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ABSTRACT The implementation of the Linear Quadratic Gaussian (LQG) scheme is often considered
problematic as it requires a dynamic model of the system as a whole. The challenges come from state
variables without a physical representation and the interference factors that affect the reading process.
This paper presents and assesses a combination of methods to adapt the LQG scheme to a discrete-time
linear system. The method KalmanNet constructed by the Long-Short Term Memory architecture (LSTM)
is employed to replace the role of Kalman Filter (KF). The Value Iteration (VI) algorithm supersedes the role
of the Linear Quadratic Regulator (LQR) controller in solving quadratic regulation issues. The assessment
of the proposed algorithm on a cart-pole system and batch distillation column with a disturbance factor in
uncorrelated Gaussian white noise is carried out in a simulated way under a discrete-time linear system.
The result indicates that the solving of regulation problems through the conventional LQG method is not
conclusive as the output response oscillation is still in progress. The combination of the KalmanNet and VI
algorithm, as aforementioned, provides better results as it proves to solve the regulation problem as well as
to compel the system output to converge.

INDEX TERMS Optimal control, LQG, LSTM, state estimation, reinforcement learning.

I. INTRODUCTION
Optimal control refers to a scientific application that is devel-
oped to find the optimal control strategy of a system through
an optimization of its objective function [1], [2]. The tra-
ditional optimal control involves a plant model to generate
the Algebraic Riccati Equation (ARE) [3]. The performance
of the controller is heavily dependent on the model [4].
A paradigm shift has begun to emerge due to several weak-
nesses in the model-based control approach when viewed
from an optimal control perspective.

The data driven scheme is classified into two types; model-
based and model-free. The former involves directly searching
the controller parameters based on cost values without any
attempts at themodel dynamics.While the latter involves data
measurement to approximate the underlying dynamics [5].
Practically, the system model is often unknown, thereby it
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is necessary to identify the system using the input and out-
put signal measurement data of the system. This scheme is
referred to as a two-step control procedure for its design of
new controllers as this enables an execution after the system
identification stage [6], [7].

Linear Quadratic Gaussian (LQG) refers to a method
that applies the principle of separation between state esti-
mates and optimal controllers [1], [2]. The principle of
separation states that the solution to the LQG problem is
to utilize an observer based controller, which consists of
Kalman Filter (KF) and Linear Quadratic Regulator (LQR)
solutions. LQG combines the role of the KF and LQR as
estimators and controllers [1], [8], [9]. The combination of
these methods is able to handle the problem of regulation
of linear systems with disturbance factors with statistical
properties in the form of Gaussian. The traditional LQG
method is known to possess a flaw of the system dynam-
ics being linear and known. In addition, the system distur-
bance factor and measurements are stochastic, with their
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statistical characteristics also known in the form of aGaussian
distribution.

The development of machine learning methods progressed
quite rapidly. One of the common ones is the Reinforcement
Learning (RL). The terminology of RL is often referred to
as adaptive optimal control [1], [10]. Several approaches to
the RL method can be performed in order to produce an
optimal strategy. The main dichotomy of the RL method
is model-based one and the one without a model. The
model-based RL method calculates the performance index
by utilizing information from the environment [11]. The RL
methods commonly employed to solve this problem are Pol-
icy Iteration (PI) and Value Iteration (VI). The adoption of
the VI algorithm to solve linear quadratic problems based on
the Bellman Equation has been widely conducted [12], [13],
[14], [15]. These studies assume that all state information can
be obtained. Past studies conducted concerning the use of the
RL method in optimal control were mostly carried out under
deterministic systems [16], [17].

The application of the VI algorithm has been performed to
solve tracking problems in plants with unknown models [13].
AnArtificial Neural Network (ANN) is utilized for the identi-
fication of the system to approximate the model. The network
output is presumably a state vector but all states are assumed
to be observable. The implementation proves to be challeng-
ing due to the limitations of sensors in a control process.
In addition, the VI algorithm is also applied in systems that
utilize the role of input-output plant data to approximate the
control parameters [14]. They uses the Least-Square (LS)
method from measurement data sets to solve the Bellman
Equation online. The combination between KalmanNet and
a conventional LQR controller was also proposed by [18].
The LS method from measurement data sets is employed to
solve regulatory issues by utilizing plant input and output
measurement data. These data are processed by KalmanNet
to generate the estimated state x̂k . In comparison, the con-
troller designed in [18] remains non-causal and can only be
performed offline as it uses a conventional LQR solution.

This research proposes an algorithm specifically for a
data-driven environment, not a fully measurable state, and a
partially known dynamics model. Major contribution of this
study are listed below:

• We adapt the LQG scheme for discrete-time linear sys-
tem with Gaussian distribution of the disturbances char-
acteristic using KalmanNet and VI algorithm

• We replace the state estimation scheme in LQG using
KalmanNet. Meanwhwile, KalmanNet is a data-driven
optimal filtering based on Recurrent Neural Networks
(RNN) architecture

• We use the VI algorithm for controller design to
solve the regulation problem. The VI algorithm is
a model-based RL method that could solve the
non-causality problem that arise in LQR solution

The remaining section of this paper covers the development
of the proposed algorithm. Section II comprises the definition
of the problem. Section III discusses the new data-driven

TABLE 1. Notation and abbreviations in this research.

LQGmethod as our proposed solution. The application of the
proposed solution to the design data driven LQG control for
cart-pole system and batch distillation column are included in
Section IV, which also covers the simulations and evaluations
of several test schemes. This arrangement is aimed at empiri-
cally ensuring that our proposed algorithm provides the most
optimal results. Lastly, Section V contains the conclusions
of this research. The notations presented in this research are
listed in Table 1.

II. PROBLEM FORMULATION
In the implementation of the control system, there is a lim-
itation of the number of sensors used, consequently not all
state information from the plant can be obtained. In addition,
the data measurement process also often contains noise. As a
result, implementing an optimal control scheme proves to be
difficult. In order to solve the regulator problem, a system
affected by disturbance factors, a scheme is required to be
implemented to deal with this situation. This section covers
the complete model information requirements on KF as a
state estimation method and the non-causality that appears in
conventional LQR solutions. These problems can affect the
LQG controller design process. In this research, we classify
three method combinations (see Problem 1-3 in Section II-C)
to adapt the LQG controller scheme to deal with the issue
above.

A. KF
The dynamics of a discrete-time linear system can be
expressed as in Eq. (1) with xk ∈ Rn, uk ∈ Rm, and
yk ∈ Rp are vectors of state variables, control signals, and
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FIGURE 1. Conventional Kalman filter scheme.

measured output signals, respectively. Meanwhile, wk and vk
are uncorrelated white Gaussian noise with the covariance
matrix denoted as Rww and Rvv, respectively.

xk+1 = Axk + Buk + wk ,wk ∼ N (0,Rww)

yk = Cxk + vk , vk ∼ N (0,Rvv) (1)

It is assumed that the system is observable. We can estimate
the state x̂k of the state xk based on observation of the mea-
sured output yk . KF is a recursive linear MSE filter that is
also MSE optimal for the SS model in Eq. (1) [19]. From
Table 1, it can be concluded the abbreviations of KF. The KF
design is achieved through a two-step procedure : prediction
and update which illustrated in Fig. 1.

1) Prediction step : This step involves computing a prior
first and second order moment moments from the state
trajectory using Eq. (2) and (3) respectively.

x̂−

k = Ax̂k−1 + Buk−1 (2)

6−

k = A6k−1A⊤
+ Rww (3)

In this step, we compute a prior first and second order
moments from observed output using Eq. (4) and (5).

ŷ−k = Cx̂−

k (4)

4−

k = C6−

k C
⊤

+ Rvv (5)

2) Update step : This step processes a posterior first order
moments using Eq. (6) where the 1yk is defined in
Eq. (7).

x̂k = x̂−

k + Lk1yk (6)

1yk = yk − Cx̂−

k (7)

The propagation of posterior second order moments is
computed with Eq.(8). Meanwhile the Eq. (9) is used
to compute the Kalman gain.

6k = 6−

k − Lk4
−

k L
⊤
k (8)

Lk = 6−

k C
⊤
(
4−

k

)−1 (9)

It is practically a demanding task to design and implement
the optimal estimator since the system dynamics and noise
statistics are unknown [20].

B. LQR
LQR requires the solution of a Riccati equation given as a
function of the plant’s state-space model [4]. Additionally,
the solution of the HJB equation for the LQR problem is non-
causal. Furthermore, the VI method can be employed to solve
the HJB equation for optimal control problems online [20].

In [1] and [8], the performance index is the quadratic
function as formulated in Eq. (10).

Jk =
1
2

[
x⊤
NQN xN +

N−1∑
i=k

xTi Qxi + uTi Rui

]
(10)

xk ∈ Rn and uk ∈ Rm are respectively system state and
control input. The cost-weightingmatricesQN ,Q,R are sym-
metric positive semi-definite matrices. The objective of the
regulator problem is to find an uk policy capable of mini-
mizing the performance index in Eq. (10) during the system
trajectory(1).

We begin with the Hamiltonian function (see Eq. (11).
The λ is a Lagrange multiplier chosen to solve the constraint
optimization problem [1], [8].

Hk =
1
2

(
x⊤
k Qxk + u⊤

k Ruk

)
+ λ⊤

k+1

(
Axk + Buk

)
(11)

Hamiltonian function refers to an approach adopted for ana-
lyzing the optimization of the performance index [1]. From
the stationary condition, the control signal is obtained through
Eq. (12) [1].

uk = −R−1B⊤Pkxk (12)

The backward recursion for Pk using matrix inversion lemma
is obtained through Eq. (13) [1].

Pk = A⊤
[
Pk+1 + BR−1B⊤

]
−1A+ Q (13)

The control gain is defined in Eq. (14)

Kk = R−1B⊤Pk (14)

It is conclude that the Eq. (13) is the Riccati equation solution
that is computed and stored in the computer memory before
the control is applied to the plant [1], [20]. Consequently, this
conventional method is unfeasible to be implemented online.

C. LQG
The performance index with weight matrix Q and R are
positive semi-definite and positive definite, respectively, as in
Eq. (15). This research focuses on optimizing the cost func-
tion Eq. (15) which is the E{.} represent the expected value.

J (xk , uk ) =
1
2

E
{
x⊤
NQN xN +

N−1∑
k=1

x⊤
k Qxk + u⊤

k Ruk

}
(15)
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In this research, the close-loop dynamics is jointly described
by Eq. (16)

ζk+1 = 3kζk + 0kµk (16)

In which ζ = [x⊤x̃⊤]⊤ ∈ Rq consists of the state and
estimation error. Meanwhile, the µ = [w⊤v⊤]⊤ is the white
noise, and 3 ∈ Rq×q is the close-loop matrix is given as in
Eq. (17). [

xk+1
x̃k+1

]
=

[
A− BKk BKk

0 A− LkC

] [
xk
x̃k

]
+

[
I 0
I −Lk

] [
wk
vk

]
(17)

The calculation of the Kk and Lk matrices are formulated as
in Eq. (14) and (9).We proceed to test our combined method
with four types of combinations. The first, second and third
combinations are defined in Problem 1, 2, and 3, correspond-
ingly. Problems 1 to 3 are similar to the conventional LQG
problems, the difference lies in the methods used in designing
the observer and controller.
Problem 1: Consider the dynamical system in Eq. (1).

Design the observer gain Lk and controller gain Kk so as to
minimize the performance index in Eq. (15). The observer
gain is obtained from the KF method. Consequently, it is
required to process the tuning of the covariance matrix of
measurement noise Rvv. At the same time, the controller gain
Kk is obtained through the VI algorithm.
Problem 2: Consider the dynamical system in Eq. (1).

Design the observer gain Lk and controller gain Kk so as to
minimize the performance index in Eq. (15). The observer
gain is obtained through KalmanNet. In consequence, it is
required to process the tuning of the LSTM parameters,
namely optimization method, number of hidden states, and
the activation function. The controller gain Kk is obtained
through the LQR method.
Problem 3: Consider the dynamical system in Eq. (1).

Design the observer gain Lk and controller gain Kk so as to
minimize the performance index in Eq. (15). The observer
gain is obtained through the KalmanNet. Consequently, it is
required to process the tuning of the LSTM parameters,
namely optimization method, number of hidden states, and
the activation function. The controller gain Kk is obtained
through the VI algorithm.

In Problem 1, the conventional KF method is employed to
produce an estimated state. This study assumes that the value
of the measurement noise covariance matrix is greater than
that of the process noise. The tuning of the covariance matrix
parameter Rvv consequently has a more excellent value than
that of Rww. Next in the controller design, the implemented
program in the Algorithm 2 is operated to calculate the con-
troller gain value online (not backwards-in-time) similar to a
conventional LQR solution.

The solution to Problem 2 and Problem 3 involves the role
of KalmanNet to generate an estimated state of x̂k . Kalman-
Net adapts the conventional KFmethod based on ANN. ANN
is utilized to predict the Kalman gain value based on input and

FIGURE 2. Proposed algorithm scheme.

output plant measurement data only without the requirement
of information about the statistical characteristics ofmeasure-
ment of process noise. However, the tuning scheme is devised
when using KalmanNet to compare the hyper parameters in
ANN. Hyper parameter tuning is used in this study to vary
the optimizer type, mini-batch size, and activation function
to further compare system performances.

III. ADAPTATION LQG METHOD
The combination of methods proposed in this study adapt a
finite-time LQG scheme to solve regulatory problems. The
adaptation scheme is operated to utilize the role of ANN
for replacing the function of the KF as a state estimation
method. The RL method returns the conventional optimal
controller designed using the LQR method. Additionally,
stability analysis based on the evolution of the eigenvalues
of a closed-loop system is performed to ensure the system’s
stability when controlled through a model-based RL method.
The proposed algorithm is as shown in Fig. 2, as in this
study there are two subsystems, namely the estimator and
the controller. A more detailed discussion of the estimator
proposed in this study is presented in Section III-A. In con-
trast, the discussion regarding the controller is presented in
Section III-B.

A. KalmanNet
The calculation of the Kalman gain previously discussed
in [19] indicates that the calculations are based on a sys-
tem’s model. KalmanNet is a Kalman gain calculation mech-
anism processed in a hybrid of model-based and data-based,
combining the ANN with the conventional KF. The first in
implementing KalmanNet is to build the SS model to design
a recursive filter that operates as a KF. At this stage, it is
assumed that the constants of the state matrix A, the input
matrix B, and the measurement model C are known, although
not accurately. The covariance matrices Rww and Rvv need not
be known. The problem is to change the statistical process of
the state propagation, as shown in Fig. 3, to obtain a Kalman
gain (L) via ANN. Some questions arising before designing
KalmanNet include (i) What input signal does ANN need to
learn the Kalman gain value? (ii) What is the required ANN
architecture to supersede the role of the KF? (iii) How can the
ANN do the learning from data only? [19].
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In the traditional KF, the Kalman gain (L) is not dependent
on the current observation data yk , not is it a function of the
estimated state x̂k . The process of calculating the Kalman
gain (L) through the KF method is based on the second-order
statistical moment 6k . Therefore, the implementation of
KalmanNet requires using the ANN, which has a memory
element [19]. This follows the Long Short-Term Memory
(LSTM) to adapt the KalmanNet scheme. This scheme is
successfully implemented as a state estimation method on the
batch distillation column system [21].

KalmanNet’s learning process is carried out offline (in a
supervised learning manner) using training data. Then, the
model obtained from the training process will be used to
calculate the Kalman gain value. In KalmanNet, the previous
posterior estimated state x̂k−1 and delayed control signal uk−1
are used to calculate the prior estimated state x̂−

k based on
the system dynamics model. Meanwhile, the control signal
in this research is obtained from LQR and VI algorithms
(details in Section III-B). The estimated state x̂−

k is subse-
quently used to make predictions for the next prior observed
output ŷ−k . The calculation of the observation error denoted
as 1yk is based on the measured output yk and the previous
prior observed output ŷ−k . The process of calculating the
posterior estimated state update x̂k+1 employs Kalman gain L
and 1yk .
The KalmanNet scheme adopted in this study is slightly

different from that in [19]. Fig. 4 denotes the KalmanNet
scheme adopted in this research, consisting of three subsys-
tems. The first subsystem combines information from the
current observation data yk and the estimated state x̂k into an
input signal denoted as ϕk . The output of an LSTM layer is
the hidden state hk . The hidden state represents the covariance
matrices in the sense of KF [19]. The subsystem is a fully
connected layer. This layer is responsible for reconstructing
the Kalman gain dimension (L). The KalmanNet scheme pro-
posed in this study is stated inmore detail in theAlgorithm 1.

The structure of a single LSTM represented in [22].
LSTMs are designed to block the long-term dependency
problems arising in typical RNN structures. The LSTM pri-
mary key is in the cell state. Three gates aimed at deleting
or adding information to the next cell are inside a cell. The
three gates consists of forget, input, and output gates. Each
gate produces an output in the range of values 0 to 1. If the
gate outputs is 0, no information is sent to the next cell, and
vice versa.

From Fig. 4 we could conclude that the ϕk is input vector
at time k for LSTM. Weights in LSTM layer defined below:

• Input weights :Wf , Wi,Wc, Wo ∈ Rnh×(n+p)

• Recurrent weights : Rf , Ri,Rc, Ro ∈ Rnh×nh

• Bias weights : bf , bi, bo

In forget and input gate which denoted as fk and ιk , the
formula are respectively described in Eq. (18) and (19). Input
data and recurrent from the previous state are added up.
A Hadamard product of two vectors is represented by .
The function g(.) in Eq. (20) and (23) are hyperbolic tangent

function.

fk = σ
(
Wf ϕk + Rf hk−1 + bf

)
(18)

ιk = σ
(
Wiϕk + Rihk−1 + bi

)
(19)

C̃k = g
(
Wcϕk + Rchk−1

)
(20)

Connections between the cell to all gates are added to
the architecture to make precise timing easy to learn [22].
Eq. (21) describes the formulation in a cell.

ck = ιk C̃k + fk ck−1 (21)

The output gate denoted as ok , formulation represented in
Eq. (22). Meanwhile the block output was denoted in Eq.(23)
and the hk is representing the output of LSTM network.

ok = σ
(
Woϕk + Rohk−1 ck + bo

)
(22)

hk = ok g
(
ck

)
(23)

This scheme for training the LSTM is an extension
of the standard back-propagation algorithm known as
Back-Propagation Through Time (BPPT) [22].

B. VALUE ITERATION ALGORITHM
The proposed algorithm in this research, specifically for the
VI algorithm, is inspired by [13], [14], and [15], developing
the VI algorithm for Linear Quadratic Tracking (LQT) prob-
lem. In this subsection, the VI algorithm is formulated for
the LQR problem. The performance index or value function
for LQR problem is formulated as in Eq. (24).

V (xk ) =
1
2

(
xTk Qxk + uTk Ruk +

∞∑
i=k+1

[
xTi Qxi + uTi Rui

])
(24)

which also generates the LQR Bellman equation in Eq. (25)

V (xk ) =
1
2

(
xTk Qxk + uTk Ruk

)
+ V (xk+1) (25)

With the assumption that the performance index value along
the xk trajectory is quadratic in order that the performance
index can be expressed as Eq. (26) through the Kernel
matrix P.

V (xk ) =
1
2
xTk Pxk (26)

The substitution of Eq. (25) and (26) for Eq. (27) occurs to
form the Bellman Equation on the LQR problem. Assuming
a constant state feedback control signal uk = −Kx̂k for some
stabilizing gain [14].

xTk Pxk = xTk Qxk + uTk Ruk + xTk (A− BK )TP(A− BK )xk
(27)

It then proceeds to substitute the Bellman equation with
DT LQR, which is called the Lyapunov Equation [14] in
Eq. (26) in which the performance index Vk is dependent on
the estimated current state x̂k and control inputs uk .

(A− BK )TP(A− BK ) − P+ Q+ KTRK = 0 (28)
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FIGURE 3. KalmanNet block diagram.

FIGURE 4. KalmanNet-LSTM architecture.

The Hamilton function of the DT LQR system is formulated
in Eq. (29).

H (xk , uk ) = xTk Qxk + uTk Ruk
+ (Axk + Buk )TP(Axk + Buk ) − xTk Pxk (29)

The first derivative of Hamiltonian function leading to the
necessary condition of optimality is represented in Eq. (30).

∂H (xk , uk )
∂uk

= (R+ BTPB)uk + BTPAxk = 0 (30)

From the Eq. (30), we could compute the control signal such
as Eq. (31) is computed by inserting it to Eq. (27) to generate
the Eq. (32), which is simply called DT ARE.

uk = −(R+ BTPB)−1BTPAxk (31)

ATPA− P+ Q− ATPB(BTPB+ R)−1BTPA = 0 (32)

From Eq. (28), it can be concluded that it represents the Bell-
man optimality equation. It is possible to adopt this equation
in implementing the VI algorithm. The VI Algorithm format
is simply a Lyapunov recursion that converges to the solution

of the Riccati equation [14]. In this study, the offline VI
algorithm is employed to solve the LQR problem. For that
reason, complete knowledge of the system dynamics (A,B)
is highly necessary.

C. IMPLEMENTATION OF DISCOUNT FACTOR
The problem that occurs when implementing the VI algo-
rithm is how to generate a stabilizing control policy [23].
From [14] and [15], it is concluded that a discount fac-
tor influences the stability. γ is a discount factor with the
value range of γ ∈ (0, 1) which provides the weight of
the performance index. The effect of the discount factor is
to provide weight to the performance index with a constant
that is time-varying decaying [24]. Based on the Bellman
Equation for the infinite horizon, discounted LQR problem
can be formulated as Eq. (33).

V (xk ) =
1
2

(
x⊤
k Qxk + u⊤

k Ruk +

∞∑
i=k+1

γ i−k

×

(
x⊤
i Qxi + u⊤

i Rui

))
(33)
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Algorithm 1 LSTM for KalmanNet
Initialization: Some parameters such as :
(1) Number of epoch
(2) Parameter of LSTM
(3) Define the dataset (ϕ)
ϕ =

[
x̂ y

]
, where x̂ and y are estimated state and measure-

ment data, respectively.
(4) x : true hidden state vectors
(5) ψ : the threshold of MSE value

Output: L : Kalman gain
Pre-processing data : Split the dataset into training and
testing data
while iteration ≤ number of epoch do

Compute the hk using Eq.(23)
Compute the Kalman gain (L) by reconstruct the output

layer hk using fully connected layer into the dimension of
Kalman gain [19]
end while
Test the KalmanNet model using testing dataset
Compute MSE value
ifMSE value≤ ψ then

Re-train
else

Stop
end if

Eq. (33) which generates the LQR Bellman equation in
Eq. (34).

V (xk ) =
1
2

(
x⊤
k Qxk + u⊤

k Ruk + γV
(
xk+1

))
(34)

Proceed to substitute Eq. 26 with the value function repre-
sented in Eq. (34) to obtain Eq. (35).

x⊤
k Pxk = x⊤

k Qxk + u⊤
k Ruk + γ x⊤

k+1Pxk+1 (35)

The initial idea of Theorem 1 is based on the research [14]],
with an addition of modification. The system dynamics we
use in this study are Ā and B̄, as they function to solve
regulatory problems. Whereas in [14], the system dynamics
used are T̄ and B̄1, the augmentation matrices of state and
reference.
Theorem 1: The ARE solution of the VI algorithm could

be formulated in Eq. (36).

Q− P+ Ā⊤PĀ− Ā⊤PB̄
(
R+ B̄⊤PB̄

)
−1B̄⊤PĀ = 0 (36)

The assumptions used in Theorem 1 are as follows:
(A,B) can be stabilized (stabilizable) then (Ā, B̄), can also be
stabilized (stabilizable) where Ā = γ 1/2A and B̄ = γ 1/2B.
The Hamiltonian function for the discounted linear regu-

lator problem and using the assumption in Theorem 1 would

be formulated in Eq. (37).

H (xk , uk ) = x⊤
k Qxk + u⊤

k Ruk + γ

(
Āxk + B̄uk

)⊤

P

×

(
Āxk + B̄uk

)
− x⊤

k Pxk = 0 (37)

The first derivative results from Eq. (37) is formulated in
Eq. (38).

∂H (xk , uk )
∂uk

=

(
R+ γ B̄⊤PB̄

)
uk + γ B̄⊤PĀxk = 0 (38)

The calculation of the control signal uk is based on the
Eq. (38) could be obtained in Eq. (39)

uk = −Kxk (39)

where K is formulated in Eq. (40)

K =
(
R+ γ B̄⊤PB̄

)
−1
γ B̄⊤PĀ (40)

From [14] and [15], we use the iterative algorithms to solve
the discounted LQR problem (see Algorithm 2).

Algorithm 2 VI for Discounted LQR Solution
Initialization: Start with a control policy K = 0
while 0 < j < N do

1. Policy Evaluation, solve the computation of Pj+1
using Eq. (41)

Pj+1 = Q+ K⊤
j RKj + γ (Ā− B̄Kj)⊤Pj(Ā− B̄Kj) (41)

2. Policy Improvement

Kj+1 =
(
R+ γ B̄⊤Pj+1B̄

)
−1
γ B̄⊤Pj+1Ā (42)

end while

The control problem that we examine in this study is a
problem with finite time or finite horizon. Therefore, we will
not discuss the dynamical characteristics of the system at
times outside the finite horizon we define. Before we state the
stability definition, recall that we use the notation of 8(k, 0)
to indicate the evolution operator of Eq. (16). Therefore we
adapt Willem’s definition of stability [25] to a similar defini-
tion of stability, but in the context of a finite time horizon.
Definition 1: The system Eq. (16) with µ ≡ 0 is called:

stable in a finite horizon k = 0, 1, . . . , (N − 1), if there
exists a bound c > 0 (which may depend on k0) such that
||8(k, 0)|| ≤ c holds for all k = 0, 1, . . . , (N − 1).
A necessary and sufficient condition for stable in a finite
horizon, is given by the following proposition
Proposition 2: The system (16) with µ ≡ 0 is stable in a

finite horizon k = 0, 1, . . . , (N − 1), if and only if ||3k || is
bounded for all k = 0, 1, . . . , (N − 1) [26].
Proof: It is obvious from the definition of the evolution

operator 8(k, 0).
Furthermore, by observing the design process that we car-

ried out, both KF and KalmanNet, LQR and VI, it is impossi-
ble to produce unbounded gain filter or gain regulator results,
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then by using the necessary and sufficient condition given
in Proposition 2, we can conclude that all the closed-loop
system will be stable in the defined finite horizon, namely
k = 0, 1, . . . , (N −1), in the sense according to Definition 1.

IV. SIMULATION STUDY
This simulation study comprises two linear system case stud-
ies namely cart-pole system and batch distillation column.
All these simulations are uploaded in1 using MATLAB. The
parameters used in this study are as follow :

• wk and vk used in this simulation are uncorrelated white
noise Gaussian

• Covariance matrices Rww and Rvv respectively equal to
0.01 and 0.1, respectively

• Weight matrices Q and R respectively equal to 0.01 and
0.1, respectively.

• Time index (N ) = 100
• The proposedKalmanNet solution uses the LSTMarchi-
tecture with the ADAM optimizer, 3 hidden units, and
the number of mini-batch sizes used is 8

• γ = 0.01.
• Initial condition x(0) = 0.1
1) Cart-Pole System

One of the classic control problems was a cart-pole
system. The objective of this case study is to apply the
forces uk to a cart moving along a track and keep the
pole hinged to the cart. This model is chosen deliber-
ately simple to demonstrate the aims of this research.
The dynamics of the cart-pole system represented in
Eq. (43) with the parameter value was summarized
in Table 2 from the technical detail in.2 The plant
dynamics would be formulated in Eq. (43) where the
state variables x1, x2, x3, and x4 are cart’s position,
cart’s velocity, pole’s position, and pole’s velocity.

xk+1 =


0 1 0 0
0 0 mp

mc
g 0

0 0 0 1
0 0 mp+mc

lmc
g 0

 xk +


0
1
mc
0
1
lmc

 u+ wk

yk =
[
0 1 0 1

]
xk + vk (43)

Our proposed algorithm for the first case study was
already published on [27].

2) Batch Distillation Column
The operation of the batch distillation process could
be reviewed in Fig. 5. The boiler consists of a certain
amount of solvent (water and ethanol) which is denoted
as the amount of solvent (MB), concentration (XB), and
composition of steam in boiler (YB) [28]. The temper-
ature in the boiler will be increased to a certain value,
wherein in this study the temperature in the boiler was
set to around 780 to 800 Celsius. This is because the
purpose of this heating is to separate the vapor phase

1https://github.com/adinovitarini/Adaptation_LQG_method_by_data
2https://github.com/openai/gym/blob/master/gym/envs/classic_control/

cartpole.py

TABLE 2. Nomenclature of Cart-Pole system.

of ethanol from water. Where the boiling point of
ethanol is at 780. Then the solvent vapor has then
flowed into condenser 1 and condenser 2. In the initial
phase, ethanol with a lower boiling point will evaporate
more than water. The amount of ethanol will decrease
as the boiling point of the solvent continues to rise
and only water will remain in the boiler. Whereas, the
distillate concentration which remains in the product
tank is denoted with XD. To regulate the amount of
reversal mixture which is distributed to the distillate,
we have to control the reflux valve. It could be done by
controlling the amount of on or off (duty cycle) of the
reflux valve. To implement this idea of the closed-loop
system, a controller is needed in this system to keep the
results of the distillate concentration as desired. In the
schematic above, vapor (V ), reflux (R), distillate (D),
R0 (constant) is the initial condition for reflux flow rate
when the valve is closed. The reflux ratio is developed
with a range of 0 − 1 which represents the 0% until
100% PWM. The identification system for the second
case study was already published on [21].The state,
input, and output matrices is define in Eq.(44).

xk+1 = Axk + Buk + wk
yk = Cxk + vk (44)

The state, input, and output matrices denoted as A, B,
and C are defined in Eq. (45).

A =


1.14 −0.78 −0.41 −0.93 0
1.05 1.02 0.52 0.55 0

−0.77 0.74 −0.83 2.68e− 03 0
1.18 0.95 −0.65 −0.79 0
0 0 0 0 1



B =


−1.37
0.45
1.08

−0.38
1


C =

[
0.73 −0.78 0.97 −0.34 1

]
(45)

In Section IV-A, we compare the performance of KF and
KalmanNet as state estimation method. Section IV-B will be
contain the comparison of the convergence of four scenarios
that have been done to convince our proposed algorithm.

A. KF VS KalmanNet
Based on the comparison between KalmanNet and KF as
shown in Table 3, we find that theMSE value of the estimated
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FIGURE 5. Batch distillation column schematic diagram.

FIGURE 6. Response for 1st case study.

state x̂ with the original state x generated by KalmanNet is
much smaller than KF. In addition, in this study, the control
signal uk obtained from LQR produces a smaller MSE when
compared to the VI Algorithm. Therefore, the KalmanNet

FIGURE 7. Response for 2nd case study.

TABLE 3. Performance Comparison of KalmanNet and KF.

model used in this study uses control signals from LQR.
In addition, there is no need to process equation parameter in
KalmanNet as it is required in the KFmethod. This results has
some implications for the use of KalmanNet method, which
is more efficient than KF as the state estimation method.

B. COMPARISON FOUR SCENARIOS
This section examines four scenarios and review the control
signals’ norm values, the performance indices, Convergence
Time (CT) in time-step domain, and Time elapsed in second
domain which summarized in Table 4. The use for the sec-
ond scenario has a control signal norm value as well as a
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TABLE 4. Performance comparison of four scenarios testing.

performance index, faster CT, and faster computation time.
The control signal (K ), obtained using VI, requires a longer
computation time when compared to the LQR solution. This
is because the initialization of the control signal parameters in
the algorithm is distributed randomly. However, it is impor-
tant to note that in this method, the LQR solutions performed
contain non causality.

If we look at the time elapsed, representing computation
time, the second scenario has the fastest computation time.
However, based on testing we also found that using the
VI algorithm also requires computation time that is not too
far from the second scenario. The CT test results can be
seen in Table 4 found from the control signal trajectory in
Fig. 6a and 7a. The output signals for case studies 1st and 2nd

are shown in Fig. 6b and 7b. In contrast, the peak value is
listed in Table 4. Based on the maximum peak test results,
it can be seen that the smallest amplitude is obtained from
the combination of methods in the first scenario. But the first
and fourth scenarios have not been able to make the system
converge to a specific value. In the test results, we found that
the use of the first and fourth scenarios has not been able to
make a convergent control signal trajectory. Therefore, as a
trade-off, the use of the third method, the KalmanNet-VI,
is adequately efficient to adapt the LQG controller scheme.

V. CONCLUSION
Our proposed algorithm empirically shows that it can solve
regulatory problems in discrete-time linear systems affected
by uncorrelated Gaussian white noise. The results of the tests
that have been carried out show that the use of conventional
KF has not been able to produce a trajectory of the control
signal uk that converges to a zero value during a certain time-
horizon. Meanwhile, the use of KalmanNet is able to produce
a trajectory of the control signal uk that converges to a zero
value. This is because both KF and KalmanNet are used to

generate the estimated state x̂k which is used to build the
control signal uk . Meanwhile, the use of the VI algorithm can
solve regulatory problems. However, it can make the conver-
gence of the control signal evolution longer than conventional
LQR solutions. The VI algorithm has advantageous because
the ARE solution is done iteratively. Thus, it does not require
backward-in-time calculations like the traditional solution
of LQR. In this research, the first and second case study’s
control signal was able to converge to a value of zero at the
8-th and 6-th time-steps when implementing the 2-nd scheme,
respectively. Nevertheless, first and second case study’s con-
trol signal was able to converge in the 10-th and 8-th time-
steps when we implemented the 3-rd scenario, respectively.
Future research is to use a combination of these methods in
different case studies. Case studies can be in robotics systems
or complex systems in industrial processes.
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