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ABSTRACT This paper presents a method to effectively compress the intermediate layer feature map of a
convolutional neural network for the potential structures of VideoCoding forMachines, which is an emerging
technology for future machine consumption applications. Notably, most extant studies compress a single
featuremap and hence cannot entirely consider both global and local informationwithin the featuremap. This
limits performance maintenance during machine consumption tasks that analyze objects with various sizes
in images/videos. To address this problem, a multiscale feature map compression method is proposed that
consists of two major processes: receptive block based principal component analysis (RPCA) and uniform
integer quantization. The RPCA derives the complete basis kernels of a feature map by selecting a set of
major basis kernels that can represent a sufficient percentage of global or local information according to
the variable-size receptive blocks of each feature map. After transforming each feature map using the set
of major basis kernels, a uniform integer quantizer converts the 32-bit floating-point values of the set of
major basis kernels, corresponding RPCA coefficients, and a mean vector to five-bit integer representation
values. Experiment results reveal that the proposed method reduces the amount of feature maps by 99.30%
with a loss of 8.30% in the average precision (AP) on the OpenImageV6 dataset and 0.77% in APM and
0.47% in APL on the MS COCO 2017 validation set while outperforming previous PCA-based feature map
compression methods even at higher compression rates.

INDEX TERMS Moving picture experts group, video coding for machines, convolutional neural network,
principal component analysis, feature map compression.

I. INTRODUCTION
Over the past few decades, image/video data generated by
sensors have become the most used data sources worldwide.
In addition, owing to the rapid growth in machine-learning
applications based on video data, the volume of image/video
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data has rapidly increased. Accordingly, the current vol-
ume of video data used by machines exceeds that used
by humans [1]. This is because machine consumption
tasks, such as object detection, segmentation, tracking,
and other machine-based applications, use data differently
from humans. In addition, several deep learning (DL)-based
studies are being actively conducted for various machine
consumption tasks that are applicable to smart applications

26308
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-8165-5380
https://orcid.org/0000-0002-8254-2481
https://orcid.org/0000-0002-1675-4814
https://orcid.org/0000-0002-2794-9932
https://orcid.org/0000-0002-7249-3647
https://orcid.org/0000-0003-0017-1398


M. Lee et al.: Feature Map Compression for Video Coding for Machines Based on RPCA

and services, including autonomous vehicles, the Internet
of things, intelligent closed-circuit television systems, and
smart cities [2], [3], [4], [5], [6]. Typically, computers
require massive volumes of video data to perform intelligent
analysis. However, such data need to be compressed before
transmission to reduce the transmission time and cost.
Because humans use video data for various purposes, such
as streaming and entertainment, developing video data
compression methods using human visual characteristics
with high objective and subjective qualities are considered
a top priority. In particular, the traditional Moving Picture
Experts Group (MPEG) video coding standard techniques,
such as Advanced Video Coding (AVC) [7], High Efficiency
Video Coding (HEVC) [8], and Versatile Video Coding
(VVC) [9], are common video data compression methods
that significantly improve the video coding efficiency by
squeezing out the spatiotemporal pixel-level redundancy in
video frames.

However, in the field of image/video analytics, the ability
of existing video coding standard tools in performing visual
signal level compression to efficiently process such data is
questionable, as data analysis is performed by computers
rather than by humans. Therefore, a new compression scheme
that is capable of preserving information, rather than preserv-
ing image quality for human consumption, is required so that
machines can accurately recognize image information. Thus,
MPEG launched a formal activity on a new standardization
called Video Coding for Machines (VCM) during their 127th
meeting. Furthermore, to assess the availability of adequate
evidence for the standardization task, the group issued its
call for evidence document [10]. Notably, MPEG-VCM
aims to define an efficient bitstream format generated by
compressing videos or its corresponding feature maps in DL
networks after decompression to performmultiple taskswhile
preserving machine consumption task performance across
various applications. Its ultimate purpose is to compress
a feature map or image/video for machine consumption
or hybrid machine–human consumption. To this end, three
potential structures are suggested in the standardization
process of MPEG-VCM, and these are illustrated in Fig. 1.
The structures shown in Figs. 1 (a) and (b) are considered
potential structures for machine consumption tasks. The
potential structure illustrated in Fig. 1 (a) compresses the
feature map extracted from an arbitrary layer in a DL network
while the remaining network obtains the result of the machine
consumption task. This paper presents a discussion on a
layer from which the feature map is extracted. The second
potential structure is shown in Fig. 1 (b) compresses an
image/video, and a DL network uses the reconstructed data.
Both the foregoing structures can reduce the volume of data
in feature maps and avoid performance degradation during
machine consumption tasks. A potential structure for hybrid
machine-human consumption tasks is displayed in Fig. 1 (c).
This structure consists of a combination of structure for the
machine consumption task as shown in Figs. 1 (a) and (b)

and a structure for the human consumption task. In Fig. 1 (c),
the video and feature map encoders are designed to optimize
both the compression ratio and performance for human and
machine consumption tasks, respectively. Moreover, when
compressing and transmitting feature map data, as shown
in Figs. 1 (a) and (c), only the machine consumption task
segment of the DL network on the decoded feature maps can
offload part of the computation from the server to the front-
end device, benefiting in terms of the computational latency
and energy consumption [11]. Therefore, the compression
of feature map data is important for applications on edge
devices, such as mobile and embedded devices. Currently, the
standardization activities of MPEG-VCM involve collecting
evidence focusing on machine-only consumption tasks.

Among the various machine consumption tasks, the
following five tasks that are common to various VCM
service scenarios: object detection, instance segmentation,
object tracking, action recognition, and pose estimation are
determined as the main tasks. Accordingly, the following
five DL networks: Faster R-CNN X-101 feature pyramid
network (FPN) [12], [13], [14], Mask R-CNN X101-FPN
[13], [14], [15], JDE-1088 × 608 [16], Slowfast [17], and
HRNet [18] are determined. Especially, object detection
is an important machine consumption task that deals with
the detection instances of visual objects belonging to a
certain class. Also, it is an actively researched area, for
which various popular datasets and benchmarks have been
released. Therefore, this work focuses on object detection
tasks. The Faster R-CNN X101-FPN uses a pyramid scheme
that generates multiple feature maps from input data. This
structure, called the FPN structure, utilizes multilayer feature
maps and is used in various DL networks, including most of
the primary tasks of MPEG-VCM, such as the Faster R-CNN
X101-FPN, Mask R-CNN X101-FPN, and JDE-1088× 608.
Generally, the FPN structure is used as a feature extractor
in a DL network [14]. Thus, X101-FPN is defined as a
feature extractor of Faster R-CNN X101-FPN. In addition,
the FPN feature maps generated by X101-FPN are define
as targets for compression, and they are consisted of four
different scale feature maps called {P2, P3, P4, P5} as shown
in Fig. 2. Moreover, there exist 256 channels in each Pi. The
comparison of the total output feature map data of X101-FPN
and input image determined by MPEG-VCM for evaluating
the object detection task revealed that the total feature map
data were significantly greater than the input image.

Several methods have been proposed to compress feature
map data. However, most of them compressed single feature
maps rather than multiscale feature maps similar to FPN
feature maps. Moreover, research on compressing feature
maps extracted from the FPN structure in MPEG-VCM
is still in the nascent stages. Even when compressing
multilayer feature maps with the latest video coding stan-
dard, VVC, a significant loss of precision is observed in
machine consumption tasks at high compression rates. One
reason for this is that compression is performed based on
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FIGURE 1. Potential structures for MPEG-VCM. (a) First potential structure for machine consumption task. (b) Second potential structure
for machine consumption task. (c) Third potential structure for hybrid machine-human consumption tasks.

FIGURE 2. X101-FPN structure.

rate-distortion optimization (RDO), where human consump-
tion is considered rather than machine consumption. Another
reason is that the feature map data are considerably greater
than the input image data because the multiple channels of
feature maps are generated based on the three-channel input
image. Each channel in the featuremap, which is the output of
the k-th convolution layer data, is extracted from the input of
the k-th convolution layer using each filter of the convolution
layer, therefore, each channel of the feature map is treated as
possibly independent [19]. Therefore, FPN feature maps with
256 channels represent an input image expressed in the form
of three-channel with 256 characteristics through convolution
filters in the convolution layer. However, it may lead to
significant redundancy in each channel and varying level of
importance for the required machine consumption task [20].

Consequently, reducing this redundancy is necessary to
efficiently compress feature map data. Based on these
properties, Son and Kim [21] proposed a single layer feature
map compression method for an object detection task in
an MPEG meeting. In particular, the compression target
feature map was extracted from the intermediate layer of
YOLO9000 [22], and principal component analysis (PCA)
[23] was performed to reduce the dimensionality of the
feature map. In addition, several methods for feature map
compression based on PCA have been proposed [24], [25].
These methods were also compressed a single layer feature
map extracted from a shallow DL network. However, each
FPN feature map extracted from the pyramidal neural
network has a different channel size for use in detecting
objects of different sizes. More specifically, P2 with large
channel size are used for small object detection, and P5 with
small channel size used for large object detection. Let’s call
the block of the same size as the channel in P5 a receptive
block.

Accordingly, feature maps with small channel sizes have
a large receptive block, and vice versa. Consequently, the
FPN feature maps can be used the simultaneous detection of
multiple objects on a wide scale. Therefore, it is important
to preserve local and global information by considering the
receptive block of each feature map during dimensionality
reduction of FPN feature maps. However, performing PCA
on the entire FPN feature maps from X101-FPN may
be inappropriate as previous methods [21], [24], [25] do
not consider the receptive block of the feature map and
compress a single layer feature map from shallow DL net-
works, such as YOLO9000, ResNet-18, ResNet-34 [26], and
MobileNetV2 [27].
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FIGURE 3. Proposed feature map compression method consisting of receptive block based PCA (RPCA) and quantization processes.

FIGURE 4. Histogram of an original image in the MS COCO 2017 dataset and feature maps. (a) Original image. (b) Grayscale histogram of the original
image. (c), (d), (e), and (f) Histogram of the 80th channel of P2 to P5. (g), (h), (i), and (j) Histogram of the 120th channel of P2 to P5.

With this background, this paper proposes an effective
PCA-based compression method for feature maps that
are outputs of the feature extractor modules displayed in
Fig. 1 (a) and (c). The proposed block-based PCA method
reconstructs the feature map while preserving both the global
and local information of various size objects within each
FPN feature map. Therefore, the proposed method performs
efficient compression while maintaining the precision of
machine consumption tasks in MPEG-VCM. More specifi-
cally, it achieves a higher precision with a smaller volume of
data, which is only 0.7% of the volume of the original FPN
feature maps compared to previous methods. The proposed
method can also be used as a pre/post-processing method to
be used with other feature map compression methods based
on potential structures under consideration in MPEG-VCM,
as displayed in Figs. 1 (a) and (c).

Note that this work is an extension of our previous con-
tribution to the 132nd MPEG meeting [28]. The remainder
of this paper is organized as follows. Section II briefly

reviews related research. Section III details the proposed
method. The experimental results are presented and discussed
in Section IV to validate the effectiveness of the proposed
scheme. Finally, Section V concludes the paper.

II. RELATED RESEARCH
Notably, each value of a feature map extracted from the
intermediate layer of a DL network with input image/video
represented by an eight-bit integer value is expressed as
a 32-bit floating-point real number. The feature map has
significantly more channels than the input data. Therefore,
it contains more volume of data than the input data; in
particular, for multilayer feature maps, the number of feature
maps is much greater than the input data. Hence, the
compression of feature maps for machine consumption rather
than image/video is much more difficult.

Several methods for data compression have been proposed
for machine consumption tasks by compressing a single layer
feature map. In particular, Choi and Bajić [29] and Yoon and

VOLUME 11, 2023 26311



M. Lee et al.: Feature Map Compression for Video Coding for Machines Based on RPCA

Kim [30] proposed a lossy feature map compression method.
The former method compressed the feature map from the
17th max-pooling layer of YOLO9000 through quantization
and HM-16.12 (HEVC test model). Consequently, they
discovered that lossy compression throughHM-16.12 and not
the eight-bit uniform quantized data significantly impacted
object detection task precision. Therefore, they proposed
compression-augmented training to prevent precision degra-
dation with increasing quantization parameters. Furthermore,
Yoon and Kim [30] focused on the effect of feature map
quantization with under eight-bit on the object detection
task precision and performed channel-wise normalization of
feature maps before quantization using four bits. In addition,
Fischer et al. [31] proposed compressing an image through
VTM-8.0 (VVC test model) and performed an object
detection task with the reconstructed image. Because the
existing video codec, including VTM-8.0, has been designed
for human consumption tasks, the authors proposed a feature-
based RDO method for machine consumption tasks. The
encoder achieved high feature fidelity using the distortion
in the feature domain output from the first layer of the DL
network instead of the distortion in the pixel domain in the
RDOprocess. Furthermore, Xia et al. [32] andYang et al. [33]
proposed a compression scheme for both machine and human
consumption tasks to reduce the volume of data transmitted
for the latter. Particularly, Xia et al. [32] extracted the
keypoint features from every frame and compressed them
for the action recognition task. Here, only the keyframe
was compressed and transmitted to reduce transmission data
for the human consumption task. The middle frame was
generated through a generative model with the guidance of
keypoint features and keyframes. Yang et al. [33] compressed
and transmitted only the compact structure and color features
extracted from the input image and performed face landmark
detection using the reconstructed feature map data. Images
for the human consumption task were generated on the
decoder side. In addition, Kim et al. [34] and Shao et al. [35]
proposed transform-based feature map compression methods
using an 8 × 8 discrete cosine transform (DCT) in common.
Particularly, Kim et al. [34] transformed a fully connected
layer in VGG16 [36] using an 8 × 8 DCT and subsequently
quantized the DCT coefficients using uniform quantization.
Shao et al. [35] transformed the single layer feature map
obtained from shallow DL networks to significantly reduce
the required on-chip memory size and off-chip memory
access bandwidth. More importantly, DCT coefficients for
the feature map were quantized using two-steps quantization
based on a JPEG Q-table and encoded by storing only the
nonzero coefficients.

As can be inferred, most previous studies on feature
map compression methods focused on the feature map data
extracted from a single layer in shallow DL networks.
However, to apply feature map compression to various appli-
cations for multiscale object detection, efficient compression
methods for multilayer feature maps extracted from networks
such as FPN structure should be considered. As mentioned

in Section I, the FPN structure has been used in various DL
networks in MPEG-VCM. Therefore, this paper proposes
a method for compressing the FPN feature maps extracted
from X101-FPN based on Fig. 1 (a) for object detection
tasks. Herein, the feature maps are compress by performing
a block-based PCA and quantization processes on each FPN
feature map.

III. PROPOSED FEATURE MAP COMPRESSION METHOD
This section presents the proposed method for efficient fea-
ture map compression. First, the part of the proposed scheme
is briefly introduced. Each part is detailed in the remaining
subsections. As shown in Fig. 3, the proposed feature
map compression structure performs sequential block-based
PCA and uniform integer quantization. Typically, in the
image/video compression process, DCT with excellent
energy compaction properties is used as a key technique [37].
However, as highlighted in Fig. 4, FPN feature maps and
input image possess different characteristics. Unlike image,
most histograms of the FPN feature maps exhibit a Gaussian
distribution. The FPN feature maps of all channels reveal
similar distributions for all feature maps with a Gaussian
distribution as shown in Fig. 4. For Gaussian sources,
the Karhunen-Loève transform, an orthonormal transform
that produces uncorrelated transform coefficients, yields
an optimal transform [38]. Therefore, PCA is employed
to extract the basis kernels for efficient reduction in the
dimensionality of the FPN feature maps to be transmitted by
eliminating the redundancy between correlated data in each
feature map.

Conventional PCA-based feature map compression meth-
ods compressed a single layer feature map [24], [25]. Those
methods cannot efficiently be applied to the FPN feature map
since it has a different channel size for use in detecting objects
of different sizes. Therefore, a feature map compression
method is proposed that applies block-based PCA to a zero-
mean column-wised receptive block group. This process
is called receptive block based PCA (RPCA). The zero-
mean column-wised receptive block group for each FPN
feature map is obtained by performing mean-centering on a
column-wised receptive block group which is generated by
the receptive block conversion process as shown in Fig. 3.
This process consists of two steps as shown in Fig. 5. Each
FPN feature map is firstly divided into the receptive block
to generate a receptive block group. After that, the receptive
block group is reshaped into a column-wised receptive block
group which is explained later in detail. In addition, since
the data to be transmitted for reconstruction of the FPN
feature maps is expressed by 32-bit floating-point real values,
a uniform integer quantization process is performed for
further compression.

As mentioned before, the size of the receptive block is
the channel size of P5. Therefore, a set of basis kernels
in unit of the receptive block is derived by the RPCA.
Subsequently, a set of major basis kernels containing an
adequate percentage of both global and local information in
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FIGURE 5. Receptive block conversion process consisting of rearrangement and column-wising from each FPN feature map to column-wised
receptive block group Gc

n (n = 2, 3, 4, 5).

variable-size receptive blocks of each FPN feature map is
selected from all the basis kernels for each FPN feature map
based on the explained variance ratio. Following this, the set
of major basis kernels is used to transform each FPN feature
map. More specifically, the de-quantized set of major basis
kernels is used in transform to prevent mismatch because they
will be transmitted. Finally, the set of major basis kernels,
corresponding RPCA coefficients, and the mean vector of
each FPN feature map are obtained. The obtained RPCA
coefficients and the mean vector are also independently
quantized using the uniform integer quantizer for each data
to additional compression. The proposedmethod can perform
effective feature map compression on the output of the feature
extractor modules of the potential structures of MPEG-VCM.

A. RECEPTIVE BLOCK BASED PRINCIPAL COMPONENT
ANALYSIS
The primary purpose of the object detection task is to
accurately detect objects with varying sizes, from large to
small, within an image. The FPN structure uses a pyramid
hierarchy structure to construct high-level semantic feature
maps on all scales. maps on all scales. Therefore, the 2D
block-based PCA is applied to each column-wised receptive
block group after eachPn is rearranged into the corresponding
group shown in Fig. 5. The optimal basis kernels for each
group are independently derived efficiently to represent its
local as well as global information.

Each Pn is rearranged by dividing it into receptive blocks
of Mn × Nn and then concatenating them to construct a 3D
receptive block group Gn, where n ∈ {2, 3, 4, 5}, Gn ∈

RMn×Nn×Zn , and Zn = C × Rn. After that, each 3D receptive
block group is column-wised to obtain a 2D column-wised
receptive block group Gcn, where G

c
n ∈ R(Mn×Nn)×Zn . Let

Sn,i ∈ R(Mn×Nn)×1 denote the i-th column-wised receptive
block of Gcn, where i ∈ {1, . . . , Zn}. After constructing the
2D column-wised receptive block groups, a mean vector is
subtracted from each column-wised receptive block Sn,i ∈

Gcn. The mean vector, mvn ∈ R(Mn×Nn)×1 of Gcn, is computed
as following:

mvn =
1
Zn

∑Zn

i=1
Sn,i. (1)

Then, the zero-mean Gcn denoted by G
c
n can be obtained by

Sn,i−mvn. PCA is independently applied to eachG
c
n to obtain

basis kernels and its associated set of eigenvalues: En and3n.

3n,En = PCA
(
G
c
n

)
. (2)

At the first step in of PCA(·), the eigenvalues for G
c
n and

their associated basis kernels are computed and stored in
3̄n and Ēn, respectively. After they are sorted in descending
order, the eigenvalues in 3̄n and the associated basis kernels
in Ēn are stored in 3n and En, respectively. Then, first Qn
eigenvalues in 3n are chosen as principal components where
Bn ≥ Qn and Bn is the size of 3n. The number of principal
components, Qn, is typically determined by a cumulative
explained variance ratio (CEVR) [39]. VQn , the CEVR of Gcn,
is defined as following:

VQn =

∑Qn
x=1 λxn∑Bn
y=1 λ

y
n
, (3)

where λxn denotes eigenvalues in 3n. Thus, the value of VQn
is equal to the proportion of eigenvalue attributed to each
selected major basis kernel. In this paper, VQn is empirically
determined and is detailed in the next section.

Thereafter, the RPCA coefficientsFn of eachPn is obtained
by performing transform with G

c
n using the de-quantized

set of basis kernels selected according to VQn . Then, the
RPCA coefficients and mean vectors are also quantized,
respectively. This quantization process is detailed in the next
section. Thus, G′

c
n is reconstructed using a de-quantized En

and a de-quantized Fn, then, reconstructed G′c
n is obtained

by adding de-quantizedmvn to each reconstructed zero-mean
column-wised receptive block. Then, feature map conversion
which is backward process of receptive block conversion is
performed to generate reconstructed P′

n.
P5 is the smallest feature map in the FPN structure which

may preserve the global information for detecting large
objects. Thus, the size of P5 is chosen as the receptive block.
Other larger size feature maps such as P2, P3, and P4 are
divided into the receptive block size since it can be assumed
that local information is preserved to detect both medium and
small objects. Therefore, RPCA can derive the optimal basis
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kernels while preserving informationwithin each FPN feature
map. In addition, the selectedmajor basis kernels based on the
CEVR can efficiently reduce the dimensionality. Therefore,
the reconstructed feature maps share similar characteristics
with the original feature maps, which are conducive to the
detection of objects with varying sizes.

B. UNIFORM INTEGER QUANTIZATION
TheRPCAprocess is followed by a uniform integer quantizer.
Since one of the goals of MPEG-VCM is to compress
feature maps while maintaining the performance of machine
consumption tasks with a small amount of data and integer
representation should be used in MPEG standards up to
now, it may be better that all data are expressed in the
integer type instead of the floating-point type. Therefore, the
32-bit floating-point output data of RPCA and mean vector
for each FPN feature map are quantized into integer data.
Note that in this process, the degree of data compression
by quantization depends on the value of q, which is the
quantization bit-depth. However, performing quantization
with a low bit-depth can lead to incurs severe accuracy
degradation because of producing a great deal of quantization
error. Therefore, the experiments are conducted under various
conditions to choose q that can improve the compression rate
while maintaining performance, which is discussed in more
detail in the next section.

Algorithm 1 describes the quantization process of the
proposed method. In the first step, the minimum and maxi-
mum values of the set of major basis kernels, corresponding
RPCA coefficients, and the mean vector are computed per
each feature map, respectively. This process is followed by
min–max normalization to represent each value as a floating-
point real number between 0 and 1. Then, each normalized
value is multiplied by (2q–1) and round off to represent a
q-bit integer value. The round off process accounts for the
quantization error. Algorithm 2 presents the de-quantization
process. This involves reconstructing an approximation of the
original values of the transformed data by multiplying the
quantized value with the same quantization step, qs, as shown
below:

qs = (max − min)/(2q − 1), (4)

where min and max denote the minimum and maximum
values, respectively. min is added to express each value as
a floating-point real number in the original range of each
bit of the set of major basis kernels, corresponding RPCA
coefficients, and the mean vector, respectively.

Thus, the FPN feature maps extracted from X101-FPN
can be greatly compressed using RPCA and uniform integer
quantization. In the next section, the objective quality will be
evaluated of the proposed method.

IV. EXPERIMENTAL RESULTS
In this section, the performance of the proposed method is
evaluated. The experimental setup is firstly introduced and
then confirm the objective quality. In our experiment, the

Algorithm 1 Quantization
Input

D(i): The set of major basis kernels, corresponding RPCA
coefficients, and the mean vector
q: Quantization bit-depth

Output
D′(i): Quantized D(i)

Begin
for i = 0 tosize of D(i)

if D(i) < min then
min = D(i)

end
if D(i) > max then
max = D(i)

end
end
for i = 0 to size of D(i)
D′(i) =(D(i) – min) / (max – min)
D′(i) =D′(i)× (2q–1)
D′(i) = round(D′(i))

end
End.

Algorithm 2 De-quantization
Input

D′(i): Quantized D(i)
q: Quantization bit-depth
min: Minimum value of all D(i)
max: Maximum value of all D(i)

Output:
D̃(i): De-quantized D′(i)

Begin
for i = 0 to size of D′(i)
D̃(i) = D′(i)× {(max – min) / (2q–1)}
D̃(i) = D′(i) + min

end
End.

proposed method is implemented using Faster R-CNNX101-
FPN, pre-trained on the MS COCO 2017 training set in
Facebook AI Research Detectron2 [40]. In addition, 640 ×

480 images from the MS COCO 2017 validation set [41] and
5K images from the OpenImageV6 dataset [42] which has
been used for evaluation in MPEG-VCM, are used as the test
datasets.

The volume of data is recorded to evaluate the objective
quality. The object detection performance is quantified using
the average precision (AP) value on both datasets. In addition,
the performances of small, medium, and large objects are
quantified in terms of their AP (APS , APM , and APL ,
respectively) to evaluate the detailed AP across varying scales
in the MS COCO 2017 validation set. Furthermore, the
defined values, RFM , under each condition is calculated and
compared to analyze the amount of compressed data by
executing the transform and uniform integer quantization
processes of the proposed method. Note that the value of RFM
also represents the ratio of the amount of compressed data to
the amount of FPN feature maps extracted from X101-FPN
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FIGURE 6. Average precision (AP) performance according to RFM on each test dataset, (a)-(d) on MS COCO 2017 validation set, (e) on
OpenImageV6 dataset. (a) APL. (b) APM . (c) APS . (d) AP on MS COCO 2017 validation set. (e) AP on OpenImageV6 dataset.

before compression, which is defined as follows:

RFM =
DTEST
DFM

× 100 (%) , (5)

where DTEST represents the total volume of data compressed
during the transform and uniform integer quantization that
is used for reconstructing each FPN feature map, consisting
of four sets of major basis kernels, corresponding RPCA
coefficients, and four mean vectors for the proposed method.
In addition, DFM represents the total amount of data for the
FPN feature maps. Therefore, a lower value of RFM denotes
a higher compression ratio.

Table 1 summarizes the performance of the proposed
method according to the receptive block size and VQn , which
determines the number of major basis kernels to be selected
when the quantization bit-depth is eight. In the case of
the DCT-based methods, the number of DCT coefficients
for each FPN feature map is determined according to
VQn in the same concept as the PCA-based methods.
To compare the performance of the proposed method with
that of the previous feature map compression methods, the
transform and quantization processes are performed under
each condition. More importantly, several experiments are
conducted for a receptive block size of Wn × Hn for each
FPN feature map, which is the same condition as that in the
transform process involved in previous PCA-based feature
map compression methods [21], [24], [25].

For all cases, the proposed uniform integer quantization
is applied. Furthermore, to compare the previous DCT-
based feature map compression methods [34], [35], the
performance of the two transform methods for PCA-based

transform and DCT is compared when using the same
receptive block size for comparison. These will be referred
to as ‘‘PCA-case’’ and ‘‘DCT-case,’’ respectively. Although
previous DCT-based methods [34], [35] perform 8× 8 block-
based DCT, the FPN feature maps may not have width or
height that are multiples of eight depending on the input
image size. Therefore, block-basedDCTwithW5×H5, which
are the channel size of P5, was performed for comparison.
Meanwhile, DTEST in (5) denotes the proportion of the four
DCT coefficients for the DCT-case. As indicated in Table 1,
the proposed method and the extant PCA-based approaches
[21], [24], [25] present similar precision for all AP metrics,
such as APS , APM , APL , and AP on both datasets for each
set of major basis kernels that satisfied VQn = 0.95 for
each FPN feature map. However, the RFM of the proposed
method is less than half compared to case of Wn × Hn,
and therefore, the proposed method could be deemed to be
more effective for feature map compression as it preserved
local and global information within the FPN feature maps
across various conditions. In addition, the two points: VQn =

0.85 for the case of Wn × Hn and VQn = 0.95 are performed
for the proposed method to compare performance when the
amount of compressed data is similar. For Wn × Hn, the
AP is approximately 9.85% lower than that for the proposed
method. Furthermore, it presented a significant degradation
in performance on small objects (APS ) by approximately
21.12% compared to the original result, which is almost
undetectable.

Fig. 6 shows the AP performance according to RFM for
each test dataset based on Table 1. Both the PCA-cases and
DCT-cases performed the best for the receptive block size
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TABLE 1. Performance of the proposed method under several conditions according to the test dataset (q = 8).

fixed atW5 ×H5 for each FPN feature map. Moreover, PCA-
case outperformed DCT-case in terms of both the AP and
compressed data when the receptive block size is W5 × H5.
Generally, although DCT has less computational complexity
than PCA, both are performed for the encoder-side only. From
an MPEG-VCM perspective, only decoder-side operations
are normative issue. The decoder complexity of the two
cases can potentially be almost the same since only inverse
transformations, and inverse quantization processes for
reconstruction are commonly applied. More specifically,
decoder complexity in PCA-case is lower than that of
DCT-case since the number of coefficients for PCA-case is
generally less than that for DCT-case. Note that the number
of coefficients is determined by VQn . In addition, decoder
complexity of the proposed algorithms is much less than that
of video or feature decoders in MPEG-VCM applications,
as shown in Figs. 1 (a) and (c). Furthermore, the proposed
method is superior from the view of standardization because
it can obtain the same detection performance through a
smaller amount of data than previous DCT-based methods
[34], [35], despite of additional kernels and mean vectors are
required to be compressed. Thus, a complexity comparison
is performed only for PCA-cases, between extant PCA-based
methods [21], [24], [25] and the proposed method. PCA has a
complexity in the encoding process of each FPN feature map,
and it is derived by referring [43] as shown below:

Tn = O (Rn × Zn × min (Rn,Zn) + (Zn)
3), (6)

where Rn = Mn × Nn. In both cases of performing the com-
parison, the complexity of the transform for P5 is the same,
but the computational complexity of transforming the other

FPN feature maps is different. For each feature map, Rn
is fixed as W5 × H5 and Zn is changed in the proposed
method, conversely, Rn is changed and Zn is fixed as C in the
previous PCA-based feature map compression methods [21],
[24], [25]. Therefore, the overall encoding computational
complexity of the proposedmethod is slightly higher than that
of the extant PCA-based methods [21], [24], [25].

Furthermore, the performance in terms of the quantization
bit-depth is performed. As shown in Table 1, most AP
matrices are saturated at VQn = 0.90 for each metric,
particularly the AP, APM , and APS , for the MS COCO
2017 validation set. Therefore, VQn = 0.90 is chosen as the
criterion because feature map compression aims to reduce the
volume of compressed data to less than that of input image
data without AP degradation.

First, to determine the degradation in AP performance
owing to the quantization error, the 32-bit which means
without quantization with eight bits, is compared. As indi-
cated in Tables 1 and 2, the resulting performance is
not significantly different. Therefore, the proposed uniform
integer quantization process did not significantly affect all AP
values up to q = 8.
Furthermore, even if the quantization bit-depth is adjusted

to five, compared to when the bit-depth is eight, RFM could
be reduced from 1.11% to 0.70% with subtle degradation
of approximately 0.61% and 0.44% in the AP on the
MS COCO 2017 validation set and the OpenImageV6
dataset, respectively. By contrast, marginal improvements
of approximately 0.53% in APS and 0.37% in APL on
the MS COCO 2017 validation set are observed, which
could also be attributed to the quantization error. Therefore,
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FIGURE 7. Examples of object detection results obtained from the OpenImageV6 dataset. (a), (e) Original (Uncompressed). (b), (f) DCT (W5× H5)
[34], [35] with VQn = 0.90. (c), (g) PCA (Wn× Hn) [21], [24], [25] with VQn = 0.80. (d), (h) RPCA (W5× H5) (Proposed) with VQn = 0.90.

TABLE 2. Performance of the proposed method according to quantization
bit-depth (W5 × H5, PCA-CASE, VQn = 0.90).

as listed in Table 2, the AP is mostly preserved even when
the quantization bit-depth is set to five. When uniform
integer quantization is performed by setting the quantization
bit-depth to four, the AP is significantly deteriorated. Hence,
uniform integer quantization is performed for up to five bits
in this work.

In addition, the experimental results are visually inspected
for certain images from the OpenImageV6 dataset. Fig. 7
displays the object detection results for four cases: Original
(Uncompressed), DCT (W5×H5) [34], [35] with VQn = 0.90,
PCA (Wn × Hn) [21], [24], [25] with VQn = 0.80, and the
proposed method. the conditions of each case are selected to
compare the performance when the amount of input image
and compressed data is similar. The dotted bounding box
as shown in Fig.7 highlights a noticeable difference in the
object detection results for each case. More specifically, the
blue dotted bounding box represent objects that are detected
as in the Original (Uncompressed) result, and the red dotted
bounding box represent the undetected objects. As shown
in Fig. 7, the proposed method presents superior results for
the detection of particularly small objects compared to other
methods. Moreover, the detection results of the proposed
method are more similar to the Original (Uncompressed)
results than the other results.

It is concluded that the proposed method outperforms
other methods with respect to all AP metrics, such as APS ,
APM , APL , and AP for a similar volume of compressed
data. In particular, the proposed method preserves more
information within P2, used for small-object detection, than
the previous PCA-based feature map compression methods
[21], [24], [25]. Consequently, the FPN feature maps can be
compressed using the proposed method under the condition
that the size of the receptive block is W5 × H5, with VQn =

0.90, and the quantization bit-depth = 5. Thus, the machine
consumption task part can be performed with minimal
deterioration, particularly in APM , and in APL performance
by using reconstructed FPN feature maps by performing
inverse transform and de-quantization, accounting for only
0.70% of the original FPN feature maps data, which is a
smaller percentage than the input image data.

V. CONCLUSION
In this work, a feature map compression method was
proposed with a transform process using RPCA and uniform
integer quantization. The proposed method could be used to
compress feature maps for the output of feature extractor
modules in potential MPEG-VCM structures to effectively
reduce data in the feature maps. First, the redundant data
within each FPN feature map extracted from X101-FPN
was eliminated using RPCA. Based on the fact that the
size of the receptive block differed according to the channel
size of the FPN feature maps extracted from the FPN
structure, a transform based on RPCA were performed by
rearranging and column-wising the feature map such that the
global and local information was preserved. Subsequently,
the transformed data were additionally compressed using
uniform integer quantization. Further, experimental results
revealed that the proposed method reduced the amount of
FPN feature maps by 99.30%, with an AP loss of 8.30% on
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the OpenImageV6 dataset and APL , APM , and APS losses of
0.47%, 0.77%, and 7.10%, respectively, on the MS COCO
2017 validation set. In addition, the method was found to be
superior to the previous feature map compression methods
based on PCA and DCT even at higher compression rates.

Furthermore, compared to compression and transmission
image/video data methods, the proposed method presented
the advantage of transmitting less data than image/video
and requiring low processing on the device after decoding
the feature map data. However, further studies on efficient
compression methods are needed to effectively transmit the
feature maps.
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