 (15,15,20,16) 5776
Conv3d_3 (13,13,18,32) 13856
Reshape_3 (13,13,576) 0
Conv2d_4 (11,11,64) 331840
Flatten (7744) 0
Dense_6 (256) 1982720
Dropout (256) 0
Dense_8 (128) 32896
Dropout (128) 0
Dense_10 (16) 2064
C. 3D-CNN

The 3D-CNN used in this work was proposed and developed
in [14], which was used as a guide for the other two
architectures described in this work. However, unlike the
reference architecture, the training and testing data were split
using the methodology proposed by the authors (described in
Section II). Again, this methodology prevents contamination
of the training and testing datasets. As discussed above,
we used a spatial filtering window smaller than the one
applied in the reference work. Figure 5 ilustrated the
architecture proposed by [14].

Tables 7 and 8 provide a more detailed description
of the architectures for the IP scene for the SA and
UP scenes, respectively, which also differ in the number
of components generated by the PCA algorithm. Unlike
1D-CNN, 30 components are used for the IP scene.

IV. RNN ARCHITECTURE

RNNSs are a type of neural network especially well-suited for
processing data sequences, such as text, audio, or video. They
are called recurrent because they have connections between
neurons that allow information to be passed from one-time
step to the next. It means that RNNs can store and retrieve
information from previous steps and use it to make decisions
in the present. RNNs are a powerful tool for processing data

24842

8 filters

Classification

Dropout’
—>

Layer 10
Layer 2 Dense
CNN 2D 16 neurons
et 16 filters Layer 8 Softmax

Dense
128 neurons
Relu

Relu
Layer 6
Dense

N 256 neurons
Relu

Relu

64 filters
Relu

TABLE 8. 3D-CNN for the SA, PU, CP, and BT scenes. The values of the last
layer is 2064 (16 classes) to SA scene, 1161 (9 classes) to UP and CP
scenes, 1677 (13 classes) to KC scene, and 1806 (14 classes) to BT scene.

Layer Output Shape Number of Parameters
Input (19,19,15,1) 0

Conv3d_1 (17,17,24,18) 512
Conv3d_2 (15,15,20,16) 5776
Conv3d_3 (13,13,18,32) 13856
Reshape_3 (13,13,576) 0

Conv2d_4 (11,11,64) 55360

Flatten (7744) 0

Dense_6 (256) 1982720
Dropout (256) 0

Dense_8 (128) 32896

Dropout (128) 0

Dense_10 16)/(9)/(13)/(14) 2,064/1,161/1,677/1,806

sequences and making inferences and predictions based on
previous information. They are well-suited for applications
involving time series data such as natural language processing
or sensor sampling at different times [18], [19].

RNNs are composed of layers of neurons, each connected
to the previous and subsequent layers through weights.
During training, the weights are adjusted according to the
errors generated by the network when processing the input
data. The more accurate the network’s prediction, the smaller
the errors will be; therefore, the more accurate the weights
will be [18], [19]. Several types of RNN architectures exist,
such as LSTM and GRU [18], [19].

A. LSTM

LSTM is an RNN architecture proposed to handle long-term
dependency problems in data sequences. These RNNs are
called LSTM because they have an internal structure called
an LSTM cell that allows the network to store information
for extended periods [19], [45], [46].

The LSTM cell comprises three inputs, output, and
forget gates that control the input, output, and deletion
of information from the cell. This feature enables the
LSTM network to control what is stored in memory and
what is discarded, allowing it to capture broader context

VOLUME 11, 2023

F. Viel et al.: Hyperspectral Image Classification

IEEE Access

i PCA (1A
k HsI 4 HsI
N 1
d

Neighbouhood

extraction CNN 3D

19x19x(N° PC)

FIGURE 5. HybridSN proposed by [14].

Forget Gate Input Gate Output Gate ht)
PN
c(t1) T o add /T
A) - c(t
: P ——
. it mult _tanh >
0 & o ¥
Neural Neural \//\
Node Node (U mult
.{ij a tanh g
17 ;i J: leura, /
\) bias bias I bias I",’;‘[‘,'Jj’ bias I Heural - / e
h(t-1) -
x(t)

FIGURE 6. LSTM cell with Forget Gate.

dependencies in sequences of data [19], [45], [46]. The LSTM
network can be mathematically represented as follows:

ir = o (Wix, + Winhi—1 + b;) (6a)
fi = o(Wpxy + Wyhi—1 + by) (6b)
¢ = tanh(Werx; + Wephi—1 + be) (6¢0)
¢ =fr-c—1+i - ¢ (6d)
or = o(Worx; + Wonhi—1 + bo) (6e)
h; = oy - tanh(c;) (6f)
yr = Wynhs + by (62)

where x; is the input at time step ¢, &, is the hidden state at time
step ¢, y; is the output at time step ¢, i;, f;, and o, are the input,
forget, and output gates, respectively, ¢; is the output of the
hyperbolic tangent activation function, and ¢, is the memory
cell. The weights W and biases b are learnable parameters of
the model. Figure 6 illustrates the LSTM cell (and equations)
with a forget gate [19].

LSTM networks can capture complex syntactic and
semantic relationships in a text. Due to this, LSTMs are
used in time series prediction, for example. In summary,
LSTMs are a form of RNN that is particularly well-suited for
processing sequences of data and capturing broader context
dependencies [19], [45], [46].

We create two architectures of LSTM to apply HSI
classification at the pixel level, as made in 1D-CNN. Figure 7
illustrates the architecture of the proposed LSTM with
Attention Layer (LSTM-A).

VOLUME 11, 2023

Classification

Dropout’
—>
Layer 10
Layer Dense
CNN 3D Layer 8 16 neurons

16 filters
Relu

Dense
Layer 6 128 neurons
Relu

Softmax

CNN 3D J Dense
32 filters N\ 1\ 256 neurons
Relu VN Relu

Layer 4

CNN 2D

64 filters
Relu

TABLE 9. LSTM without Attention layer.

Layer Output Shape Number of Parameters
Input (1,30,1) 0
LSTM_1 (30,40) 6720
Dropout (30,40) 0
LSTM_2 (30,90) 47160
Dropout (30,90) 0
LSTM_3 (120) 101280
Dropout (120) 0
Dense_4 24) 2904
Dropout (24) 0
Dense_5 (240) 6000
Dropout (240) 0
Dense_6 (16) 3856

TABLE 10. LSTM with Attention layer.

Layer Output Shape Number of Parameters
Input (1,30,1) 0
LSTM_1 (30,40) 6720
Dropout (30,40) 0
LSTM_2 (30,90) 47160
Dropout (30,90) 0
LSTM_3 (30,120) 101280
Dropout (30,120) 0
Attention (56) 27840
Dense_4 24) 1368
Dropout 24) 0
Dense_5 (240) 6000
Dropout (240) 0
Dense_6 (16) 3856

Tables 9 and 10 provide a more detailed description of the
LSTM architectures. As made in the 1D-CNN architecture
proposed with and without the Attention layer, the proposed
LSTMs use 30 components in PCA for three HSI images used
in this work. The choice of the hyperparameters kernels size,
number of filters of the convolutional layers, number of units
of the Attention layer, number of neurons of the Dense layers,
number of units in the LSTM, and the learning rate performed
were found via Hyperband from the keras_tunner library.

V. TRANSFORMER

Transformer is an ANN architecture presented by [20].
It is primarily used for Natural Language Processing (NLP)
tasks such as machine translation, language modeling, and

24843

IEEE Access

F. Viel et al.: Hyperspectral Image Classification

Dﬂ“n
Layer 1 Layer 2
LSTM LSTM
40 units 90 units

Layer 6
Dense

Layer 3
LSTM
120 units

Dropout

O‘@ =
Ny

= G000

FIGURE 7. LSTM architecture with Attention layer.

text summarization, but it can also be used for time series
processing. One of the main features of Transformer is
the use of a Self-Attention Mechanism, or just Attention
Mechanism [20], [21], [22].

Transformer also uses Multi-Head Attention, allowing the
model to simultaneously attend to different parts of the input
sequence of the [20] input sequence. This can be expressed
as:

MH(Q, K, V) = Concat(head,, .., headh)WO (7)
head; = Attention(QW2, KWK, vwY) (8)

where the function Attention(Q, K, V) is applied several
times (in this case, i times) with different linear projections
for 0, K and V for each Attention head and W9 is a [20]
projection matrix. Finally, Transformer also makes use of
feedforward networks with residual connections and layer
normalization [20], which can be expressed as:

FFN (x) = max(0, xWq + b1)Ws + by ®
Yilx — 1)

,/0i2+6

where FFN(x) is the feedforward network and Wy, W», b,
b are trainable weights. The terms W and W5 are the weight
matrix, while by and b, are the bias. The LayerNorm(x)
is the layer normalization function, © and o are the mean
and the standard deviation of input x, respectively, and
parameters y and f are learnable scale and shift parameters,
respectively [20], [61].

The Transformer architecture used is based time series
example of [62]. The architecture input was modified to
support pixel-level HSI classification as done in 1D-CNN.
For the model, the pixel with 30 PCs is used for the IP, SA,
UP, CP, KC, and BT HSIs.

The architecture is composed of four blocks named
Transformer Layers. Internally, each block is divided into
Multi-head Attention block and 1D-CNN block. Multi-head
Attention blocks comprise four heads of 128 units and
a normalization layer. The 1D-CNN block comprises two
convolutional layers of 4 filters with kernel size 1, in addition
to the normalization layer. Between the blocks, there is the

LayerNorm(x) = + Bi (10)

24844

Layer 4
Attention
56 units

240 neurons
Relu

24 neurons
RelLu

Classification

Layer 7
Dense
16 neurons
RelLu

TABLE 11. Transformer layers. Layers 2 to 9 are repeated 4 times.

Layer Output Shape Number of Parameters
Input (1,30,1) 0
LayerNormalization (30,1) 2
Multi-head Attention (30,1) 7,169
Dropout (30,90) 0
Lambda (30,120) 0
LayerNormalization (30,120) 2
ConvlD (30,4) 8
Dropout (30,4) 0
ConvlD (30,1) 5
Lambda (30,1) 0
GlobalAveragePooling (30) 0
Dense (128) 3,968
Dense (16) 2,064

TOFpLambda layer, also called Lambda layer, which serves
as an adapter for sequential data between different layers and
is inserted by the TensorFlow library.

VI. EXPERIMENTAL RESULTS

As a result, the performance metrics proposed architectures
are related to prediction time, precision, and size (in bytes)
were used.

A. CLASSIFICATION PERFORMANCE

Table 12 illustrates the results obtained in prediction (classifi-
cation) with the testing data set. This table presents the result
for the six HSIs used with the proposed division methodology
and the size of the data sets used for training and testing.

The process of dividing the HSIs used in the tests was
also evaluated for division using the proposed methodology
and the train_test_split function from the scikit-learn library.
Table 13 presents the results obtained.

Table 14 presents the accuracy difference only of the
architectures that process the spectral information, comparing
the ID-CNN based on [14], the proposed CNN without and
with Attention and LSTM architecture with and without the
Attention layer. It is observed that the proposed CNN and
Attention architectures present adequate results with fewer
parameters. However, they do not affect the classification
performance with the three metrics, showing a general result
worse than their use. However, the architectures demand a

VOLUME 11, 2023

F. Viel et al.: Hyperspectral Image Classification

IEEE Access

Pixel

C\:Un

- 3 Transformer Transformer Transformer
> > Layer Block >

Layer Block Layer Block

D Transformer Layer Block

Multi-head
Attention
Block

[TFOpLambdaj

4 Heads
256 units

FIGURE 8. Transformer architecture implemented based in [62].

TABLE 12. Classification performance of the three CNN architectures
using the new dataset-splitting methodology.

Dropout

—>

Transformer
Layer Block

Dense
16 neurons
Softmax

o
=3
=
©
S
[
[}
=)
(
5}
>
<
<
o
=
€]

1D-CNN Block

Dropout
Normalization —> —>
tayer | >

1D-CNN 1D-CNN

4 filters 4 filters

Kernel 1 Kernel 1
Relu Relu

Dense
128 neurons
Relu

TABLE 14. Performance of the 1D architectures.

HSI Architecture OA (%) AA (%) Kappa (x100)
HSI CNN OA AA Kappa Training Testing 1D-CNN-O 83.17 84.96 80.78
Arch. (%) (%) (x100) Dataset Dataset ID-CNN-R 77.34 73.97 74.03
1D 74.23 66.69 70.72 2.560 2.569 P LST™M 75.70 73.08 72.28
P 2D 97.00 93.05 96.58 2.560 2.569 1D-CNN-RA 73.49 71.36 69.80
3D 97.58 98.45 97.25 2.560 2.569 LSTM-A 75.48 76.73 72.22
1D 94.21 97.45 93.55 13.580 13.490 Transformer 82.56 79.13 80.00
SA 2D 99.92 99.97 99.91 13.580 13.490 1D-CNN-O 96.24 98.19 95.81
3D 100.00 100.00 100.00 13.580 13.490 1D-CNN-R 95.04 97.47 94.47
1D 93.20 90.92 90.98 10.647 10.729 SA LSTM 94.76 97.59 94.17
UP 2D 99.35 99.30 99.14 10.647 10.729 1D-CNN-RA 94.39 96.95 93.75
3D 99.92 99.91 99.90 10.647 10.729 LSTM-A 94.77 97.48 94.16
1D 99.08 97.14 98.69 37,109 36,959 Transformer 96.23 98.22 95.80
CP 2D 99.94 99.81 99.92 37109 36959 1D-CNN-O 95.17 93.61 93.59
3D 99.71 98.70 99.59 37109 36959 1D-CNN-R 92.16 89.94 89.63
1D 92.64 90.10 91.81 1,308 1,305 UP LSTM 93.99 92.39 92.02
KC 2D 91.03 87.19 90.01 1308 1305 1D-CNN-RA 89.28 86.34 85.75
3D 88.73 82.29 87.42 1308 1305 LSTM-A 94.43 91.81 92.59
1D 93.91 92.97 93.51 817 802 Transformer 95.10 93.05 93.50
BT 2D 99.87 99.88 99.86 817 802 1D-CNN-O 99.16 97.38 98.82
3D 99.25 99.12 99.18 817 802 1D-CNN-R 98.92 96.85 98.47
cp LSTM 99.13 9747 9877
TABLE 13. Accuracy of the two dataset-splitting methodologies for ID-CNN-RA 98.41 94.95 97.75
1D-CNN. LSTM-A 99.04 97.15 98.65
_ ‘ Transformer 99.20 97.34 98.87
HSI Divison OA AA Kappa Trfun. Tgst. D-CNN-O 96.06 94.10 95.62
Method (%) (%) (x100) Size Size ID-CNN-R 94.11 91.43 93.45
P P_rqposed 7536 70.45 72.01 2.560 2.569 LSTM 91.24 87.11 90.24
scikit-learn ~ 83.17 84.96 80.78 8.199 2.050 KC |D.CNN-RA 9456 91.83 03.04
scikit-learn 96.24 98.19 95.81 43.303 10.826 Transformer 92.45 88.32 91.59
UP P_rqposed 93.20 90.92 90.98 10.647 10.729 1D-CNN-O 96.92 97.26 96.66
scikit-learn ~ 95.17 93.61 93.59 34.220 8.556 ID-CNN-R 91.89 91.64 91.21
scikit-learn 99.16 97.38 98.82 118,521 29,631 1D-CNN-RA 75.38 75.46 73.32
KC P.rqposed 92.64 90.10 91.81 1,308 1,305 LSTM-A 95.79 96.43 95.44
scikit-learn 96.06 94.10 95.62 4,168 1,043 Transformer 97.12 97.23 96.88
BT Proposed 9391 9297 93.51 817 802
scikit-learn ~ 96.92 97.26 96.66 2,598 650

number and variety of training samples, observed in the SA
and UP datasets.

B. MEMORY REQUIREMENTS

Model storage is a feature that must be considered for
computational systems with limited memory available. This
requirement is essential for any application to run on these
platforms. Therefore, the amount of memory (space) used
by the model in bytes (without the dataset) was also

VOLUME 11, 2023

measured. For more accurate model comparison, the number
of parameters used by each architecture of each dataset was
also obtained.

Table 15 presents the memory required by the three CNN
architectures and by the three datasets based in [14]. There
is a difference in batch size between the architectures, with
ID-CNN using 32 and 2D-CNN and 3D-CNN using 256.
This difference was used based on the size of the training
samples.

24845

IEEE Access

F. Viel et al.: Hyperspectral Image Classification

TABLE 15. Number of parameters and memory required by the three CNN
architectures.

HSI CNN Size Number of
Architecture (bytes) Parameters
1D 1,095,952 426,256
P 2D 287,543,824 1,710,608
3D 360,030,336 2,369,664
1D 298,224 100,616
SA 2D 78,786,064 1,618,448
3D 97,266,816 2,093,184
1D 296,425 100,713
UP 2D 78,777,993 1,617,545
3D 97,258,745 2,092,281
1D 296,425 100,713
CP 2D 78,777,993 1,617,545
3D 97,258,745 2,092,281
1D 297,453 101,229
KC 2D 78,782,605 1,618,061
3D 97,263,357 2,092,797
1D 297,710 101,358
BT 2D 78,783,758 1,617,545
3D 97,264,510 2,092,926

Comparison of required memory and number of parame-
ters has also been expanded to the 1D architectures, as shown
in Table 16. It is observed that the memory demands mainly
for the 1D-CNN-R and -RA architecture, in joint analysis
with the performance results in classification, show that
this architecture offers a good trade-off. This feature is
essential for use in the final application with the restriction
of computational resources such as embedded systems.
By default, we use the split method via scikit-learn since it has
more samples, and 1D architectures do not have the problem
of separating training and testing samples as in 2D and 3D
architectures.

C. TIME FOR PREDICTION
The prediction time of CNNs with different architectures was
measured at the testing dataset and sample levels to observe
the impact of classifying HSIs using 1D, 2D, and 3D data
formats. This approach allows us to see which architecture
fits best when processing time is a constraint (CPU or SoC
with slow or low-power cores). Table 17 presents the results
obtained with the prediction of the different architectures
using the NVIDIA A100 GPU, NVIDIA Tesla T4 GPU,
and CPU-only infrastructures. The number of samples used
for testing and training is shown in Tab. 12 for 1D-, 2D-,
and 3D-CNNs and in Tab. 13 for 1D architectures. For 1D
architectures, the size in Tab. 13 is used for scikit-learn.
This comparison of time results on different GPUs
demonstrates that the use of communication resources and
the computing system makes the computing time vary. As can
be seen, using an A100 GPU offers a communication latency
that makes a 1D or 3D sample irrelevant to what is available
in terms of bandwidth between CPU and GPU. However, the
sample size is already relevant when we use Tesla T4 CPU-
only and CPU+GPU mode. Furthermore, if we calculate
the total sample time divided by the total time to process
the dataset by the number of samples, we can see that the
acceleration is much greater when processing files with the

24846

TABLE 16. Number of parameters and consumed memory of the 1D
classification architectures.

HSI CNN Size Number of
Architecture (bytes) Parameters
1D-CNN-O 1,095,952 426,256
1D-CNN-R 637,408 38,368
1P LSTM 1,266,672 167,920
1D-CNN-RA 639,200 38,112
LSTM-A 2,191,024 194,224
Transformer 307,672 34,776
1D-CNN-O 298,224 101,616
1D-CNN-R 637,408 38,368
SA LSTM 1,266,672 167,920
1D-CNN-RA 639,200 38,112
LSTM-A 2,191,024 194,224
Transformer 307,672 34,776
1D-CNN-O 296,425 100,713
1D-CNN-R 635,833 37,689
UP LSTM 1,264,089 166,233
1D-CNN-RA 637,625 37,433
LSTM-A 2,188,441 192,537
Transformer 305,873 33,873
1D-CNN-O 296,425 100,713
1D-CNN-R 635,833 37,689
CP LSTM 1,264,089 166,233
1D-CNN-RA 637,625 37,433
LSTM-A 2,188,441 192,537
Transformer 547,793 37,713
1D-CNN-O 297,453 101,229
1D-CNN-R 636,733 38,077
KC LSTM 1,265,565 167,197
1D-CNN-RA 638,525 37,821
LSTM-A 2,189,917 193,501
Transformer 548,821 38,229
1D-CNN-O 297,710 101,358
1D-CNN-R 636,958 38,174
BT LSTM 1,265,934 167,438
1D-CNN-RA 638,750 37,918
LSTM-A 2,190,286 193,742
Transformer 549,078 38,358

CPU and more than 2x with the T4 Tesla GPU. Therefore,
even with the A100 GPU, we will obtain a result similar to
the Tesla T4 GPU if we calculate the processing time per
sample based on the processing time of the dataset by the
number of samples. The calculated processing time came
to mitigate this effect and evaluate how much the inference
costs (in the processor that will make it — CPU or GPU).
We made an approximation by dividing the processor time
of the entire dataset by the number of samples in the dataset.
This operation minimizes the impact of latency generated by
the above factors and allows for a closer look than just the
processed inference.

Table 18 expands the processing time results to sort the
complete and sample-only dataset. The presented results
compare the different classification architectures at the pixel
level, considering only the spectral information. The low time
required is a consequence of the low amount of parameters
and memory and the lack of data structuring as in the
2D-CNN and 3D-CNN architectures.

D. DISCUSSION
When we compare only the 1D architectures, we see that
the processing performance is uniform. The variation is

VOLUME 11, 2023

F. Viel et al.: Hyperspectral Image Classification

IEEE Access

TABLE 17. Processing time for the three CNN architectures running on different infrastructures and using the new dataset-splitting methodology.

CNN Test Time all Time 1 Time 1 Time all Time 1 Time 1 Time all Time 1 Time 1
HSI Arch dataset dataset sample capt. sample calec. dataset sample T4 sample T4 dataset sample CPU sample CPU
' size A100 (s) A100 (ms) A100 (ms) T4 (s) capt. (ms) calc. (ms) CPU (s) capt. (ms) calc (ms)
1D 2.569 0.62 87.48 0.24 0.3 193.1 0.12 0.6 55.41 0.24
1P 2D 2.569 0.77 87.57 0.30 0.7 238.3 0.29 9.3 55.26 3.63
3D 2.569 0.54 84.78 0.21 0.7 242.6 0.30 323 61.29 12.58
1D 13.490 1.66 81.59 0.12 1.1 191.0 0.08 1.2 60.95 0.09
SA 2D 13.490 2.21 92.15 0.16 1.7 229.5 0.12 153 46.13 1.13
3D 13.490 1.85 87.71 0.14 1.6 204.3 0.12 46.8 49.98 3.47
1D 10.729 1.33 65.83 0.12 0.9 211.4 0.08 0.9 54.43 0.09
UP 2D 10.729 1.75 68.86 0.16 1.3 173.6 0.12 12.3 46.56 1.15
3D 10.729 1.47 69.83 0.14 1.3 130.0 0.12 36.8 50.04 3.43
1D 36,959 3.51 78.86 0.09 29 87.95 0.08 3.8 56.72 0.10
Cp 2D 36,959 5.56 63.89 0.34 6.8 75.27 0.20 443 54.41 1.43
3D 36,959 4.35 51.66 0.11 5.6 63.95 0.15 128.3 63.03 3.47
1D 1,305 0.43 63.47 0.33 0.3 47.85 0.25 0.4 55.97 0.28
KC 2D 1,305 0.40 59.08 0.35 0.4 60.05 0.22 1.7 52.62 1.46
3D 1,305 0.24 74.47 0.18 0.2 57.66 0.17 4.6 63.49 3.52
1D 802 0.37 59.95 0.46 0.3 46.41 043 0.3 57.03 0.43
BT 2D 802 0.37 60.79 0.47 0.3 57.67 0.44 1.2 57.14 1.57
3D 802 0.15 55.81 0.18 0.2 54.39 0.24 2.8 71.63 3.54

TABLE 18. Processing time for the 1D architectures running on the
CPU+NVIDIA A100 GPU infrastructure.

1D Time test Time 1 test Time 1 test
HSI Architecture dataset (ms) sample (ms) sample (ms)
captured captured calculated

1D-CNN-O 423.36 51.69 0.13
1D-CNN-R 444.42 66.91 0.14
1P LSTM 1,742.48 56.35 0.56
1D-CNN-RA 555.94 50.84 0.18
LSTM-A 1,630.76 54.56 0.53
Transformer 897.95 65.62 0.29
1D-CNN-O 1,132.53 51.66 0.06
1D-CNN-R 1,472.39 49.31 0.09
SA LSTM 3,642.60 51.56 0.22
1D-CNN-RA 2,060.54 52.62 0.12
LSTM-A 4309.86 53.10 0.26
Transformer 2,705.60 56.11 0.16
1D-CNN-O 945.23 50.09 0.07
1D-CNN-R 1,207.85 49.86 0.09
UP LSTM 3,077.71 51.26 0.23
1D-CNN-RA 1,657.27 52.59 0.12
LSTM-A 3,659.06 54.99 0.28
Transformer 2,231.02 54.80 0.17
1D-CNN-O 3029.52 67.30 0.10
1D-CNN-R 3948.82 73.13 0.08
CP LSTM 9153.98 62.29 0.20
1D-CNN-RA 5421.70 65.52 0.12
LSTM-A 11946.48 81.16 0.26
Transformer 7937.89 82.39 0.17
1D-CNN-O 415,41 60.81 0.39
1D-CNN-R 369.36 61.13 0.23
KC LSTM 1633.70 65.37 1.04
1D-CNN-RA 453.93 59.66 0.29
LSTM-A 1768.09 68.27 1.13
Transformer 706.98 68.59 0.45
1D-CNN-O 337.75 57.35 0.51
1D-CNN-R 275.59 58.89 0.28
BT LSTM 2564.81 68.81 2.63
1D-CNN-RA 341.33 60.23 0.52
LSTM-A 1674.84 71.07 1.71
Transformer 621.34 65.54 0.63

presented when the prediction of the entire dataset is made
due to the variation of samples to be processed. What is
worth mentioning is that regardless of the 1D architecture
presented, CNN with or without the Attention layer, LSTM

VOLUME 11, 2023

with or without the Attention layer, and Transformer, the
processing is around from 40 to 90 ms per sample. This result
can be motivated by the processing infrastructure that Google
Colaboratory offers. However, it is worth mentioning that
the memory consumption was more discrepant, which may
impact computing platforms differently from the one used
in this work. When considering the processing time, using
only CPU and CPU+NVIDIA Tesla T4 GPU, we observe
that 1D-CNNs enable an acceleration of almost a hundred
times compared to 2D- and 3D-CNNSs in the case of only CPU
and more than two times in the case CPU+NVIDIA Tesla
T4 GPU. This acceleration is only visible when we minimize
the impact of data communication offered by the computing
infrastructure. We divided the dataset processing time by the
number of samples to minimize the impact.

In an analysis taking into account pixel sampling, the
ID-CNN architecture has an advantage. It can perform the
classification without storing multiple samples and window
size (19 x 19) and only perform the classification after
sampling by the camera. A point that is also worth mentioning
is the lack of control offered by the SaaS architecture of
Google Colaboratory, where there is no certainty of how the
computational system is organized, making the time obtained
an estimate.

In an analysis taking into account pixel sampling, the
1D-CNN architecture has an advantage, as it can perform the
classification without storing multiple samples and window
size (19 x 19) and only then perform the classification after
sampling by the camera.

Regarding the accuracy metric of the three architectures,
we observed that the 1D-CNN architecture performs as
well as the 2D- and 3D-CNNs when considering a training
set with a good balance of samples and many training
samples. This analysis comes when we observe the results
of the IP scene, regardless of the division methodology,
which presents poor results due to the significant class
imbalance (number of samples). Comparing the results of

24847

IEEE Access

F. Viel et al.: Hyperspectral Image Classification

the SA, UP, CP, KC and BT scenes, we observe that the
1D-CNNs do not cope well with this imbalance compared to
2D- and 3D- CNNs. Therefore, HSI with a significant
class imbalance, due to the region covered by the sensing
system having this characteristic, should be classified using
2D- or 3D-CNNs. This statement is due to the ability of the
2D- and 3D-CNNs to relate much information, mitigating
the imbalance. Therefore, if accuracy is the most critical
requirement for the application, 2D- or 3D-CNN5 should be
considered. These two architectures also stand out compared
to the 1D architecture, even with the balance in the dataset.
Another impacting factor is that the new dataset division
methodology generates a smaller number of samples for
training, directly impacting the generalization ability of the
network.

Nevertheless, the results in Tab. 12 and 14 show a
correlation directly proportional to the number of samples for
training with accuracy above 99%. The results in these tables
show that using spectral-spatial information in the case of 3D
architectures has the same impact as using larger datasets with
good balance in the case of the CP scene. This result allows
us to conclude that architectures such as Transformer, which
has better average performance among 1D architectures, can
be used instead of 3D architectures as long as it is trained with
a dataset with a high number of samples. In addition, the 1D
architecture will provide less processing time and memory
demand.

When we focus on comparing 1D architectures, we observe
that adding the Attention layer had no effect on the CNN
performance but (little) impacted the LSTM architecture.
As already mentioned, the IP dataset highly affects the
reduced and unbalanced samples. However, the 1D archi-
tectures with the SA dataset have expressive results, which
are also verified with the UP dataset. The classification
performance in the three evaluated metrics shows that the
1D architecture can reach an accuracy close to, or even
greater than, 95%, presenting a significantly lower number
of parameters, processing time, and required storage memory.
In addition, HSI, because they present enough scene informa-
tion in the pixel, can only be classified with 1D architectures
when the application does not demand special knowledge,
such as structures, present in the scene of interest.

VIl. CONCLUSION

In this work, an evaluation of CNN using different numbers
of dimensions for convolution in HSI classification was
performed. The results lead to and support the conclusion that
the amount of dimensions directly impacts the most relevant
metric for the target HSI application. For applications with
strict resource restrictions, such as memory and processing,
1D-CNN s are ideal when there is an adequate class balance.
On the other hand, for applications that demand higher
accuracy, 1D-CNNs can be used when they have a large
dataset with an excellent class balance. Even so, prioritizing
precision, 2D- and 3D-CNNs are more indicated for being
more accurate even without class balancing. With these

24848

results, designers can base themselves on implementing
CNN for embedded platforms such as satellites, which have
computing resource constraints and can use 1D-CNN. On the
hand, classification systems in the food industry usually do
not have computational limitations and value the accuracy of
the analysis/classification [63].

From the presented results, using 1D-CNNs and LSTM
for HSI classification has several benefits compared to using
2D- or 3D-CNNs. 1D-CNNs and LSTMs demand lower
processing time and memory consumption and require fewer
parameters, making them a good choice for systems with
memory constraints. In acceleration, ID-CNNs and LSTMs
performed significantly faster than 2D- and 3D-CNN:gs, partic-
ularly when considering a single sample (pixel) classification.
However, LSTM and 1D-CNN may not perform as well as
2D- and 3D-CNNSs in cases with a large class imbalance in the
data, as these architectures can better relate more information
and mitigate the imbalance.

In future work, we intend to evolve the study on the
Transformer architecture for per-pixel classification of HSIs.
In addition, the studies will evolve towards implementing the
hardware accelerator format of the models, particularly the
Transformer architecture.

REFERENCES

[1] N. Yokoya, T. Yairi, and A. Iwasaki, “Coupled nonnegative matrix
factorization unmixing for hyperspectral and multispectral data fusion,”
1IEEE Trans. Geosci. Remote Sens., vol. 50, no. 2, pp. 528-537, Feb. 2012.

[2] M. Simoes, J. Bioucas-Dias, L. B. Almeida, and J. Chanussot, “A

convex formulation for hyperspectral image superresolution via subspace-

based regularization,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6,

pp. 3373-3388, Jun. 2015.

H. Zhang, L. Zhang, and H. Shen, “A super-resolution reconstruction

algorithm for hyperspectral images,” Signal Proc., vol. 92, no. 9,

pp. 2082-2096, 2012.

A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone,

G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, and

M. Marconcini, “Recent advances in techniques for hyperspectral image

processing,” Remote Sens. Environ., vol. 113, pp. 110-122, Sep. 2009.

Y. Jin, Y. Dong, Y. Zhang, and X. Hu, “SSMD: Dimensionality reduction

and classification of hyperspectral images based on spatial-spectral

manifold distance metric learning,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2022, Art. no. 5538916.
[6] M. Moeller, T. Wittman, and A. L. Bertozzi, “A variational approach
to hyperspectral image fusion,” in Proc. SPIE, vol. 7334, Apr. 2009,
Art. no. 73341E.
[7]1 N. Akhtar, F. Shafait, and A. Mian, “Bayesian sparse representation for
hyperspectral image super resolution,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2015, pp. 3631-3640.
[8] Z. Chen, H. Pu, B. Wang, and G.-M. Jiang, “‘Fusion of hyperspectral and
multispectral images: A novel framework based on generalization of pan-
sharpening methods,” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 8,
pp. 1418-1422, Aug. 2014.
[9] J. Qu, Y. Li, and W. Dong, “Hyperspectral pansharpening with guided
filter,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 11, pp. 2152-2156,
Nov. 2017.
[10] R. L. Davidson and C. P. Bridges, “Error resilient GPU accelerated image
processing for space applications,” IEEE Trans. Parallel Distrib. Syst.,
vol. 29, no. 9, pp. 1990-2003, Sep. 2018.

[11] L.A.Martins, G. A. M. Sborz, F. Viel, and C. A. Zeferino, “An SVM-based
hardware accelerator for onboard classification of hyperspectral images,”
in Proc. 32nd Symp. Integr. Circuits Syst. Design, Aug. 2019, pp. 1-6.

[12] A. Perez, A. Rodriguez, A. Otero, D. G. Arjona, A. Jimenez-Peralo,
M. A. Verdugo, and E. De La Torre, “Run-time reconfigurable MPSoC-
based on-board processor for vision-based space navigation,” IEEE
Access, vol. 8, pp. 59891-59905, 2020.

3

—

[4

=

[5

—

VOLUME 11, 2023

F. Viel et al.: Hyperspectral Image Classification

IEEE Access

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

F. Viel, W. D. Parreira, A. A. Susin, and C. A. Zeferino, “A hardware
accelerator for onboard spatial resolution enhancement of hyperspectral
images,” IEEE Geosci. Remote Sens. Lett., vol. 18, no. 10, pp. 1796-1800,
Oct. 2021.

S. K. Roy, G. Krishna, S. R. Dubey, and B. B. Chaudhuri, “HybridSN:
Exploring 3-D-2-D CNN feature hierarchy for hyperspectral image clas-
sification,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 2, pp. 277-281,
Feb. 2020.

T.-H. Hsieh and J.-F. Kiang, “Comparison of CNN algorithms on hyper-
spectral image classification in agricultural lands,” Sensors, vol. 20, no. 6,
p. 1734, Mar. 2020. [Online]. Available: https://www.mdpi.com/1424-
8220/20/6/1734

A. A. Abdelhamid, E.-S.-M. El-Kenawy, B. Alotaibi, G. M. Amer,
M. Y. Abdelkader, A. Ibrahim, and M. M. Eid, “Robust speech emotion
recognition using CNN+LSTM based on stochastic fractal search
optimization algorithm,” IEEE Access, vol. 10, pp. 49265-49284, 2022.
N. Lopac, F. Hrzic, I. P. Vuksanovic, and J. Lerga, “Detection of
non-stationary GW signals in high noise from Cohen’s class of time—
frequency representations using deep learning,” IEEE Access, vol. 10,
pp. 2408-2428, 2022.

I. Goodfellow, Y. Bengio, and A. Courville,
Cambridge, MA, USA: MIT Press, 2016. [Online].
http://www.deeplearningbook.org

Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural networks:
LSTM cells and network architectures,” Neural Comput., vol. 31, no. 7,
pp. 1235-1270, 2019.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 30,2017, pp. 1-11.

D. Bahdanau, K. Cho, and Y. Bengio, ‘“Neural machine translation by
jointly learning to align and translate,” 2014, arXiv:1409.0473.

M. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” 2015, arXiv:1508.04025.

M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, “Deep learning classifiers
for hyperspectral imaging: A review,” ISPRS J. Photogramm. Remote
Sens., vol. 158, pp. 279-317, Dec. 2019.

L. Huang and Y. Chen, “‘Dual-path Siamese CNN for hyperspectral image
classification with limited training samples,” IEEE Geosci. Remote Sens.
Lett., vol. 18, no. 3, pp. 518-522, Mar. 2021.

Q. Liu, Y. Dong, Y. Zhang, and H. Luo, “A fast dynamic graph
convolutional network and CNN parallel network for hyperspectral
image classification,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5530215.

Y. Wang, Z. Fang, and H. Hong, “Comparison of convolutional neural
networks for landslide susceptibility mapping in Yanshan county, China,”
Sci. Total Environ., vol. 666, pp. 975-993, May 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0048969719307612

T. Hakala, I. Polonen, E. Honkavaara, R. Nasi, T. Hakala, and A. Lindfors,
Using Aerial Platforms in Predicting Water Quality Parameters From
Hyperspectral Imaging Data With Deep Neural Networks. Cham, Switzer-
land: Springer, 2020, pp. 213-238, doi: 10.1007/978-3-030-37752-6_13.
C. Chen, J.-J. Zhang, C.-H. Zheng, Q. Yan, and L.-N. Xun, “Classification
of hyperspectral data using a multi-channel convolutional neural network,”
in Intelligent Computing Methodologies, D.-S. Huang, M. M. Gromiha,
K. Han, and A. Hussain, Eds. Cham, Switzerland: Springer, 2018,
pp. 81-92.

Y. Li, H. Zhang, and Q. Shen, ““Spectral-spatial classification of hyper-
spectral imagery with 3D convolutional neural network,” Remote Sens.,
vol. 9, no. 1, p. 67, Jan. 2017. [Online]. Available: https://www.mdpi.com/
2072-4292/9/1/67

P. Dou and C. Zeng, “Hyperspectral image classification using feature
relations map learning,” Remote Sens., vol. 12, no. 18, p. 2956, Sep. 2020.
[Online]. Available: https://www.mdpi.com/2072-4292/12/18/2956

W. L. Hakim, F. Rezaie, A. S. Nur, M. Panahi, K. Khosravi, C.-W. Lee,
and S. Lee, “Convolutional neural network (CNN) with metaheuristic
optimization algorithms for landslide susceptibility mapping in Icheon,
South Korea,” J. Environ. Manag., vol. 305, Mar. 2022, Art. no. 114367.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0301479721024294

Y. Luo, J. Zou, C. Yao, X. Zhao, T. Li, and G. Bai, “HSI-CNN: A novel
convolution neural network for hyperspectral image,” in Proc. Int. Conf.
Audio, Lang. Image Process. (ICALIP), Jul. 2018, pp. 464—469.

Deep Learning.
Available:

VOLUME 11, 2023

(33]

(34]

(35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

B. Becker, M. Vaccari, M. Prescott, and T. Grobler, “CNN architecture
comparison for radio galaxy classification,” Monthly Notices Roy.
Astronomical Soc., vol. 503, no. 2, pp. 1828-1846, Feb. 2021, doi:
10.1093/mnras/stab325.

S. K. Roy, J. M. Haut, M. E. Paoletti, S. R. Dubey, and A. Plaza, “Gener-
ative adversarial minority oversampling for spectral-spatial hyperspectral
image classification,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5500615.

M. E. Paoletti, J. M. Haut, N. S. Pereira, J. Plaza, and A. Plaza, “‘Ghostnet
for hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 59, no. 12, pp. 10378-10393, Dec. 2021.

M. Liang, H. Wang, X. Yu, Z. Meng, J. Yi, and L. Jiao, “Lightweight
multilevel feature fusion network for hyperspectral image classification,”
Remote Sens., vol. 14, no. 1, p.79, Dec. 2021. [Online]. Available:
https://www.mdpi.com/2072-4292/14/1/79

M. He, B. Li, and H. Chen, “Multi-scale 3D deep convolutional neural
network for hyperspectral image classification,” in Proc. IEEE Int. Conf.
Image Process. (ICIP), Sep. 2017, pp. 3904-3908.

J. A. Benediktsson, X. C. Garcia, B. Waske, J. Chanussot, J. R. Sveinsson,
and M. Fauvel, “Ensemble methods for classification of hyperspec-
tral data,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2008,
pp. 1-62.

P. Ramzi, F. Samadzadegan, and P. Reinartz, ““Classification of hyperspec-
tral data using an AdaBoostSVM technique applied on band clusters,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6,
pp. 2066-2079, Jun. 2014.

W. Li, C. Chen, M. Zhang, H. Li, and Q. Du, “Data augmentation for
hyperspectral image classification with deep CNN,”” IEEE Geosci. Remote
Sens. Lett., vol. 16, no. 4, pp. 593-597, Apr. 2019.

J. Nalepa, M. Myller, and M. Kawulok, “Training- and test-time data
augmentation for hyperspectral image segmentation,” IEEE Geosci.
Remote Sens. Lett., vol. 17, no. 2, pp. 292-296, Feb. 2020.

S. Rashwan and N. Dobigeon, “A split-and-merge approach for hyper-
spectral band selection,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 8,
pp. 1378-1382, Aug. 2017.

Y. Li, Z. Du, S. Wu, Y. Wang, Z. Wang, X. Zhao, and F. Zhang,
“Progressive split-merge super resolution for hyperspectral imagery
with group attention and gradient guidance,” ISPRS J. Photogramm.
Remote Sens., vol. 182, pp. 14-36, Dec. 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0924271621002616
L. Liang, S. Zhang, and J. Li, “Multiscale DenseNet meets with bi-RNN
for hyperspectral image classification,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 15, pp. 5401-5415, 2022.

Q. Liu, F. Zhou, R. Hang, and X. Yuan, “Bidirectional-convolutional
LSTM based spectral-spatial feature learning for hyperspectral image
classification,” Remote Sens., vol. 9, no. 12, p. 1330, Dec. 2017. [Online].
Available: https://www.mdpi.com/2072-4292/9/12/1330

L. Mou, P. Ghamisi, and X. X. Zhu, “Deep recurrent neural networks for
hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 7, pp. 3639-3655, Jul. 2016.

R. Hang, Q. Liu, D. Hong, and P. Ghamisi, ““Cascaded recurrent neural
networks for hyperspectral image classification,” IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 8, pp. 5384-5394, Aug. 2019.

X.He, Y. Chen, and Z. Lin, “Spatial-spectral transformer for hyperspectral
image classification,” Remote Sens., vol. 13, no. 3, p. 498, Jan. 2021.

L. Sun, G. Zhao, Y. Zheng, and Z. Wu, ‘“‘Spectral-spatial feature
tokenization transformer for hyperspectral image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5522214.

Z. Zhong, Y. Li, L. Ma, J. Li, and W.-S. Zheng, “Spectral-spatial
transformer network for hyperspectral image classification: A factorized
architecture search framework,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, pp. 1-15, 2021.

D. Hong, Z. Han, J. Yao, L. Gao, B. Zhang, A. Plaza, and J. Chanussot,
“SpectralFormer: Rethinking hyperspectral image classification with
transformers,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5518615.

L. Yang, Y. Yang, J. Yang, N. Zhao, L. Wu, L. Wang, and T. Wang,
“FusionNet: A convolution—transformer fusion network for hyperspectral
image classification,” Remote Sens., vol. 14, no. 16, p. 4066, Aug. 2022.
Z. Zhang, T. Li, X. Tang, X. Hu, and Y. Peng, “CAEVT: Convolutional
autoencoder meets lightweight vision transformer for hyperspectral image
classification,” Sensors, vol. 22, no. 10, p. 3902, May 2022.

24849

http://dx.doi.org/10.1007/978-3-030-37752-6_13
http://dx.doi.org/10.1093/mnras/stab325

IEEE Access

F. Viel et al.: Hyperspectral Image Classification

[54] Q. Xu, C. Yang, J. Tang, and B. Luo, “Grouped bidirectional LSTM
network and multistage fusion convolutional transformer for hyperspectral
image classification,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5541314.

[55] W. Wang, L. Liu, T. Zhang, J. Shen, J. Wang, and J. Li, “Hyper-ES2T:
Efficient spatial-spectral transformer for the classification of hyperspectral
remote sensing images,” Int. J. Appl. Earth Observ. Geoinf., vol. 113,
Sep. 2022, Art. no. 103005.

[56] J. Yang, B. Du, and L. Zhang, ““From center to surrounding: An interactive
learning framework for hyperspectral image classification,” ISPRS J.
Photogramm. Remote Sens., vol. 197, pp. 145-166, Mar. 2023.

[57] B. A. M. Grana and M. A. Veganzons. (Mar. 2021) Hyperspectral Remote
Sensing Scenes. [Online]. Available: http://www.ehu.eus/ccwintco/index.
php?title=Hyperspectral_Remote_Sensing_Scenes

[58] M. D. Farrell and R. M. Mersereau, “On the impact of PCA dimension
reduction for hyperspectral detection of difficult targets,” IEEE Geosci.
Remote Sens. Lett., vol. 2, no. 2, pp. 192-195, Apr. 2005.

[59] S. Bock, J. Goppold, and M. Wei}, “An improvement of the convergence
proof of the ADAM-optimizer,” 2018, arXiv:1804.10587.

[60] S. Bock and M. Weis, “A proof of local convergence for the Adam
optimizer,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2019,
pp. 1-8.

[61] R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, H. Zhang,
Y. Lan, L. Wang, and T. Liu, “On layer normalization in the transformer
architecture,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 10524-10533.

[62] T. Ntakouris. (Jun. 2021). Timeseries Classification With a Trans-
former Model. [Online]. Available: https://keras.io/examples/timeseries/
timeseries_transformer_classification/

[63] N.Lambert. (2023). CS 188: Artificial Intelligence—Reinforcement Learn-
ing II [PowerPoint Slides]. [Online]. Available: https://inst.eecs.berkeley.
edu/~cs188/sp23/assets/lectures/cs188-sp23-lec14.pdf

FELIPE VIEL (Student Member, IEEE) received
the master’s degree in applied computing from the
University of Vale do Itajai, Brazil, in 2019. He is
currently pursuing the Ph.D. degree in electrical
engineering with the Federal University of Santa
Catarina. He is also a Computer Engineer. He has
been an Assistant Professor with the Polytechnic
School, University of Vale do Itajai (UNIVALI),
Brazil, since 2019, and a Researcher with the
Laboratory of Embedded and Distributed Systems,
Univali. His research interests include digital systems design, embedded
systems, reconfigurable systems (FPGAs), hardware accelerators, machine
learning, digital image processing, and space applications.

RENATO COTRIM MACIEL received the bach-
elor’s degree (Hons.) in electrical engineering
with a minor in industrial engineering from the
Universidade Federal de Santa Catarina. During
his studies, he earned a place on the Dean’s List
for the 2014 Fall Semester with the University of
Nebraska—Lincoln and the 2015 Spring Semester
with North Dakota State University, Fargo. He is
\\E the Lead Machine Learning Engineer with sig-

nificant experience in the field of big data and

il

machine learning. He is involved in open-source software projects, where
he contributes to the development of libraries and tools for machine
learning. His research interests include machine learning, big data, natural
language processing, computer vision, time series analysis, and forecasting.
He focuses on designing and implementing scalable and available machine
learning models and data pipelines on cloud-based architectures.

24850

LAIO ORIEL SEMAN received the graduate and
master’s degrees from the Regional University of
Blumenau (FURB), in 2013 and 2015, respec-
tively, and the Ph.D. degree from the Federal Uni-
versity of Santa Catarina (UFSC), in 2017, all in
electrical engineering. He is currently a permanent
Professor with the Masters in Applied Computing,
University of Vale do Itajai (UNIVALI), and
a Collaborating Professor with PosAutomacio
(Postgraduate Program in Automation and Sys-
tems), UFSC. He has experience in electrical engineering with an emphasis
on computational systems, working mainly on modeling, control and
optimization strategies (linear, non-linear, and mixed integer programming),
and applied artificial intelligence. His research interests include intelligent
transport systems, cyber-physical systems, aerospace systems (CubeSats),
and oil and gas production.

CESAR ALBENES ZEFERINO (Member, IEEE)
received the Ph.D. degree in computer science
from the Federal University of Rio Grande do Sul
(UFRGS), Brazil, in 2003, with a sandwich intern-
ship at the Sorbonne University, Paris, France.
He has been a Full Professor with the Polytechnic
School, University of Vale do Itajai (UNIVALI),
Brazil, since 2002, teaching undergraduate and
graduate courses in the fields of computer archi-
tecture, embedded systems, and digital systems.
He is currently the Director of the Polytechnic School and the Head of
the Laboratory of Embedded and Distributed Systems (LEDS). He was
granted the Researcher Productivity Scholarship from the National Council
for Scientific and Technological Development (CNPq), Brazil. His interests
include digital systems design, embedded systems design, networks-on-chip,
hardware accelerators, and the Internet of Things.

EDUARDO AUGUSTO BEZERRA (Member,
IEEE) received the Ph.D. degree in electrical
engineering from the University of Sussex, Eng-
land, where he developed his research work at
Space Science Centre from 1998 to 2002. He is
currently a Researcher and a Lecturer with the
Electrical and Electronic Engineering Department,
Federal University of Santa Catarina, Brazil. He is
the Head of the Space Technology Research
Laboratory (SpaceLab) and leads space missions,
such as the GOLDS-UFSC, Catarina Constellation, and FloripaSat, which is
the first satellite of the family was launched in 2019. His research interests
include embedded systems for space applications, computer architecture,
reconfigurable systems (FPGAs), software and hardware testing, and fault
tolerance.

VALDERI REIS QUIETINHO LEITHARDT
(Senior Member, IEEE) received the Ph.D. degree
in computer science from INF-UFRGS, Brazil,
in 2015. He is currently an Adjunct Professor with
the Polytechnic Institute of Portalegre, where he
is a Researcher integrated with the VALORIZA
Research Group, School of Technology and
Management (ESTG). He is also a Collaborating
: Researcher with the following research groups:

& COPELABS, Universidade Luséfona de Lisboa,
Portugal; and the Expert Systems and Applications Laboratory, University
of Salamanca, Spain. His research interests include distributed systems
with a focus on data privacy, communication, and programming protocols,
involving scenarios and applications for the Internet of Things, smart cities,
big data, cloud computing, and blockchain.

VOLUME 11, 2023

