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ABSTRACT Facial landmark detection, a crucial aspect of face recognition, is widely used in various
fields, such as facial surgeries, biometrics, and surveillance systems. With the advancement of affordable
and capable 3D scanning technologies, research on automatically detecting facial landmarks on 3D models
is gaining momentum. Utilizing the geometric properties of 3D facial models, researchers have developed
algorithms for various landmarks with varying levels of accuracy. In this study, we reviewed existing
literature and developed algorithms for thirty-eight landmarks using geometric properties and statistical
information about facial measurements. The algorithms for thirty landmarks are original contributions to
the literature. We provide the implementation of all the algorithms as open-source Python code, along with
the pseudocode for both our algorithms and those found in the literature. To the best of our knowledge, this
study covers the largest number of facial landmark detection algorithms based on the geometric properties
of 3D models. This is the first study that provides the implementation of the algorithms along with detailed
pseudocode. The results of the algorithms are presented by calculating the mean, median, standard deviation,
minimum, and maximum of the errors and depicting the histogram for each landmark over a hundred 3D
facial scans. The results show that geometric properties and statistics can be utilized to achieve more robust
solutions for facial landmark detection.

INDEX TERMS 3D, landmarks detection, face analysis, geometric, open source, review.

I. INTRODUCTION
The automatic detection of facial landmarks is a crucial aspect
of face recognition research, widely used in various fields,
including facial surgeries, biometrics, information security,
access control for law enforcement, surveillance systems, and
smart cards [1].

Current solutions for facial landmark detection mostly
work on 2D images (photos). However, as 3D images (scans)
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become more prevalent due to recent advances in technolo-
gies and affordability, research on automatically detecting
facial landmarks on 3D images is gaining interest among
researchers [2]. Using 3D images for facial landmark detec-
tion has the potential to overcome challenges faced when
using 2D images, such as variations in lighting, posture,
expression, and occlusion [3], [4], [5]. The techniques used
in the field of facial landmark detection on 3D images have
been categorized in various ways by researchers [3], [5], [6],
[7]. One recent categorization divides the techniques into two
main categories: conventional and deep learning methods.
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Conventional techniques can be further divided into
three subcategories: local feature-based, holistic-based, and
hybrid. Local-based approaches focus on specific facial
features, such as the nose and eyes, while holistic-based
approaches use the entire face to generate feature vectors
for landmark detection. Hybrid methods combine both local
and global facial features. For conventional methods, the key
step is finding robust feature points and descriptors based on
the geometric information of 3D face data [3]. Conventional
methods for facial landmark detection also utilize statistical
feature models in addition to geometric information [5], [6],
[7], [8]. The related work that focuses on geometric informa-
tion employs four types of methods: curvature analysis, com-
bining 2D texture with 3D shape, matching 3D face templates
with a manually marked model to establish correspondences,
and using generic image descriptors [5].

FIGURE 1. The facial landmarks that we studied. The bilateral landmarks
are shown only once. From top left to bottom right: Alar Base
Junction/Alar Crease, Alar Rim’s Highest Point, Alare/Alar Flare, Cheilion,
Columellar Break Point, Columellar Rim, Endocanthion, Exocanthion,
Glabella, Gnathion, Labiale Superius, Lateral helix of ear, Maxillofrontale,
Nasal Parenthesis, Pronasale, Sellion, Stomion, Subalare, Subnasale,
Subnasale, Supratip Break Point, Tip Defining Point, Trichion, Zygion.

On the other hand, deep learning methods have been used
to provide solutions to find facial landmark locations on 3D
images. A common approach to facial landmark detection on
3D scans is to use a 3DCNN (Convolutional Neural Network)
which consists of 3D convolutional kernels and 3D pooling

layers [9], [10]. Another approach is to use a combination
of a 2D CNN and a 3D morphable model (3DMM) [11],
[12], [13], [14]. This method uses the 2D CNN to predict 2D
landmark locations on an image of the face, which is then
used to fit a 3DMM and estimate the 3D landmark positions.

Machine Learning (and hence deep learning) is recom-
mended to solve complex problems for which using a tra-
ditional approach yields no good solution [15]. We believe
geometric properties of the face embedded in the 3D face
scans can be utilized to accurately locate some of the facial
landmarks. Several studies have demonstrated the effective-
ness of utilizing geometric and statistical features in facial
landmark detection. For instance, Abu et al. [16], Gupta et al.
[17], Vezzetti et al. [6], Liang et al. [18], Li et al. [19], and
Manal et al. [5] have successfully detected 8, 10, 13, 17, 25,
and 30 landmarks, respectively. In this study, we build upon
the existing work utilizing the geometric properties of facial
features on 3D models [5], [6], [16], [17], [19].

We reviewed the literature and developed algorithms for
thirty-eight landmarks utilizing geometric properties and sta-
tistical information about facial measurements. Eight of our
algorithms were based on existing work, while thirty were
original contributions. The implementation of these algo-
rithms is provided as open-source Python code, along with
the pseudocode for both our algorithms and those found in
the literature. To the best of our knowledge, this study cov-
ers the most extensive number of facial landmark detection
algorithms based on the geometric properties of 3D models.
The accuracy of the algorithms was evaluated using over a
hundred 3D facial scans.

II. METHODS AND MATERIALS
Facial features (landmarks) and measurements that are in use
by researchers and facial plastic surgeons were presented in
a recent literature review article [20] and a free web-based
facial analysis tool [21]. While there are over a hundred facial
landmarks, we focused on the ones that are more relevant
to facial plastic surgery. We consulted with surgeons and
asked which measures (distances, angles, and ratios) are most
important for facial plastic surgeries, specifically rhinoplasty.
Based on their answers, we identified landmarks and also
added landmarks that are used for computing visualization
about facial symmetry such as endocanthion and exocan-
thion. Fourteen of the landmarks are bilateral, meaning that
they exist on both the left and right sides of the face symmetri-
cally. The total number of facial landmarks adds up to thirty-
eight. Figure 1 shows the facial landmarks that we study. The
bilateral landmarks are only shown once. While we focus
on the landmarks that are mostly around the nose region,
most of it is relevant to research on facial surgeries and facial
recognition in general.

We reviewed the literature [6], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38], [39], [40] to identify the facial
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TABLE 1. Landmarks that have Pseudocode in the literature and if our algorithm is influenced by any or not. The rest of the landmarks that are not listed
on this table do not have Pseudocode in the literature and are original.

TABLE 2. Facial landmark, their dependent landmarks in the algorithm and the source of statistics used in their Pseudocode.

landmark detection algorithms on 3D models based on geo-
metric properties.

Pronasale/Tip (prn) was a landmark that was studied
the most, followed by other commonly studied landmarks
such as Exocanthion, Cheilion, Endocanthion, Nasion/Radix,
Subnasale, Labiale Inferius, Labiale Superius. However,

we could not find any pseudocode listed in the literature
for the following facial landmarks, and we devised original
algorithms for those:

• Alar Base Junction/Alar Crease - left/right
• Alar Rim’s Highest Point - left/right
• Columellar Break Point
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FIGURE 2. The hierarchy of dependencies between the facial landmark algorithms. Lower levels require running the algorithm of the upper
levels first.

• Columellar Rim - left/right
• Lateral helix of ear - left/right
• Maxillofrontale - left/right
• Glabella/Menton
• Nasal Parenthesis - left/right
• Nasion/Radix
• Supratip Break Point
• Tip Defining Point - left/right
• Trichion
• Zygion - left/right
• Subalare - left/right
• Subnasale - left/right

If a pseudocode based on geometric properties exists in the
literature for a landmark, we extracted the pseudocode for that
landmark from the literature and placed it on the Github page
[40]. We studied the existing algorithms in the literature and
implemented either an original algorithm or one similar to the
algorithms presented in the literature. We listed the names of
the articles that included pseudocode for a facial landmark
and the originality of our algorithms in Table 1.

The implementations were done in Python (version 3.1),
and Trimesh Python library [41] was used to load 3D models
that are in Wavefront (.obj) format. The algorithms assume
that the face 3D models are placed in the correct pose and
orientation on the x, y, and z coordinate systems, facing the
z-axis.

The algorithms utilize the geometric properties of the head
to find landmark locations, andmost of the algorithms depend
on finding the location of another landmark. Once the loca-
tion of the other landmark(s) is found, some facial statistics
(mean and standard deviation) of distances between landmark
locations are utilized to determine the location of the land-
mark. The statistics are mostly retrieved from facebase.org’s
3D facial norm database [42], [43]. For various algorithms,
we could not find measurement statistics at facebase.org
about the landmarks that will help us guide our algorithms.
For those, we calculated statistics based on our proprietary
3D model dataset that includes 115 3D facial scans of adults.
The list of the statistics used while locating the landmarks

and the dependent landmarks that need to be located before
the landmark are listed in Table 2. Figure 2 depicts the
hierarchy of dependencies between the landmarks. As shown
in Figure 2 (and in Table 2), almost all algorithms utilize
the location of Pronasale, and many algorithms depend on
locating Subnasale.

III. PSEUDOCODE FOR LANDMARK DETECTION
In this section, we present the description of the landmarks
and their pseudocode:

A. ALAR FLARE (ALARE) (LEFT/RIGHT)
Alar Flare (Alare) is the most lateral point on the left and right
ala of the nose [20].
Pseudocode:

1. Locate the Pronasale and Subnasale.
2. Select all vertices that are above the Subnasale’s

y-coordinate, and between the Subnasale’s z-coordinate
and the Pronasale’s z-coordinate.

3. Sort the vertices by x-coordinate.
4. Assign the leftmost vertex as the Alar Flare Left.
5. Assign the rightmost vertex as the Alar Flare Right.

B. ALAR BASE JUNCTION/ALAR CREASE (LEFT/RIGHT)
Alar base is the junction between the alar crease and the
cheek [20].
Pseudocode:

1. Find the subnasale.
2. Select vertices slightly above and to the left of the

subnasale based on the subnasal width statistics
3. Sort the vertices by x
4. Assign the vertex with a relative z minima as the left

subalare
5. Select vertices slightly above and to the right of the

subnasale based on the subnasal width statistics
6. Sort the vertices by x
7. Assign the vertex with a relative z minima as the right

subalare
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C. ALAR RIM’s HIGHEST POINT (LEFT/RIGHT)
The highest point of the left alar rim [20].
Pseudocode:

1. Find the subnasale
2. Select vertices diagonal-left above the subnasale using

Nasal Width (Right Alare (al_r) to Left Alare (al_l))
statistical data from facebase.org

3. Sort the vertices multidimensionally using both x and y
in quadrant 1, i.e. sort by x + y

4. Assign the uppermost x and y vertex as the left alar rim’s
highest point

5. Select vertices diagonal-right above the subnasale using
Nasal Width (Right Alare (al_r) to Left Alare (al_l))
statistical data from facebase.org

6. Sort the vertices multidimensionally using both x and y
in quadrant 4, i.e. sort by x - y

Assign the uppermost x and y vertex as the right alar rim’s
highest point.

D. CHEILION (LEFT/RIGHT)
Cheilion is the landmark located at the oral commissure
where the upper and lower lips meet on left/right side of the
gently closed lips [20].
Pseudocode:

1. Find the stomion.
2. Select vertices on the left of the stomion with sim-

ilar x-values based on the Labial Fissure Width
statistics.

3. Find a vertex with a relative z minimum or a z-value
lower than the stomion.

4. Assign this vertex as the left cheilion.
5. Select vertices on the right of the stomion with similar

x-values based on the Labial Fissure Width statistics.
6. Find a vertex with a relative z minimum or a z-value

lower than the stomion.
7. Assign this vertex as the right cheilion.

E. COLUMELLAR RIM (LEFT/RIGHT)
They are the lowest points (or widest points) of the left and
right nostrils, as seen from the lateral view on the columellar
side at the mucocutaneous junction [20].
Pseudocode:

1. Find the pronasale.
2. Select vertices diagonally downwards to the left of the

pronasale using statistical data from proprietary dataset.
3. Sort the vertices by both x and y coordinates, using

quadrant 4 (i.e., sort by x - y).
4. Assign the last vertex as the left columellar rim.
5. Select vertices diagonally downwards to the right of the

pronasale using statistical data from proprietary dataset.
6. Sort the vertices by both x and y coordinates, using

quadrant 1 (i.e., sort by x + y).
7. Assign the first vertex as the right columellar rim.

F. COLUMELLAR BREAK POINT
Columellar break point is the point in the columellar region
of the nose where the tip of the nose stops curving, and the
columellar linear structure begins, in the midline [20].
Pseudocode:
1. Find the subnasale.
2. Select vertices above the subnasale using statistical data.
3. Sort the vertices by y.
4. Assign the largest y as the columellar break point.

G. ENDOCANTHION (LEFT/RIGHT)
Endocanthion is the inner corners of the eye where the upper
and lower eyelids meet [20]. In the literature, it is also known
as Medial Canthus.
Pseudocode:
1. Find the sellion
2. Starting from the sellion, select vertices to the left in a

region defined based on the ‘Intercanthal Width’ statis-
tics from facebase.org’s 3D norms database.

3. First, select a region that is away by the mean value of
‘Intercanthal Width’ from the sellion. If a local mini-
mum is not found, expand the region by standard devia-
tion of ‘Intercanthal Width’ at each iteration.

4. When the vertex that satisfies the localminima condition
(x value is larger than next two vertices and smaller then
previous two vertices) is found, assign this vertex as the
left endocanthion.

5. Repeat the same process in the opposite direction to find
the right endocanthion.

H. EXOCANTHION (LEFT/RIGHT)
Exocanthion is the outer corner of the eye where the upper
and lower eyelids meet [20]. In the literature, it is also known
as Lateral Canthus.
Pseudocode:
1. Find the sellion.
2. Starting from the sellion, select vertices to the left in

a region defined based on the ‘Outercanthal Width’
statistics from facebase.org’s 3D norms database.

3. First, select a region that is a certain distance from the
sellion, based on themean value of ’IntercanthalWidth’.
If a local minimum is not found, expand the region by
the standard deviation of ‘Outercanthal Width’ at each
iteration.

4. When a vertex that satisfies the local minimum condi-
tion (its x value is larger than the next two vertices and
smaller than the previous two vertices) is found, assign
it as the left exocanthion.

5. Repeat the same process in the opposite direction to find
the right exocanthion.

I. GLABELLA
Glabella is the most prominent point of the forehead in the
midline between the eyebrows [20].
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Pseudocode:

1. Find the pronasale.
2. Select vertices above the pronasale.
3. Assign the vertex with a relative maximum z-value as

the glabella.

J. GNATHION (MENTON)
Gnathion (menton) is the lowest point on the soft tissue
profile of the chin in mid-sagittal plane [20].
Pseudocode:

1. Find the pronasale
2. Select vertices based on the stats from facebase.org that

gives the distance between the pronasale and gnathion:
[lower face height + nasal height - nasal bridge length].

3. Find the lowest relative maxima for z.
4. Assign this vertex as the gnathion.

K. LABIALE SUPERIUS
Labiale superius is the midline point representing the muco-
cutaneous vermilion border of the upper lip [20].
Pseudocode:

1. Find the subnasale.
2. Select vertices below the subnasale based on the

Philtrum Length statistics from the selection region,
which will be determined by the mean value of Philtrum
Length.

3. Find the vertex with a relative maximum for the
z-coordinate.

4. If a vertex with a relative maximum for z cannot be
found, expand the region by one standard deviation of
Philtrum Length.

5. When a vertex with a relative maximum for z is found,
assign it as the labiale superius.

L. LATERAL HELIX OF EAR (LEFT/RIGHT)
The helix of ear (left/right) is the utmost point on the helix of
the left ear [20].
Pseudocode:

1. Use the minimum and maximum y-values of the ver-
tices, along with the statistics of nasal bridge length,
to find the region along the y-axis that will include the
lateral helix of the ear.

2. Within this region, find the vertex with the largest
x-value within one standard deviation from the
midpoint.

3. Assign this vertex as the left lateral helix.
4. Within this region, find the vertex with the small-

est x-value within one standard deviation from the
midpoint.

5. Assign this vertex as the right lateral helix.

M. MAXILLOFRONTALE (LEFT/RIGHT)
Maxillofrontale is the point where the maxilloanterioral and
nasoanterioral sutures meet [20].

Pseudocode:
1. Find the pronasale and endocanthion.
2. Select vertices at the y-coordinate level of the endocan-

thion and to the left of the pronasale using statistics from
proprietary dataset.

3. Sort the vertices by x-coordinate.
4. Assign the last vertex as the left maxillofrontale.
5. Select vertices at the y-coordinate level of the endocan-

thion and to the right of the pronasale using statistics
from proprietary dataset.

6. Sort the vertices by x-coordinate.
7. Assign the first vertex as the right maxillofrontale.

N. NASAL PARENTHESIS-LEFT/RIGHT
Nasal parenthesis is the summit of the left/right nasal
parentheses/canthal-alar line.
Pseudocode:
1. Find the pronasale.
2. Select vertices diagonally upwards to the left of the

pronasale using statistics from proprietary dataset.
3. Sort the vertices by both x and y coordinates, using

quadrant 1 (i.e., sort by x + y).
4. Assign the last vertex as the left nasal parenthesis.
5. Select vertices diagonally upwards to the right of the

pronasale using statistics from proprietary dataset.
6. Sort the vertices by both x and y coordinates, using

quadrant 4 (i.e., sort by x - y).
7. Assign the first vertex as the right nasal parenthesis.

O. NASION (RADIX)
Nasion (Radix) is the midpoint of the nasofrontal suture line
where the frontal bone and nasal bones join [20].
In some of the literature, Nasion (Radix) and Sellion are

considered the same landmark. There are no geometric prop-
erties on the surface of the face that can be utilized to distin-
guish Nasion from Sellion. Therefore, we accepted Sellion
and the Nasion as the same landmark. When the location
of Nasion is needed, our implementation calls the function
for Sellion and returns the location of the Sellion. Therefore,
the pseudocode for Sellion is the same as Nasion. Nasion
landmark is not counted for the total landmark count (thirty-
eight) in this study.

P. PRONASALE (TIP)
Pronasale (tip) is the most protrusive point on the nasal tip in
the midline [20].
Pseudocode:
1. Determine the minimum and maximum x and y coordi-

nates (min_x, max_x, min_y, max_y) of the vertices.
2. Define a region where the nose is approximately cen-

tered by calculating the coordinates (center = (min_x+
max_x)/2, y = (min_y+ max_y)/3).

3. Sort the vertices within the defined region and locate the
vertex with the highest z value. Assign this vertex as the
Pronasale.
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Q. SELLION
Sellion is the deepest depression of the nasal bones and often
coincides with soft tissue nasion [20].
Pseudocode:

1. Locate the Pronasale.
2. Starting from the Pronasale, use the nasal bridge length

statistics (Nasion (n) to Pronasale (prn)) from face-
base.org to establish a search region with one standard
deviation of nasal bridge length.

3. Iterate through the search region on the increasing y-axis
until a relative minimum for the z-coordinate is found.

4. If a relative minimum is not found in the initial search
region, expand the search region by one standard devia-
tion of nasal bridge length.

5. If a relative minimum is found, assign the vertex in the
search region as the Sellion.

R. SUBNASALE
Subnasale is the deepest point at the junction of the base of
the columella and the upper lip in the midline [20].
Pseudocode:

1. Locate the Pronasale.
2. Define the height and depth of the search region based

on the Nasal height (Nasion (n) to Subnasale (sn)) and
Nasal bridge length (Nasion (n) to Pronasale (prn))
statistics, as well as the Nasal Protrusion (Pronasale
(prn) to Subnasale (sn)) statistics from facebase.org.

3. Search for an inflection point on the z-axis below the
y-axis of the Pronasale, in decreasing order. (Note that
this algorithm might only work if the y-axis of the
Pronasale is less than the y-axis of the Subnasale. Some
nose shapes, such as those with a drooping tip, may have
this property).

4. Assign this vertex as the Subnasale.

S. STOMION
The point at which the upper and lower lip make contact in
the midline on gently closed lips [20].
Pseudocode:

1. Find the labiale superius
2. Select vertices below the labiale superius based on

the Upper Vermilion Height (Labiale Superius (ls) -
Stomion (sto)) statistics from facebase.org

3. Find the first vertex with a relative z minima
4. Assign this vertex as the stomion

T. SUBALARE (LEFT/RIGHT)
Subalare is the point at the lower limit of each alar base,
where the alar base disappears into skin of the upper lip.
It is a bilateral landmark located below the nostril opening
at the point where the infero-medial continuation of the alar
cartilage inserts into the skin of the upper lip [20].

Pseudocode:
1. Find the subnasale.
2. Select vertices slightly above and to the left of the

subnasale based on the subnasal width statistics.
3. Sort the vertices by x.
4. Assign the vertex with a relative z minima as the left

subalare.
5. Select vertices slightly above and to the right of the

subnasale based on the subnasal width statistics.
6. Sort the vertices by x.
7. Assign the vertex with a relative z minima as the right

subalare.

U. SUBNASALE (LEFT/RIGHT)
Subnasale left/right are the points where the right/left col-
umella meets the nostril sill [20].
Pseudocode:
1. Locate the Subnasale.
2. Select vertices to the left based on the ‘subnasale width’

(Right Subalare (sbal_r) to Left Subalare (sbal_l)) statis-
tics from facebase.org’s 3D norms database. Since the
Subnasale is approximately half the distance to the Sub-
alare from the Subnasale, divide the ‘subnasale width’
by 2.

3. Sort the vertices by increasing x-coordinate.
4. Assign the vertex with the largest x-coordinate as the

Subnasale left.
5. Select vertices to the right based on the ‘subnasale

width’ statistics from facebase.org’s 3D norms database.
6. Sort the vertices by decreasing x-coordinate.
7. Assign the vertex with the smallest x-coordinate as the

Subnasale right.

V. SUPRATIP BREAK POINT
Supratip break point is the area just cephalad to the nasal tip
at the caudal portion of the nasal dorsum.
Pseudocode:
1. Find the pronasale.
2. Select vertices above the pronasale using statistics from

proprietary dataset.
3. Sort the vertices by y-coordinate.
4. Assign the last vertex as the supratip break point.

W. TIP DEFINING POINT (LEFT/RIGHT)
The nasal tip defining point is the most anterior projection of
the tip cartilages, usually corresponding to the apex of the lob-
ular arch anatomically, and is typically identified externally
where the light reflex is seen on the nasal tip.
Pseudocode:
1. Find the pronasale
2. Select vertices above and to the left of the pronasale

using statistics from proprietary dataset.
3. Sort the vertices by y-coordinate
4. Assign the last vertex as the left tip defining point.
5. Select vertices above and to the right of the pronasale

using statistics from proprietary dataset.
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6. Sort the vertices by y-coordinate
7. Assign the last vertex as the left tip defining point.

X. TRICHION
The trichion is the point on the hairline in the midline of the
forehead.
Pseudocode:

1. Find the glabella
2. Select vertices above the glabella between the glabella

and trichion based on the statistics
3. Search upwards to find the first vertex that has a signif-

icant z increase which indicates the existence of hair.

Y. ZYGION (LEFT/RIGHT)
Zygion is the most lateral point of the right zygomatic
arch [20].
Pseudocode:

1. Find the pronasale.
2. Using the maximum facial width statistics (from right

Zygion to left Zygion) from facebase.org, determine the
x-coordinate value of the left zygion.

3. Using statistics, determine the y-coordinate value of the
left zygion.

4. Select all vertices in the region based on the x and y
coordinate values.

5. Sort the vertices by both x and y coordinates, using
quadrant 1 (i.e., sort by x + y).

6. Assign the vertex as the left zygion.
7. Using the maximum facial width statistics (from right

Zygion to left Zygion) from facebase.org, determine the
8. x-coordinate value of the right zygion.
9. Using statistics, determine the y-coordinate value of the

right zygion.
10. Select all vertices in the region based on the x and y coor-

dinate values within a diagonal line to the approximate
location.

11. Sort the vertices by both x and y coordinates, using
quadrant 4 (i.e., sort by x - y).

12. Assign the vertex as the right zygion.

IV. RESULTS AND DISCUSSION
We have tested the algorithms on 111 facial 3Dmodels for the
thirty-eight landmarks. The temporal analysis of algorithms
shows that it takes on average 0.5 seconds to locate a land-
mark at the first level (e.g. Pronasale), 0.8 seconds to locate a
landmark at the second level (e.g. Subnasale), and 1.1 seconds
for a landmark at the third level shown in Figure 2 when the
algorithm is executed on a Jupyter Notebook page using the
Python 3.1 kernel at MacBook Pro with M1 Max Chip and
32GB memory.

We calculate the error by finding the distance between the
manual markings and the location found by the algorithm.
The mean error for each landmark is calculated using the
formula below. In this formula, xmi, ymi, and zmi represent the
coordinates of manual markings and xai, yai, and zai represent

TABLE 3. Statistical conclusions for facial landmarks errors.

the coordinates found by the algorithm.

1
n

n∑
i=1

√
(xmi − xai)2 + (ymi − yai)2 + (zmi − zai)2

Table 3 presents the mean, median, standard deviation,
minimum, andmaximum values of the errors for the 111 sam-
ples. The values are in millimeters and the table is sorted
based on the mean values. The algorithms for bilateral
landmarks work with the same logic for the left and right
landmarks, and hence their results are very similar. There-
fore, we only present the results for the left of the bilateral
landmarks.

The mean is almost always larger than the median due to
the outliers in the errors. The maximum values in Table 3
indicate the extent of the outliers. We had the most outliers
for the lateral helix of the ear and trichion landmarks. As we
investigated the cause, we noticed that the heuristic of the
algorithm lateral helix of the ear did not work since the
minimum andmaximum points on the x-axis were not always
the ear on the 3D scan due to hair. We also noticed that the
heuristic of the trichion also did not work due to lack of hair
or due to hair not being tied back during the 3D scan as the
algorithm detects the changes in the z-axis caused by the hair.

Figure 3 provides the histogram of error values to show
the distribution of the error values and outliers. According
to Figure 3, the largest errors and outliers exist for the lat-
eral helix of the ear, trichion, and gnathion landmarks. The
smallest errors exist for the Pronasale, which is a good sign
since almost all landmarks depend on detecting the Pronasale
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FIGURE 3. The histogram of errors (distance between the manual markings and results of the algorithms) The bilateral landmarks are shown only
once. From top left to bottom right: Alar Base Junction/Alar Crease, Alar Rim’s Highest Point, Alare/Alar Flare, Cheilion, Columellar Break Point,
Columellar Rim, Endocanthion, Exocanthion, Glabella, Gnathion/Menton, Labiale Superius, Lateralhelix of ear, Maxillofrontale, Nasal Parenthesis,
Pronasale, Sellion, Stomion, Subalare, Subnasale, Subnasale, Supratip Break Point, Tip Defining Point, Trichion, Zygion.

first. The Subnasale, which is another landmark that many
landmarks depend on, does not have high error.

While we compare our results with manual markings, note
that manual markings can have errors. The markings can
also slightly change from one rater (the person who does the
marking) to another, and the reliability of the raters should
be tested [44]. To achieve more accurate manual markings,
several raters could be utilized, and then the average of the
markings could be computed to reach a consensus.

To reduce the results, the utilization of statistics can be
extended to incorporate more heuristics. For example, statis-
tics about the average face width and height were utilized to
estimate the difference between the x and y coordinates of the
Zygion and the Pronasale landmarks.

We could improve this by first determining how wide and
long the subject’s face is when compared to the average
face width and height, and then better estimate the x and
y coordinates of the Zygion given the x and y coordinates
of the Pronasale utilizing the ratio of the subject’s face and

the average face values. Similar statistics and heuristics can
be utilized for other landmarks based on the ratio of the
subject’s measurement and the average of that measurement
to compute the location of the landmark.

The performance of the algorithms can further be improved
if the age, gender, and ethnicity of the subject are known or
can be estimated by utilizing statistics for the subject’s age,
gender and ethnicity.

V. CONCLUSION
In this study, we developed algorithms to detect facial land-
marks based on geometric properties and facial statistics.
Facial landmark detection is widely applied in fields, such as
face recognition, face surgery, biometrics, and surveillance
systems. We reviewed the pseudocode of algorithms in the
current literature. and developed algorithms for thirty-eight
landmarks using geometric properties and statistical infor-
mation about facial measurements. The algorithms for thirty
landmarks are original contributions to the literature.
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To facilitate replication and further research, we havemade
the python source codes available to other researchers on
GitHub [40]. The accuracy of our algorithms was evaluated
through the analysis of 111 3D face scans.

To the best of our knowledge, this study covers the largest
number of facial landmark detection algorithms based on the
geometric properties of 3D models. This is the first study
that provides the implementation of the algorithms along with
detailed pseudocode.

The results indicate that the geometric properties of the
face and the facial statistics can be utilized to discover many
landmark locations, and the output of high-performing algo-
rithms, such as Pronasale, can be combined with outputs of
other approaches, such as machine learning approaches to
provide a more robust solution for facial landmark detection.
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