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ABSTRACT As governments and the automotive industry push toward electrification, it becomes increas-
ingly critical to address the broad set of factors influence individual car buying decisions. Evidence
suggests that operational inconvenience or the perception thereof plays a large role in consumer decisions
concerning Battery Electric Vehicles (BEVs). BEV ownership inconvenience and its causal factors have been
relatively understudied, rendering efforts to mitigate the issues insufficiently informed. This paper presents
an empirical equation, derived using a novel data-based method, which relates operational inconvenience to
a small number of housing and local Electric Vehicle Supply Equimpent (EVSE) infrastructure factors. The
equation and method provided can be used to conduct quantitative analyses on the inconvenience impacts of
current and proposed EVSE infrastructure. Ultimately such a quantitative approach is needed to understand
and mitigate large inequities of BEV experience and adoption which might emerge from electrification.

INDEX TERMS Battery electric vehicle, BEV convenience, EV equity, EVSE infrastructure.

I. INTRODUCTION
Policy makers and industry have recently set ambitious goals
for BEV market penetration [1]. These targeted efforts will
help accelerate the growth of the BEVmarket share. The suc-
cess or failure of these initiatives will depend on millions of
individual decisions on whether or not to purchase or lease a
BEV. Although economic factors are important in individual
car buying decisions, evidence suggests that consumers also
weigh perceived operational inconvenience in their decision
making process [2], [3], [4].

Concerns about BEV operational inconvenience are
founded in several realities related to vehicular energiz-
ing (charging or fueling) namely BEV range and charging
times [5]. BEV ranges are limited by the capabilities of
modern batteries. Current state-of-the-art Lithium-Ion (Li-
Ion) batteries have a specific energy of around 1000 kJ/kg [6]
whereas gasoline has a specific energy of 457,200 kJ/kg. The
result of this disparity is that even though BEVs are more
efficient than Internal Combustion Vehicles (ICVs) they often
have less range than similarly sized ICVs. Comparing mid-
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size sedans, a 2022 Tesla 3 LR has a nominal range of 490 km
and a curb weight of 1919 kg [7] while a 2022 Chevrolet
Malibu has a nominal full-tank range of 915 km and a curb
weight of 1422 kg [8]. Current BEV full-charge ranges are
more than sufficient to meet daily driving requirements for
most Americans [9], but their lesser range is perceived by
consumers as an inconvenience.

The disparity in energizing times between BEVs and
ICVs is also rooted in the fundamental characteristics of
energizing. Gasoline contains 121.3 MJ per gallon [10].
At a fueling rate of 7 gallons per minute [11] an ICV is
energizing at 14.15 MW. By comparison, modern DC Fast
Charging (DCFC) occurs at 80-350 kW or roughly 40 -
180 times slower than fueling. In combined driving condi-
tions, the 2022 Tesla 3 LR uses roughly 5 times less energy
per km than the 2022 Chevrolet Malibu [7], [8] but would still
expect to add range 8 times slower. If one were to charge a
BEV in the same manner as one fuels an ICV, by going to a
dedicated station every time, then the BEV would be much
more inconvenient to operate.

Historically, BEV operational inconvenience has not been
studied in depth as most BEV owners charge primarily at
home [12]. The recent development of public and private
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charging networks have made long distance BEV travel
increasingly feasible [13]. However, as adoption of BEVs
increases, and as BEVs penetrate non-luxury auto mar-
kets, the assumption that all BEV operators have access to
overnight charging will become invalid, and the role of public
infrastructure may become more important still.

The importance of public infrastructure for various poten-
tial BEV market segments has already been recognized and
funding for rapid development of public BEV infrastructure
has been a key component ofmany national and regional BEV
readiness plans. [14]. However several key questions remain
to be answered:

• What are the ultimate relative operational inconve-
niences for BEVs vs ICVs for those who can charge at
home and those who cannot?

• What are the relative merits of different types of EVSE
infrastructure in the reduction of BEVoperational incon-
venience?

• What level of EVSE infrastructure rollout, if any, is suf-
ficient to achieve convenience parity for BEV operators?

In order to answer these questions, a method of evaluating
energizing inconvenience was developed and is the subject
of this paper. Novel aspects of this paper are as follows:
This paper presents a novel, flexible, and data-based method
for evaluating energizing inconvenience which allows for
direct comparisons between different vehicles and different
conditions of operation. This method utilizes longitudinal
itinerary data and optimal energization scheduling in order
to produce least inconvenient energizing traces for vehicles
following the itineraries. The objective function for the opti-
mization is the novel metric Inconvenience Score (SIC ) which
measures the distance-normalized sum of felt inconvenience
for energizing events in an itinerary. The optimal energizing
traces are influenced by vehicular and infrastructural param-
eters. Thus the results can be used to understand the rela-
tionships between vehicular and infrastructural parameters
and operational inconvenience expressed as SIC . Using the
novel method, empirical equations relating SIC to vehicular
and infrastructural parameters are calculated using data from
a proprietary, national, light-duty, longitudinal dataset. The
empirical equations are generally applicable within the US
and can be used to estimate felt inconvenience for light-duty
BEVs and ICVs.

II. LITERATURE REVIEW
A. QUANTIFYING INCONVENIENCE
Quantifying the inconvenience experienced by users is a cru-
cial step in the process of designing the BEV system to mini-
mize inconvenience. In transportation literature, it is common
to consider user inconvenience as a linear sum of separate
factors which relate to time spent performing actions and to
baseline inconveniences associated with performing certain
actions. Examples of inconvenience being calculated as such
a linear sum can be found in [15], [16], [17], [18], [19], and
[20] which present a variety of linear sum cost functions.

In [15], a train rescheduling algorithm is presented which
calculates inconvenience as a weighted sum of time spent
waiting, time spent in transit, and the number of transfers
implicitly stating that the action of transferring trains has
an inconvenience which is equivalent to a certain amount of
waiting or transit time. A similar cost function for incon-
venience can be found in [20] which also accounts for an
equivalent inconvenience due to overcrowding of train cars.
Some papers [17], [18] use cost functions which draw an
equivalence between time and money in their cost functions.
This allows for an implicit weighting of time-based incon-
venience and cost of options. Researchers often represent
inconvenience as being caused by actions happening outside
of desired windows. Reference [19] proposes a compound
cost functionwhere early arrivals at destinations are explicitly
penalized, while [16] proposes a variety of penalty functions
which apply for deliveries that arrive either early or late
compared to an expected delivery window.

A different approach sometimes taken is one which focuses
on the users expectations as a source of inconvenience. In [21]
time-based inconvenience is computed only for time spent in
transit over an expected time in transit. An attempt was made
in [22] to quantify the effects on perceived inconvenience due
to expected waiting time of several factors including whether
or not dynamic waiting times are displayed and found that
displaying dynamic wait was most beneficial in reducing
perceived inconvenience.

These two general approaches agree that inconvenience is
fundamentally derived from delays and exertions. Any reduc-
tion in the underlying factors which cause inconvenience will
almost certainly reduce perceived inconvenience. Thus for a
high-sample-size study efforts are concentrated on modeling
and quantifying the underlying factors that cause BEV incon-
venience.

B. BEV OPERATIONAL INCONVENIENCE
The specific area of Electric Vehicle (EV) and Alterna-
tive Fuel Vehicle (AFV) operational inconvenience has been
under-studied. Nevertheless several different approaches can
be seen in literature. A fundamental difference between these
methods is how they treat the issue of non-availability of
home charging. Roughly 62% of Americans live in owner-
occupied un-attached dwellings [23] leaving 38%who do not
and, thus, are not well served by the ‘‘default’’ home charging
model. Approaches to accounting for home charging avail-
ability or non-availability fall into three categories: assuming
that only home chargingwill be available [24], [25], assuming
that home charging will be available for all BEV operators
but not sufficient to cover daily charging needs [26], and
assuming that home charging will be available for some but
not all BEV operators [27].

In [24] and [25], a study was conducted using surveyed
itineraries and assuming that charging could only occur at
home. the conclusion reached was that BEVs with a range of
120 miles would be acceptable as one-to-one replacements
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for 90% of US vehicles under home-only charging and
60 miles of range would be sufficient for 90% of US house-
holds to own at least one BEV. In [26] a dollar equivalence for
time lost due to charging was used to determine the relative
inconveniences of BEVs, AFVs, and ICVs using survey data
and the locations of public EVSE infrastructure. The study
found that significant inconvenience is encountered for daily
itineraries of greater than 60 miles. In [27], a quantification
of BEV inconvenience for users with limited charging options
based on survey data, assumed EVSE infrastructure presence,
and a charge scheduling heuristic is proposed. A key con-
clusion is that BEV operators may be able to charge their
vehicles in the same amount of time as ICV operators would
spend fueling or stopping for other purposes on a given long
trip. The cited papers differ greatly in problem definition
and methodology. What can be synthesized from the papers
is that home charging is sufficient to complete a large por-
tion of daily itineraries and that reliance on public EVSE
infrastructure causes inconvenience for sufficiently long daily
itineraries. It could be concluded, therefore, that complete
reliance on public EVSE infrastructure would make all but
the shortest daily itineraries inconvenient.

The different approaches seen in [24], [25], [26], and [27]
reflect different assumptions regarding the nature of the prob-
lem. References [24] and [25] theorizes that BEV owners will
predominantly charge at home and will not rely on public
charging options to extend the range of their vehicles. Ref-
erence [26] assumes that BEV owners will be forced to rely
on public charging frequently. In [27] whether or not a BEV
operator has access to home charging will determine how
much that operator will rely on public charging. The papers
studied place limits on BEV charging which are not reflective
of the current reality or a likely future reality. Both oppor-
tunity charging at destinations and fast charging en-route
are increasingly available [13], [28], [29]. In the literature
some itineraries are labeled as infeasible for BEVs when
these trips are increasingly feasible with BEVs due to newer
DCFC infrastructure. A further limitation of the reviewed
literature is the data used. The state of publicly available
vehicle itinerary data is quite poor and generally comes in
the form of survey data rather than longitudinal tracking data.
Presumably, it is due to lacking data that researchers have
opted for methods which either generate itineraries syntheti-
cally or use a series of assumptions to adapt their models to
the limitations in the available datasets.

In response to the state of the field, this paper presents
a method which builds on and advances previous work by
computing BEV operational inconvenience accounting for
the availability of home charging, the state of EVSE infras-
tructure, and BEV ranges in a manner which is directly
comparable to ICV operation for the same set of big-data
derived itineraries.

III. DATA
The dataset used for this study was a proprietary long-term
longitudinal dataset which tracked the movements of 2,177

TABLE 1. Dataset fields.

FIGURE 1. Distribution of itinerary lengths in the dataset.

FIGURE 2. Distribution of daily and yearly mean driving distances in the
dataset.

vehicles across the continental US over the course of multiple
years. The data was collected via an opt-in program which
allowed the data collector to view CANbus data in real time.
The raw data was processed into a longitudinal data format
providing trip start and end locations, distances, and dura-
tions. Using this data the authors calculated dwell times for
parking events and home locations for most of the vehicles
based on location frequencies, dwell durations, and dwell
times of day. The columns of the derived dataset are listed
in Table 1.

The principle advantage of this dataset was the duration
of the itineraries. Of the 2,177 itineraries in the dataset,
1,626 contained at least 1,000 entries. The distribution of
itinerary lengths and mean driving distances are displayed in
Figures 1 and 2.
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The proprietary dataset used in this study had the advantage
of being primarily intended for use as a longitudinal dataset
and it compares favorably to publicly available datasets for
that purpose. Two commonly used, publicly available alter-
natives are the 2005 Puget Sound Regional Council (PSRC)
study available via National Renewable Energy Laboratory
(NREL)’s Transportation Secure Data Center (TSDC) and
the 2009 or 2017 National Highway Transportation Survey
(NHTS). The PSRC survey contains similar numbers of vehi-
cle itineraries as this study’s proprietary dataset but most
PSRC itineraries contain missing entries which would have
to be filled in order for the itineraries to be used. Other large
datasets available from TSDC such as those used in [25]
contain less data than the PSRC data and come with similar
issues. The NHTS, collected most recently in 2017, provides
a national dataset but is of limited use for longitudinal anal-
ysis as it is a manually filled survey for a single day of
household activity. The proprietary dataset was, thus, the best
alternative for use in this study.

On average, vehicles included in the dataset completed
1,445 trips per year for an average of 19,235.5 km trav-
eled. For reference, the US Bureau of Transportation Statis-
tics (BTS) calculated that the average American household
completed 1,865 vehicle trips for 28,670.4 km based off of
the 2017 NHTS [9]. Noting that the vehicles tracked in the
proprietary dataset were not necessarily the only vehicle used
by the households to which they belonged, these numbers are
compatible with the available BTS data.

Although nominally a national dataset, the proprietary
dataset showed a heavy bias towards large metropolitan areas
in the south-western region of the continental US. Home
locations were able to be estimated for 1,932 of the 2,177
vehicles in the dataset and these were located in a total
of 127 counties. However, 30.1% of home locations were
located in just Los Angeles County and San Diego County
while the top ten most common counties accounted for 60.7%
of home locations. The distribution of home locations is
plotted in Figure 3.

Although the vehicles in the proprietary dataset were pre-
dominantly based in a small number of locations, the vehicles
traveled considerably over the course of the tracking period
andmade frequent visits to a number of locations distant from
their origins as plotted in Figure 4.

IV. METHODS
The overall objective of this study was to understand what
combinations of vehicular characteristics and charging infras-
tructure characteristics allow for BEVs to attain convenience
parity with ICVs. In order to accomplish this a metric of
inconvenience was created which could be evaluated for any
vehicle and Dynamic Programming (DP) was used to find
the optimal energizing strategy for any vehicle on a given
itinerary defined in terms of trip lengths, dwell times, and
location types. This allowed for the direct comparison of
BEVs and ICVs traveling on the same itineraries and, thus,
the direct comparison of inconvenience between the two.

FIGURE 3. Home locations in dataset.

FIGURE 4. Parking event locations in dataset.

A. DEFINITION OF INCONVENIENCE
A fundamental insight in the study of vehicular operational
inconvenience is that not all energizing events are the same.
The authors contend that different types of energizing events
inconvenience operators to vastly different degrees. The dif-
ferences are rooted in the concept that energizing a vehicle is
only inconvenient for the duration of time that it constrains
an operator’s actions. If one is able to energize a vehicle
without having to add devoted energizing time to his or her
daily itinerary then that person is not inconvenienced. If that
same person has to spend significant time at locations that
he or she would not otherwise visit in order to energize
his or her vehicle then that person is inconvenienced. Thus
charging at night and at home would be far less inconvenient
than charging at a dedicated charging station during the day.
Relative to inconvenience, charging events may be broken
down into four categories as follows:

• Home energizing events: Energizing events which take
place at the operator’s home location. The operator’s
vehicle will normally dwell at home for long periods on
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a daily basis. Thus, home energizing events, regardless
of duration, do not force the operator to devote time out
of his or her itinerary to energizing.

• Work energizing events: Energizing events which take
place at the operator’s work location. The operator’s
vehicle will normally dwell at work for long periods on
workdays. Thus, work energizing events, regardless of
duration, do not force the operator to devote time out of
his or her itinerary to energizing.

• Destination energizing events: Energizing events which
take place at long dwell destinations such as super-
markets, retail centers, gyms, etc. Because the operator
would visit these locations regardless of whether or not
he or she intended to energize a vehicle, these events
do not force the operator to devote time out of his or
her itinerary to energizing. Thus, destination energizing
events only inconvenience the operator for the amount
of time that he or she would need to spend paying for
the energizing event.

• En-route energizing events: Energizing events which
take place at a location which the operator visits specifi-
cally to energize a vehicle. Locations such as petroleum
stations or centralized DCFC charging stations (Tesla
Supercharger stations for example [30], [31]) may be
located near amenities but operators will generally be
constrained to stay within a small area adjacent to the
station for the duration of the energizing event. Thus
operators are inconvenienced for the duration of the
event and payment process. An assumption is also made
that operators will have to travel a non-negligible dis-
tance to the energizing station. Because operators are
only traveling to the station to energize their vehicles the
travel time is also considered to be devoted energizing
time. Thus operators are also inconvenienced for the
travel time required to get to and from the energizing
station.

Because the different types of energizing events effect
the operator differently it is important to define a metric of
inconvenience which can account for all four. To this end the
authors propose a flexible metric, Inconvenience Score (SIC )
defined as.

SIC =

∑N
k=0[DE,kME,k + DT ,kMT ,k + DP,kMP,k ]∑N

k=0 Lk
(1)

for an itinerary of N trips where DE is the duration of
the energizing event, DT is the duration of travel to get to
the energizing location, DP is the duration of the payment
process, ME,k , MT ,k , and MP,k are integer multipliers which
respectively define whether or not to count the various dura-
tions for trip k , and Lk is the length of trip k in kilometers. SIC ,
thus, is the average dedicated energizing time per kilometer
traveled in a given itinerary. The values of the multipliers
based on the type of energizing event are shown in Table 2.

So defined, SIC is able to account for the differences
between energizing event types and to account for differences
in total travel distance between itineraries. The flexibility

TABLE 2. Values of multipliers based on energizing event type.

TABLE 3. Vehicle parameters.

of the SIC metric thus allows for the direct comparison of
inconvenience between disparate itineraries.

B. MODELS
1) VEHICLES
For evaluation purposes, a vehicle model was defined which
simulates the amount of energy consumed by the vehicle on
a given trip based on the trip length and mean speed. The
vehicle model is defined by the parameters listed in Table 3.

The vehicle model is of a rather standard type used in lon-
gitudinal analysis. The efficiencies for the three speed ranges
reflect vehicular efficiency in different driving conditions.
In the absence of second-by-second speed data an assumption
is made that if a trip’s average speed falls within a given
range then that speed range will be most representative of the
driving conditions of the trip. The energy storage parameter
reflects the usable energy storage capacity of the vehicle.
As batteries age usable storage capacity declines. This model
also implicitly accounts for the effects of heating and cooling
loads. On hot or cold days the auxiliary loads required to run
the temperature control system for the vehicle will reduce the
efficiency of the vehicle on an energy consumption per unit
distance basis. Thus, one can account for battery degradation
and significant auxiliary loads due to temperature control by
changing the vehicle model parameters.

For this study two vehicles were used as representative
models for BEVs and ICVs. These vehicles were based on
the 2022 Tesla 3 LR and the 2022 Chevrolet Malibu. The
Tesla 3 LR and Chevrolet Malibu were chosen as they are
roughly equivalent in size, shape, storage, and seating, as well
as both being mid-tier models in their ranges.
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TABLE 4. Base vehicle energy consumption rates.

The consumption data for the base vehicles is listed in
Table 4.

The representative BEV and ICV models most closely
represent the vehicles they are based on but the differences
between the models are representative of the differences
between BEVs and ICVs more generally. The important dif-
ferences are the greater efficiency of the BEV model and
the efficiency trends for each model. Where BEVs are more
efficient in urban conditions, ICVs are more efficient on
highways. The difference is because BEVs are able to recover
energy when decelerating where ICVs are not. Data for vehi-
cle energy consumption rates was attained from [7] and [8]
and verified with data from [32] with the city consumption
rate calculated from US06 drive cycles, the highway con-
sumption rate calculated from HWFET drive cycles, and the
mixed consumption rate calculated from FTP drive cycles.

2) BEV CHARGING
It was also necessary to define models for EVSE infras-
tructure. BEV charging rates were based on the Society of
Automotive Engineers (SAE) J1772 standard [33] and infor-
mation from [7]. The following assumptions weremade about
charging infrastructure:

1) If a home charger is available then it will be an AC
Level 2 charger

2) If a destination charger is available it will be an AC
Level 2 charger

3) All DC Level 2 (LVL 2) charging will be done at
12.1 kW which is the middle of the AC Level 2 range

4) All en-route charging will be done at dedicated DCFC
stations with DC Level 1 or 2 chargers

5) At all times, all vehicles are within a certain travel time
to the nearest DCFC station regardless of their location.

The infrastructure model assigns chargers to destinations
based on the stated assumptions. The assignment of AC Level
2 chargers to home locations is based on a Boolean which
determines if there will be chargers at home locations or
not. The assignment of chargers to destinations is done by

FIGURE 5. 3 hour SOE charging traces at various charging rates for a
vehicle with an 80 kWh battery.

assigning chargers, randomly, to a certain percentage of the
locations visited by the vehicles. Because this randomness
can have an effect on inconvenience score for a configuration,
all configurations are run multiple times and the inconve-
nience scores for the runs are averaged.

DC charging was modeled on the CC-CV curve model for
lithium-ion batteries [34]. The energy added, as a function of
time is

dSOE =
PDC
CB

tcc + (1 − e(λC tcv)) (2)

PDC = PACη (3)

λ =
PDC
0.2CB

(4)

where dSOE is the change in State of Energy (SOE) over
the course of the charge event, PAC is the nominal AC power
level of the charge event, η is the efficiency of the conversion
between AC and DC, PDC is the DC power of the charge
event, tcc is the time spent in the constant current portion of
the charge event, tcv is the time spend in the constant voltage
portion of the charge event, and CB is the vehicle’s battery
capacity. This model defines a relationship wherein charging
is linear below 80% SOE and inverse-exponential after as it
approaches 100% SOE. For AC charging the model used was
a pure linear charging model which cuts off at 100% SOE.
These charging traces are illustrated in Figure 5.

3) ICV FUELING
ICV fueling events were treated as linear energization occur-
ring at a rate of 7 gallons per minute [11]. Compared to
charging, fueling times are relatively short and inconvenience
is dominated by the time penalty for going out of one’s way
to get to the fueling station.

C. OPTIMAL CHARGE SCHEDULING
Inconvenience will be effected by when and where a user
chooses to charge. In order to evaluate all scenarios on equal
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FIGURE 6. Top-down DP schematic.

footing, optimal charge scheduling was implemented. Opti-
mal charge scheduling was conducted via Dynamic Program-
ming (DP) [35], [36]. DP is a commonly used technique
in optimal control which is guaranteed to find a globally
optimal solution subject to the chosen discretization of the
problem. The implementation used here is the ‘‘top-down’’
implementation [36] which includes an ‘‘optimization’’ step
wherein an optimal control matrix is generated via backwards
integration and an ‘‘evaluation’’ step wherein an optimal con-
trol trace is generated via forwards integration as diagrammed
in Figure 6.

The goal of the optimization was to find an optimal charg-
ing control such that the inconvenience of the itinerary would
be minimized. This goal can be stated as

min
U

J (S0,U ) (5)

where

J (S0,U ) = 8(SN ) +

N∑
k=1

9(Sk ,Uk ) (6)

s.t.

Sk+1 = f (Sk ,Uk ), k = 0, . . . ,N − 1 (7)

Smin ≤ S(t) ≤ Smax (8)

where 9(S,U ) is the running cost (inconvenience), 8(S) is
the final state cost, S = [SOE] is the state vector containing
the vehicle SOE, U is the control vector formulated as U =

[DE,D,DE,ER]⊤ containing charging durations at destination
DE,D and en-route DE,ER for BEVs or U = [DE,ER] contain-
ing en-route fueling durations for ICVs, J is the cost for S
and U , and Smin and Smax are lower and upper limits for the
state vector and are constant in time. The overline indicates
an array containing values at multiple discrete time intervals.
The goal of the optimization is to find the optimal charging
schedule (U

∗
) such that J∗ is equal to the global minimum

value for J . J is the inconvenience score (SIC ) as defined in
equation (1) which accounts for total dedicated energizing
time.

The BEV model is a 1-state, 2-control model where the
one state is the vehicle’s SOE and the controls are destina-
tion charging and en-route charging. Destination charging is
available to BEVs at locations where destination chargers
are present which may include the BEV’s home location.
BEVs are assumed to charge for the duration of a dwell at
a destination or until they have reached full charge. En-route
charging is available to BEVs during every trip but requires
the BEV operators to drive to a dedicated charging station
which will cause them to deviate from their itineraries.

The ICV model is a 1-state, 1-control model where the
one state is SOE which is the proportion of the fuel tank
capacity which is fueled at any given moment and the control
is en-route fueling. ICVs are not able to fuel at home or
at destinations. En-route fueling is available to ICVs during
every trip but requires the vehicle operators to drive to a
dedicated fueling station which will cause them to deviate
from their itineraries.

V. RESULTS
Because the assignment of destination chargers is probabilis-
tic, the results for a given BEV and set of infrastructure
parameters may be different from run to run. Figure 7
demonstrates this by showing two simulation runs of 100 trips
where all vehicle and infrastructure parameters are the same
between the simulations. In both cases, the vehicle did not
have access to home or work charging.

Although all parameters were identical between the runs
shown in Figure 7 the random assignment of chargers to
destinations made the SOE traces visually different between
the runs even if the SIC values were within 10% of each-other.

Figure 8 illustrates a 100 trip trace for a BEV which is
able to charge at home. The itinerary used in Figure 8 is
the same as in Figure 7. The effects of being able to charge
at home are visibly evident. Because home dwells are long
and the operator does not suffer a payment or travel penalty
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FIGURE 7. Optimal charging traces for BEVs with no home charging and
identical vehicle and infrastructure parameters.

associated with home charging events, these events tend to
dominate.

The SOE traces presented are post-trip values. Those who
can charge at home or during long dwells at destinations will
be able tomaintain acceptable SOEwithout needing to charge
en-route in the course of normal operation but they will still
need to do so for long trips. The pattern of frequent long
duration and low rate charging events differs fundamentally
from how ICV operators usually energize their vehicles and
may even manifest a reduction in inconvenience compared to
an ICV. For the purposes of this study ICVs may only charge

FIGURE 8. Optimal charging trace for BEV with home charging.

FIGURE 9. Optimal fueling trace for ICV.

en-route at a fueling station. An example of ICV operation is
provided in Figure 9.

The typical ICV optimal fueling trace behavior is to let
the SOE reduce until a safety margin is violated and then
to completely refuel thus minimizing the number of fueling
events. This type of charging behavior can be thought of as the
‘‘gas station’’ model. The type of behavior typical of optimal
charging traces for BEVs where charging during dwells at
home, work, or other destinations is most common can be
thought of as the ‘‘dwell charging’’ model. The psychological
effects of range anxiety are not addressed in this study but it
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TABLE 5. Experiment Parameters and Levels.

TABLE 6. Model summary.

is worth noting that BEV operators who follow the gas station
model of charging may suffer from additional range anxiety
in addition to whatever inconvenience they experience.

A. EXPERIMENT AND REGRESSION ANALYSIS
1) EV INCONVENIENCE ANALYSIS
Having derived a model for energizing inconvenience an
experiment was run considering several vehicle and EVSE
infrastructure parameters. The purpose of the experiment was
to create regressed empirical equations relating vehicular and
infrastructural parameters to inconvenience. The empirical
equations can be used to evaluate expected inconvenience for
individuals or groups based on their experimental parameter
values. The experiment was a full-factorial design on the
parameters listed in Table 5.

The rationale for these levels was to capture the realistic
range of values for each parameter in the present and near
future. The range of battery capacities was based on the values
of usable battery capacity found in [37]. The range for ERCR
was based on ranges identified in [7] and [38]. It would be
quite difficult to find a true range of values for DCL or ERCP
but these values were estimated by comparing the numbers
of different types of chargers present at different types of
locations identified in [38] with statistics about numbers
and geographical distributions of petroleum fueling stations
found in [11].

The electric vehicle models used in the experiment were
those described in Table 4. For each of the 324 experimental
cases, inconvenience scores were generated for all 1,626
vehicles with itineraries of at least 1000 trips. Each case was
simulated 3 times and the mean inconvenience score was
used as the result for the case. A linear regression was then
performed on all min-max normalized terms and interactions.
Minimums and maximum values for all terms can be found
in Table 5. The output (SIC ) was not normalized. Significant
results for this regression, including the terms of the empirical
equation, are presented in Tables 6, 7, and 8.

TABLE 7. ANOVA.

TABLE 8. Significant terms in empirical equation (α = 0.01).

FIGURE 10. Significant (α = 0.01) terms of empirical equation and
standard error.

The significant coefficients from the regression are also
shown visually in Figure 10.

The regression was performed with normalized regressor
values in order to remove the impact of the scales of the
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TABLE 9. Experiment Parameters and Levels.

TABLE 10. Model Summary.

regressors. Thus normalized, it is possible to make a com-
parative analysis of the importance of the parameters and
their interactions. Of the parameters BC, HC, WC, DCL and
ERCR were shown to contribute to decreasing inconvenience
while ERCP was shown to contribute to decreasing inconve-
nience. A few key findings can be taken from the regression
analysis. The variables HC andWC (home andwork charging
availability) play a major role in decreasing inconvenience
as does DCL (the percentage of regular destinations where
a charger might be available) but the interactions between
the terms are positive. Home, work, and destination charging
fill the same role in charging schedules. More charging avail-
ability at long dwell locations will not increase the need for
charging and, as such, a saturation effect is seen. Generally
the regression analysis indicates that those factors which
contribute to lowering inconvenience work to mitigate the
impacts of one-another in reducing inconvenience while also
reducing the effects of ERCP in increasing inconvenience.

2) ICV INCONVENIENCE ANALYSIS
For ICVs, inconvenience derives from the need to refuel en-
route. ICV operators, like BEV operators, will live at varying
distances from fueling stations and ICVs, like BEVs, will
have different energy capacities. A full-factorial designed
experiment was run for ICVs on the previously mentioned
parameters. The parameter levels for the ICV experiment are
listed in Table 9.

The levels for FTC were set based on the capacity of the
base ICVmodel seen in Table 4±50% and the levels for FTP
were based on information from [11].

The experiment was conducted similarly to the BEV exper-
iment with each case being evaluated using all 1,626 vehicles
with itineraries of at least 1000 trips. Significant results for
the ICV regression analysis, including the terms of the empir-
ical equation, are presented in Tables 10, 11, and 12.

VI. DISCUSSION
The results of the regression analysis point to the overwhelm-
ing importance of home and work charging availability in
determining the inconvenience experienced by BEV opera-
tors. Also shown to be very important were the infrastructure
parameters DCL and ERCP. It should be noted that the effects

TABLE 11. ANOVA.

TABLE 12. Significant terms in empirical equation.

TABLE 13. Parameters for example localities.

TABLE 14. SIC [min/km] for ICV and BEV with and without home charging
in example localities.

of investing in destination and en-route charging infrastruc-
ture simultaneously were shown to be subtractive i.e. the
impact of one reduces the impact of the other. Investment
policies which seek to increase DCL by creating an ubiquity
of low rate chargers are projected to be more effective than
those which seek to promote high rate charging stations
unless high rate charging stations become very common.

The empirical equations derived in this study can be used to
project the experience of individuals who may be considering
purchasing a BEV. Infrastructure and housing parameters for
three example localities which are presented in Table 13.

The presented scenarios reflect an assumption that public
charging infrastructure tends to be more prevalent in highly
urbanized locations and that high volume residences also
tend to be more common in highly urbanized locations.
Everyone in a given locality will have access to the same
public charging infrastructure but those who live in single unit
residences and, more importantly, those who own their homes
are more likely to be able to install charging stations at home.
Projected operational inconvenience for the vehicle models
from Table 4 and the localities listed in Table 13 are shown
in Table 14.

VOLUME 11, 2023 30495



A. I. Rabinowitz et al.: Assessment of Factors in the Reduction of BEV Operational Inconvenience

For the given example localities three clear trends emerge:
(1) Those EV operators who can charge at home, work,
or both experience similar levels of inconvenience between
the ICV and BEV but those who cannot charge at either
can expect large increases in inconvenience, (2) those in
highly urbanized localities experience less operational incon-
venience than those in suburban or semi-rural localities, and
(3) with home charging, BEV operational inconvenience can
approach and surpass parity with ICV operational incon-
venience. These trends underlie two forms of inequity in
relation to BEV operation - economic and geographical. BEV
ownership or usage will remain a much more desirable alter-
native for middle class to wealthy urbanites and suburban-
ites as long as home charging remains such an important
determinant of BEV operational experience. If public EVSE
infrastructure investment comes disproportionately into eco-
nomically advantaged communities then the inequity of expe-
rience will grow and an inequity in BEV adoptionmay follow.

VII. CONCLUSION
As governments around the world attempt to reduce the cli-
mate impact of their transportation sectors while maintaining
personal mobility for their citizens they will increasingly
turn to the promotion of BEVs. While BEV technology has
advanced significantly in recent years and is projected to
continue to do so, BEVs will continue to be significantly
slower to energize than ICVs for the foreseeable future. As a
result of the energizing rate limitations inherent to BEVs,
patterns of energizing behavior which allow for energizing
to happen while the operator is otherwise occupied such as
charging at home, at work, or at destinations are necessary in
order for individuals to achieve convenience parity. Important
specific conclusions from this study are:

• At present, BEV operational inconvenience is greatly
different for those who can and cannot charge at home.

• BEV operational inconvenience for who can charge at
home, work, or both approaches and even surpasses
parity with ICV operational inconvenience for the same
itineraries.

• For those who cannot charge at home, a ubiquity of
AC Level 2 chargers at common destinations or easy
access to DCFC charging stations can help to reduce the
inconvenience disparity between BEVs and ICVs.

The state of public EVSE infrastructure will define the
experience of BEV operators unable to charge at home
or work. This dependence on public charging means that
governments will play a major role in the ultimate course
of BEV adoption. EVSE infrastructure investment must be
implemented in a thoughtful and balanced manner or massive
economic and geospatial inequities of BEV experience and
adoption will emerge. Failure to equitably distribute EVSE
investment will fundamentally limit the BEV market to those
confident of the availability of home charging.
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