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ABSTRACT This study focuses on the system identification of a quadrotor under an unknown payload with
a time-optimal trajectory. A model-based control scheme should be utilized for a quadrotor, which does
not necessarily guarantee robustness to model uncertainty. Thus, accurate system identification is required
during flight. However, inertia parameter identification for the control scheme is vulnerable to sensor noise
without a trajectory that produces rich data. We utilized Kalman filter (KF), which estimates the angular
velocity, to reduce noise. In the process model of KF, the variance attributed to model uncertainty is derived,
and the derived variance plays a pivotal role in adjusting Kalman gain. Recursive least squares (RLS) was
utilized to identify the inertia parameter. However, all inertia parameters cannot always be observed with
a time-optimal trajectory. Thus, this study proposes a criterion that distinguishes between observable and
unobservable parameters and the correction law depending on the criteria. The correction law prevents RLS
from correcting the unobservable parameters. We call this method the observability-aware RLS with KF.
This study compared RLS, RLS with a low-pass filter (LPF), and observability-aware RLS with KF. While
RLS with LPF shows a sharp increase or decrease in moment of inertia (MOI), center of mass (COM) offset,
and sensor location, ours does not. RLS without any filtering has an inaccurate estimation of MOI and the
height of the sensor location. However, our approach is sufficiently accurate to be applied to model-based
control.

INDEX TERMS Inertia parameter estimation, Kalman filter, observability, recursive least square, unknown
payload.

I. INTRODUCTION
In the last decade, quadrotors have become popular owing
to their capability to hover in place and move freely in a
3-dimensional Euclidean space. Owing to this capability,
quadrotors can be applied to transportation [1], [2], terrain
mapping [3], [4], inspection [5], [6], and construction [7],
[8]. Among these applications, the transportation task by a
quadrotor is the main focus of this study.

To complete the transportation task successfully, model-
based control schemes such as disturbance observer (DOB),
model predictive control (MPC), and model reference adap-
tive control (MRAC), which secure robustness to disturbance
and stability, should be implemented. However, the model-
based controller does not necessarily guarantee the robustness
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of the dynamic model uncertainty of a quadrotor under an
unknown payload. Therefore, considering accurate model
parameters in the control scheme is highly important.

To reflect the model uncertainty of the control scheme,
MRAC using various estimation techniques [9], [10], [11],
[12], [13], [14], [16], [17], [18] has been proposed. Inertia
parameter estimation of an aerial manipulator without using
a force/torque sensor in each joint through the adaptation
law was proposed in [9] and [10]. However, prior knowledge
regarding the payload geometry was required in [9]. The
payload was treated as a point mass, and the MOI was
obtained by the parallel axis theorem in [10], making it
difficult for the control scheme to deal with a payload with
a non-uniform mass density distribution. The authors of [11]
utilized an extended Kalman filter (EKF) to fuse inertial
measurement unit (IMU) sensor and rotor speed processed
through a LPF and compensated for the variation in COM
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location on the control scheme. However, mapping from the
rotor speed to the angular acceleration is required in advance.

Unlike in [9], [10], and [11], the necessity of prior
knowledge or assumptions about the payload was eliminated
in [12], [13], [14], [15], [16], [17], and [18]. Reference [12]
assumed that the collective thrust input is linearly propor-
tional to the resultant force produced by the four rotors and
estimated the ratio of the former to the latter divided by
mass through the adaptation law. Then, the control scheme
compensated for the estimated ratio. A multiple KF through
ultrasound sonar and 9-axis IMU sensor to estimate the mass
and z-axis MOI was devised, and altitude and yaw control
were performed depending on the load in [13]. Although the
necessity of prior knowledge was removed in [12] and [13],
they did not secure the stability of the attitude control because
they excluded the estimation of the changed COM location.
In contrast, Reference [14] estimated and compensated for
the changed COM location in the attitude dynamics. The
assumption orientational dynamic response is faster than the
translational one removed the need for prior knowledge about
MOI. However, this assumption is not always valid because
the quadrotor’s acceleration tracking performance depends
on the size of the MOI [15].

Compared to [14], the coupling between the translational
dynamic response and orientational response is considered
through an adaptation law that estimates the mass and MOI
simultaneously [16]. However, the location of COM should
be consistent with the center of the geometry. Although [17]
compensated for the model uncertainty through a radial
base function neural network, the variation in COM location
was not reflected in the orientational dynamic model.
Unlike multiple studies [9], [10], [11], [12], [13], [14] and
[16], [17], the estimation of the variation of COM, MOI,
and mass through the adaptation law was presented in [18].
The shortcoming of reference [18] is that the sharp increase
or decrease in COM variation estimation occurs owing to
motor saturation, and the convergence rate of MOI parameter
estimation is too slow to be reflected in the control scheme.
Hence, research on system identification should be conducted
to develop amodel-based control scheme for a quadrotor with
an unknown payload.

Considerable effort has been devoted to system identifica-
tion for a long time. Inertia parameter estimation was per-
formed using maximum likelihood estimation (MLE) [19].
They determined the dynamic parameters that minimize the
residual of the IMU sensor, camera, and dynamic model.
However, the residual related to the dynamic model makes
the computational load of estimation heavy because it com-
putes Runge–Kutta fourth order and Levenberg–Marquardt
simultaneously. Compared to MLE, the filtering approach is
sufficiently fast to process the sensor data.

Compared to MLE, least squares (LS) [20], [21] allows
for inertia parameter identification during flight. In [20], the
consideration of angular momentum conservation reduced
the effects of sensor noise. This enhances the accuracy of

estimating the product of inertia. However, it could not
secure the stability of orientational dynamics and altitude
because it did not infer mass and the variation in COM
position. In contrast, [21] only estimated the changed COM
and compensated for that in the attitude PID controller
until the quadrotor reached the hovering state. Even though
the convergence rate is sufficiently fast for attitude control
to compensate for the parameter, the estimation of COM
variation is determined depending on the initial value setup
for MOI. Thus, it is difficult to guarantee the stability of
attitude control at all times.

Unlike the LS method, filtering approaches such as
EKF, unscented Kalman filter (UKF) [22], [23], [24],
[25], [26], [27], [28], square root unscented Kalman filter
(SRUKF) [29], and complementary filter (CF) [30] have
been conducted. While multiple studies [22], [23], [24],
[25], [29], [30] did not address the estimation of the
changed COM, which is a significant element in model-
based control [21], all inertia parameters such as the
changed COM, MOI, and mass by fusing rotor speed sensors
were inferred in [26], [27], and [28]. Thrust force and
drag moment coefficients were identified in [27] and [28].
However, incorrect identification of these two parameters
may lead to an inaccurate estimation of the inertia parameter.
In contrast, [26] considered the inertia parameter estimation,
including mass, varied COM, and MOI, given the coeffi-
cients. By tracking the Lissajous trajectory, the identification
was performed; however, the convergence rate was slow, and
there was bias about the estimated inertia parameter due to
the noise effect of the sensor.

An excitation trajectory should be applied to the quadrotor
to amplify the signal-to-noise ratio (SNR) and gain rich data.
Research on trajectory generation was inspired by the system
identification of manipulators [31], [32], [33], [34], [35].
A trajectory composed of a Fourier series, whose coefficients
minimize the fisher information matrix (FIM), was utilized
in [36] and [37]. The disadvantage of [36] and [37] is that
the complexity of LS increases with the size of the matrix.
Hence, it is inadequate to apply the estimation method to
model-based control directly. In contrast, [38] treated the
condition number of FIM as the residual of model predictive
control (MPC) and produced rich data. However, the method
applies to satellites and cannot be applied to quadrotors
constrained by gravity. The maximization of the empirically
expanded local observability Gramian (E2LOG) [39] based
on the index of unobservability [40] made the data richer.
The trajectory obtained by minimizing the condition number
or maximizing E2LOG tends to have a high amplitude and
unnecessary motion. In other words, the trajectory increases
energy inefficiency compared to the time-optimal trajectory.

It is necessary to estimate the accurate inertia parameter
by reducing the effect of sensor noise, even while tracking
the time-optimal trajectory. This study devises KF to reduce
the sensitivity to noise, which estimates the angular rate
by adjusting the proportion of confidence in the process
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model to the one in the measurement model. Specifically, the
variation of the estimated angular velocity is reduced when
more confidence is placed in the process model than in the
measurement model. In [26], [27], and [28], which considers
the inertia parameter as a state variable, the variance of the
angular velocity attributed tomodel uncertainty in the process
model was not dealt with. This causes the user to set the
initial parameter value close to the ground truth. Otherwise,
the estimation of the inertial parameter can be biased. This
study derives the variance caused by the model uncertainty
and reflects the variance in KF. We used RLS to identify the
inertia parameter. However, the time-optimal trajectory does
not always enable the RLS to observe all inertia parameters.
Thus, this paper presents the criteria that distinguish between
the observable and the unobservable inertia parameter and
proposes a correction law that constructs an observation
matrix for RLS to correct only the observable one. The
correction law makes RLS aware of the observability. The
main contributions of this study are as follows:

• For robust and precise control, an inertia parameter
estimator including mass, MOI, COM, and sensor
location under the triple integral method, which belongs
to the time optimal trajectory generator, is designed.

• In KF, the variance caused by model uncertainty
is considered in the process model, unlike multiple
works [26], [27], [28]. The variance plays a key role in
the adjustment of Kalman gain.

• The correction law is proposed to prevent the inertia
parameter estimator, RLS, from correcting unobservable
parameters.

• Unlike multiple works [26], [27], [28], [29], [30],
[36], [37], [38], [39], our approach enables the estimator
to be triggered at the start of a flight. The inertia
parameter convergence rate can deteriorate when the
estimator begins to estimate from the ground station.

The remainder of this paper is organized as follows. The
dynamic model of a quadrotor under an unknown payload
and the relationship between the observation matrix and the
dynamics are described in Section II. Section III presents the
design of KF and the observability-aware RLS. Section IV
presents the simulation environment, in which the noise level,
estimator setup, and flight data are described. Section V
discusses the simulation results and analyses. Finally, the
conclusions and future work are presented in Section VI.

II. INERTIA PARAMETER IDENTIFICATION
This section introduces a quadrotor dynamic model under
payload by the Newton-Eulerian equation, which is divided
into translational and orientational dynamic models. Then,
it addresses the relationship between attitude dynamics
and observation matrix H1 and translational dynamics and
observation matrix H2.

A. QUADROTOR DYNAMIC MODEL
Before delving into the observability-aware inertia parameter
estimation method, we will present the quadrotor dynamic
model. The fourmotor speeds determined the collective thrust

FIGURE 1. The quadrotor rotor configuration and the frame infromation.

andmoment. The off-diagonal terms of the inertia tensor were
assumed to be zero.

The index of the rotor is shown in Fig. 1. As shown in
Figure 1, rotors R1 and R3 rotate clockwise, whereas R2 and
R3 rotate counterclockwise. CGrCOM indicates the location of
COM expressed in the frame center of geometry (CG) which
is the centroid of the four rotors’ axis in the horizontal plane.
It is impossible to obtain the relative height between the CG
frame and the COM frame because the height of the CG is
arbitrarily chosen.

The thrust generated by each rotor in the CG frame was
proportional to the square of the rotor speed. The x and
y components of the moment generated by each rotor i in
the CG frame or COM frame are proportional to the arm
length and force produced by each rotor. The rotor thrust and
moments along the x-, y-, and z-axes of each rotor can be
written as follows:

FRi = CTω2
Ri, (1)

Mx,Ri =
l
√
2

2
CTFRi =

l
√
2

2
CTω2

Ri, (2)

My,Ri =
l
√
2

2
CTFRi =

l
√
2

2
CTω2

Ri, (3)

Mz,Ri = CMω2
Ri. (4)

In (1)–(4), CT , CM , and l represent the lift coefficient,
moment coefficient, and arm length, respectively, of the
quadrotor. The arm length is the displacement from the CG
frame to the center of each rotor in the horizontal plane. ωRi
denotes the i-th rotor speed, In the CG frame, the forward
dynamic model can be expressed as follows:
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FIGURE 2. The sensor, COM, CG, and World frame of quadrotor system
information.

In (5), T and M are the total thrust and the moment
expressed in CG frame, respectively.

Figure 2 shows the world, IMU, and COM frames. The
superscript denotes the reference frame, and the subscript
denotes the frame to be expressed. Superscript W denotes the
world. For example, W rIMU denotes the IMU frame location
in the world frame.

Using the Newton–Euler equation, the quadrotor dynamic
and kinematic models can be modeled as

mW v̇COM = Ad(W qCG)

[
0
0
T

]
− mg, (6)

W ṙCOM =
W vCOM , (7)

Jω̇ + ω × Jω = M +
COM rCOM→CG×,

[
0
0
T

]
, (8)

W q̇CG =
1
2
W qCG ∗ ω. (9)

Equations (6) and (8) show the translational and attitude
dynamics. Equations (7) and (9) represent translational and
rotational kinematics, respectively. m, J and COM rCOM→CG
denote the mass and MOI of the quadrotor and the location
of the CG expressed in the COM frame, which is called
the COM offset, and are of interest in this study. W qCG
is the quaternion and contains the meaning of rotation. Ad
is the adjoint operator. Ad(W qCG) is the rotation matrix that
transforms the body frame into the world frame. Operator
∗ is the multiplication of the quaternion. g denotes the
gravity vector expressed in the global frame. W v̇COM is the
acceleration of COM in the world frame. Collective thrust T
is expressed in the CG frame. The attitude dynamics has a
fictitious moment, ω × Jω owing to the change of the CG
frame and the moment generated by the collective thrust and
COM offset, COM rCOM→CG ×

[
0 0 T

]T .
B. ATTITUDE DYNAMICS AND H1
By rearranging Equation (8), we can rearrange the attitude
dynamics as follows: Mx

My
Mz

 = H1θ1 (10)

where

H1 = .

 ṗ −qr qr 0 T
pr q̇ −pr −T 0

−pq pq ṙ 0 0


and θ1 =.

[
Jxx Jyy Jzz xoff yoff

]T
.

In Equation (10), θ1 denotes the MOI and COM informa-
tion for the inference. Specifically, xoff and yoff are the x
and y coordinates of COM rCOM→CG. Jxx , Jyy, and Jzz denote
the x-, y-, and z-axes inertia, respectively. ṗ, q̇, ṙ, p, q, and
r denote the angular acceleration along the x-, y-, and z-axes
and angular velocity along the x-, y-, and z-axes, respectively.
In Equation (10), H1 is the observation matrix for MOI and
COM.

C. TRANSLATIONAL DYNAMICS AND H2
The IMU sensor model can be described as follows:

aIMU =
CGRW (W r̈IMU + g). (11)

The representation of COM based on Figure 1 can be
written as follows:

W rCOM =
W rIMU +

WRCGIMU rCOM . (12)

By differentiating Equation (12), the velocity relation can
be written as

W ṙCOM =
W ṙIMU +

d
dt
(WRCGIMU rCOM )

=
W ṙIMU +

W ṘCGIMU rCOM
+

WRCGIMU ṙCOM . (13)

In Equation 13, because the IMU sensor location is fixed
for the COM frame, the last term IMU ṙCOM vanishes. The
derivative of the rotation matrix W ṘCGIMU can be derived as
follows:

W ṘCGIMU =
d
dt

[
W xCG W yCG

W zCG
]

= [WωCG]×WRCG, . (14)

where [ω]× =

 0 −ωz ωy
ωz 0 −ωx

−ωy ωx 0

 ∈ so(3).

Equation (14) shows the derivative of the rotation matrix.
The bracket operator [·]× maps a vector ω ∈ R3 in the
Euclidean space to skew the symmetric matrix [ω]× ∈ so(3).
The angular velocity in the bracket operator is expressed in
the world frame. Because the angular velocity Wω is in the
Euclidean space, the angular velocity can be transformed
through the rotation matrix WRCG and the bracket has the
following property according to [41].

[RTω]× = RT [ω]×R (15)

By substituting Equation (14) into (15), the time derivative
of the rotation matrix can be reduced to:

W ṘCG =
WRCG[CGω]×. (16)
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Using equation (16), Equation (13) can be simplified as
follows:

W ṙCOM =
W ṙIMU +

WRCG[CGω]×IMU rCOM . (17)

Similarly, the linear acceleration relation can be obtained
by differentiating Equation (17).

W r̈COM =
W r̈IMU +

WRCG[CGω]2×
IMU rCOM

+
WRCG[CGα]×IMU rCOM . (18)

In Equation (18), CGα denotes angular acceleration. Using
the IMU sensor model (11) and the two-frame acceleration
relation (18), the equation for IMU acceleration-related
observation matrix can be expressed as follows:

maIMU − ([CGω]2× + [CGα]×)(mCOM rIMU ) =

0
0
T

 . (19)

Equation (19) can be rearranged as follows:0
0
T

 = H2θ2 (20)

where H2 =

h2(1) −pr − q̇
h2(2) −pr + ṗ
h2(3) p2 + q2


h2(1) = ax +

COMxIMU (q2 + r2) +
COMyIMU (−pq+ ṙ),

h2(2) = ay −
COMxIMU (pq+ ṙ) +

COMyIMU (p2 + r2),

h2(3) = az +
COMxIMU (−pr + q̇) −

COMyIMU (qr + ṗ),

θ2 =

[
m

mCOM zIMU

]
,

COMxIMU = −
(
xoffset +

IMUxCOM
)
,

and COMyIMU = −
(
yoffset +

IMUyCOM
)
.

The observation matrix H2 for estimating the mass and
sensor location is shown in Equation (20).

III. DESIGN OBSERVABILITY-AWARE RLS WITH KF
The overall pipeline for the algorithm of the observability-
aware RLS with KF comprises KF, data processing, and
RLS in Figure 3. The main role of KF is to reduce the
noise of the angular rate by adjusting the confidence ratio
in the process model to that in the measurement model. The
arguments for KF are the control input (collective thrust T
and moment M), the previous angular velocity parameters
(values and covariance), and the estimated MOI parameter.
Here, the control input is obtained from Equation (5) and the
relationship between the rotor speed and tuple of collective
thrust and moment generated by the four rotors. KF returns
angular velocity parameters for data processing.

When the non-zero z component of gravity-rejected
acceleration processed by a low-pass filter is detected for

the first time, the data processing and RLS algorithms are
activated. In Figure 3, az,criteria denotes the acceleration of
the altitude motion criteria. The role of the detection is to
prevent RLS from correcting the inertia parameters when the
quadrotor is at the ground. The data processing algorithm
stores the angular rate at the previous time step, obtains
the angular velocity at the current time step, and returns
the processed observation matrix. The observation matrix
is based on (10). The algorithm inserted the data into the
corresponding column by distinguishing the angular rate
from the corresponding standard deviation. This prevents the
RLS from correcting the unobservable inertia parameters.

RLS method plays a key role in estimating MOI and
COM. The arguments of RLS are the observation matrix,
previousMOI, and COMparameters (values and covariance);
it then returns the corrected MOI and COM parameters.
We describe the function of each component (KF, data-
processing algorithm, and RLS).

A. KALMAN FILTER
KF comprises a process model and a measurement model.
The process model computes the temporary belief of the
angular velocity using a dynamic model and control input.
The measurement model corrects the temporary belief by
utilizing the data measured via the IMU sensor. In the
process model, the variance of the inverse normal distribution
should be derived approximately because the variance of
the inverse MOI Ĵ i

−1
is different from that of MOI Ĵ i.

Although the inverse distribution no longer belongs to
Gaussian distribution, it can approximately be regarded as
Gaussian distribution near the ground truth. The temporary
belief of the angular velocity ωi+1 can be obtained through
a dynamic model, but the dynamic model involves noise and
dynamic parameter uncertainty. The noise caused by the rotor
thrust is negligible if there is no wind disturbance. Thus,
the parameter uncertainty is mostly related to the variance
of the temporary belief 6ωi+1 . Because COM offset values
are always observable, their convergence rate is sufficiently
fast to neglect their uncertainty. In contrast, MOI parameter
does not guarantee observability at all times, which means
that it is impossible to obtain the MOI parameter when there
is insufficient oscillation during flight. In this regard, the
uncertainty of MOI should be considered in the temporary
variance of the process model. First, the true angular velocity
based on the orientational dynamics can be written as

ωi+1 = ωi − J−1(ui − J × Jωi)dt (21)

where ui = M i − r̂off × T i. and T i =
[
0 0 Ti

]T
.

In (21), ωi, ωi+1, and J denote the true angular velocity at
the i-th and (i+1)-th time steps, the trueMOI. ui represents the
equivalent moment at the time step i. The control input data Ti
andM i are acquired by the motor speed ωRj for j = 1, 2, 3, 4.
Assuming that the noise effects of the control inputs (moment
M i and collective thrust Ti) are negligible, the temporary
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FIGURE 3. The pipeline of Observability-aware KF.

belief is

ωi+1 = ω̂i + Ĵ
−1
i (ui − Ĵ i × Ĵ iω̂i)dt. (22)

The error in angular velocity between the temporary belief
and ground truth can be obtained by subtracting (21) from
(22).

ω̃i+1 = ω̃i + [(J−1
− Ĵ i

−1
)ui

+ J−1(J × Jωi) − Ĵ i
−1

(Ĵ i × Ĵ iω̂i)]dt (23)

where ω̃i = ω̂i − ωi, ω̃i+1 = ω̂+1i − ωi+1.

In (23), the effect of the fictitious moment J × Jωi can
be neglected, because the moment M i is greater than the
fictitious moment. Thus, Equation (23) can be approximated
as

ω̃i+1 ≈ ω̃i + [(J−1
− Ĵ i

−1
)ui]dt. (24)

By the definition of covariance, the covariance of the
temporary belief can be derived as

E[ω̃i+1ω̃
T
i+1] = E[ω̃iω̃

T
i ] + 6add

(25)

,

where 6add . = dt2E[(J−1),−Ĵ i
−1

)2uiuTi ].
In (25), the last term 6add contains an inverse normal

distribution, because it has E[(J−1
− Ĵ i

−1
)2]. The variance

of the inverse normal distribution for each component can be
written as

E
[

1
J(k)

−
1

Ĵ(k)

]2
= lim

n→∞

1
n

n∑
i=1

[
1

J(k)
−

1

Ĵ i(k)

]2

= lim
n→∞

1
n

n∑
i=1

[
Ĵ i(k) − J(k)

Ĵ i(k)J(k)

]2

=
1

J(k)2
E

[
Ĵ(k) − J(k)

Ĵ(k)

]2
(26)

where k = 1, 2, 3,
J(1) = Jxx , J(2) = Jyy, and J(3) = Jzz.

In (26), index k denotes the component of the MOI
parameter. When the estimated MOI parameter is slightly
biased, the variance can be approximately expressed as

E
[

1
J(k)

−
1

Ĵ(k)

]2
≈

1
J(k)4

E
[
Ĵ(k) − J(k)

]2
. (27)

The variance in (26) can be represented as an inequality as
follows:

E
[

1
J(k)

−
1

Ĵ(k)

]2
≤

1
Jmin(k)4

E
[
Ĵ(k) − J(k)

]2
. (28)

In (28), Jmin(k) for k = 1, 2, and 3 is the lower bound of
MOI values arbitrarily set by the user. The last term in (25)
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can be replaced by (27) and (28).

6add (k, k) =


dt2u(k)2

Jmin(k)4
6Ĵ (k, k), Ĵ(k) ≤ Jmin(k)

dt2u(k)2

Ĵ(k)4
6Ĵ (k, k), Ĵ(k) > Jmin(k).

(29)

In (29), when the estimated MOI value is less than the
minimum value that cannot occur, the variance is set to the
maximum variance. The upper bound of inequality (28) was
chosen to reflect this. Otherwise, the variance was computed
using the estimated MOI value. As the estimated parameter
has a small bias, the variance of MOI 6Ĵ (k, k) decreases.
In addition, when the equivalent moment u(k) is close to
zero, the additive variance becomes nearly zero because
the uncertainty of the temporary belief also originates from
motion.

Algorithm 1 presents the process model of KF. The
equivalent moment ui is determined by the moment, COM
offset, and the thrust. The temporary belief is calculated using
(22). Using condition (29), the additive variance containing
the model uncertainty of MOI is computed. The temporary
variance is the summation of the previous variance and
additive variance.

Algorithm 2 shows the measurement model of KF. The
IMU sensor corrected the temporary belief in the angular
rate. The correction depends on Kalman gain Kkalman. Here,
to avoid excessive error in temporary belief, the residual for
each component r(k) and constraint c are compared, and the
weight of the measurement Rmeas(k, k) is adjusted. When
there is too much discrepancy between the temporary belief
and IMU sensor data, themeasurement weight becomes large.

The main role of KF is to reduce the effect of noise on
angular velocity by adjusting the confidence in the process
and measurement models. Because the control input has
less noise than IMU sensor noise, it is possible to reduce
the noise in the angular velocity through KF when it puts
more confidence in the process model. The reduction of
noise improves RLS parameter estimation performance. The
entire procedure for KF belongs to the adaptive KF in that
the measurement weight is adaptively adjusted to guarantee
robustness.

B. DATA PROCESSING ALGORITHM
Data processing is required before RLS estimates the
dynamic parameters because the time-optimal trajectory does
not always guarantee observability. This algorithm makes
RLS aware of observability. Observability determines the
condition under which RLS can either estimate or not.
By processing the data, RLS prevents the update gain from
correcting the dynamic parameters.

Algorithm 3 shows the computation of the column vectors
when it receives the index k, angular velocity, and angular
acceleration. The function in Algorithm 3 returns the column
vector based on (10). Functionφ1 only returns the vector from
the first column to the third of the observation matrix H1.

Algorithm 1 Process Model of Kalman Filter

Arguments: ω̂i, 6ω̂i , Ĵ i. r̂off , 6Ĵ i
, Ti,M i

T i =
[
0 0 Ti

]T
ui = M i − r̂off × T i
ωi+1 = ω̂i + Ĵ i

−1
(ui − Ĵ i × Ĵ iω̂i)dt

for k = 1 : 3 do
if Ĵ i(k) ≤ Jmin then

6add (k, k) =

(
6Ĵi

(k, k)/J4min
)
ui(k)2dt2

else
6add (k, k) =

(
6Ĵi

(k, k)/Ĵ i(k)4
)
ui(k)2dt2

end if
end for
6ωi+1 = 6ω̂i + 6add
Return ωi+1, 6ωiC1

Algorithm 2Measurement Model of Kalman Filter
Arguments: ωi+1, 6ωiC1 , ωIMU ,i+1
initial weight: R = w2

measI3×3 constraint: c
for k = 1 : 3 do

r(k) = |ωIMU ,i+1(k) − ωi+1(k)|
if r(k) ≤ c then

Rmeas(k, k) = R(k, k)
else

Rmeas(k, k) = R(k, k)
r(k)
c

end if
end for
Kkalman = 6ωiC1

(
6ωiC1 + R−1

meas,
)−1

ω̂i+1 = ωi+1 + Kkalman
(
ωIMU ,i+1 − ωi+1

)
6Oωi+1 = (I3×3 − Kkalman)6ωi+1

Return ω̂i+1, 6ω̂i+1

Algorithm 3 Column Vector Computation φ1 for H1

Arguments: k,ω,α
ṗ = α(1), q̇ = α(2), ṙ = α(3)
p = ω(1), q = ω(2), r = ω(3)
if k = 1 then

φ1 =
[
ṗ pr −pq

]T
else if k = 2 then

φ1 =
[
−qr q̇ pq

]T
else if k = 3 then

φ1 =
[
qr −pr ṙ

]T
end if
Return φ1

The standard deviation of the KF can determine the
observability. In Algorithm 4, a column vector is inserted
when the angular velocity of the k-th component is greater
than the corresponding standard deviation. Otherwise, a zero
vector is inserted into the column vector.

In Figure 4, the angular rates along the x- and y-axes are
greater than the corresponding standard deviations. In other
words, sufficient oscillation for RLS to infer MOI parameters
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FIGURE 4. Data processing algorithm through the use of the correction law.

Algorithm 4 Data Processing Algorithm for H1

Arguments: Ti, ω̂i, ω̂i+1,6ω̂i ,

α̂ =
(
ω̂i+1 − ω̂i

)
/dt

for k = 1 : 3 do
if |ω̂i(k)| ≥

√
6ω̂i (k, k) then

h1(k) = φ1(k, ω̂i(k), α̂).
else

h1(k) = 03×1 and
end if

end for
h1(4) =

[
0 −Ti 0

]T
h1(5) =

[
Ti 0 0

]T
H1 =

[
h1 h2 h3 h4 h5

]
Return H1

along the x and y axes occurs; therefore, angular acceleration
data through differentiation of angular velocity should be
inserted into the observation column vector h1(1) and h1(2).
This forces RLS to correct MOI parameters Ĵxx and Ĵyy.
However, the angular velocity along the z-axis is less than the
corresponding standard deviation. Therefore, the observation
column vector h1(3) was set as a zero vector 031. This
determines when RLS has to correct the dynamic parameters
(COM offset and MOI). This is why it is referred to as the
correction law.

C. RECURSIVE LEAST SQUARE
The main purpose of RLS is to estimate the COM offset and
MOI. Algorithm 5 presents the RLS algorithm in detail. The
control input is moment M i at the current step. M i − H1θ̂ i
denotes innovation error. In Algorithm 5, the update gain

matrix Kupdate ∈ R5×3 is determined by the observation
matrix H1 processed in advance using a data-processing
algorithm and the previous covariance matrix. This gain
matrix determines the extent to which the correction should
be achieved for the parameter.

Algorithm 5 RLS Algorithm for COM Offset and MOI

Arguments: H1,M i, θ̂ i,6θ̂ i

where θ̂ i =
[
Ĵxx,i Ĵyy,i Ĵzz,i x̂off ,i ŷoff ,i

]T
RLS weight: RRLS = w2

RLSI5×5

Kupdate = 6
θ̂ i
HT

1

(
H16θ̂ i

HT
1 + R−1

RLS ,
)−1

θ̂ i+1 = θ̂ i + Kupdate,
(
M i −H1θ̂ i

)
6

θ̂ i+1
=
(
I5×5,−KupdateH1.

)
6

θ̂ i

Return θ̂ i+1,6θ̂ i+1

Data processing through the correction law contributes to
RLS. The inertia parameter can be corrected by using an
update gain matrix. The updated inertia parameter can be
represented as follows:

θ̂ i = θ̂ i−1 + Kupdate(M i −H1θ̂ i−1) (30)

where θ̂ i, =
[
Ĵxx,i Ĵyy,i Ĵzz,i x̂off ,i ŷoff ,i

]T
.

The update gain matrix can be expressed as follows:

Kupdate =
[
61h1(1)TP . . . 65h1(5)TP

]
(31)

where 6
θ̂ i

=
[
61 62 63 64 65

]
and P = (H16θ̂ i

HT
1 + R−1

RLS )
−1.

In (31), two columns, h1(4) and h1(5) are not zero vectors
during flight. However, h1(1), h1(2), and h1(3) columns can
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be zero vectors depending on the correction law. For instance,
in Figure 4, only column h1(3) is set to a zero vector, so there
is no correction for the z-axis MOI. Therefore, any MOI
parameter other than the z-axis was corrected.

Algorithm 6 Observation Matrix for Mass and Sensor
Location Estimation

Arguments: aIMU ω̂i, ω̂i+1 6ω̂i , xoffset , yoffset
x = −

(
xoffset +

IMUxCOM
)

y = −
(
yoffset +

IMUyCOM
)

ω̇ =
1
dt

(
ω̂i+1 − ω̂i

)
� = [ω̂i]× ∈ R3×3

�̇ = [ω̇]× ∈ R3×3

if |ω̂i(3)| <
√

6ω̂i (3, 3) or |ω̂i(2)| <
√

6ω̂i (2, 2) then
h2(:, 1) = 03×1

end if
if |ω̂i(1)| <

√
6ω̂i (1, 1) or |ω̂i(3)| <

√
6ω̂i (3, 3) then

h2(:, 2) = 03×1
end if
if |Oωi(2)| <

√
6ω̂i (2, 2) or |ω̂i(1)| <

√
6ω̂i (1, 1) then

h2(:, 3) = 03×1
end if
H2 =

[
aIMU + xh2(:, 1) + yh2(:, 2) h2(:, 3)

]
Return H2

Algorithm 7 RLS2 for Mass and Sensor Location Estimation

Arguments: θ̂2,i. 6θ̂2,i
, H2, Ti

where θ̂2,i =
[
m̂i COM m̂zIMU ,i

]T
and RRLS2 = w2

RLS2, I3×3

T i =
[
0 0 Ti

]T
KRLS2 = 6

θ̂2
HT

2

(
H26θ̂2

HT
2 + R−1

RLS2

)−1

θ2,i+1 = θ2,i + KRLS2

(
T i −H2θ̂2,i

)
6

θ̂2,i+1
=
(
I2×2 − KRLS2HT

2

)
6

θ̂2,i

Return θ̂2,i+1, 6θ̂2,i+1

D. MASS AND SENSOR LOCATION ESTIMATION
Algorithms 6 and 7 show how the mass and IMU sensor
location estimators operate. In Algorithm 6, x and y represent
IMU sensor locations in the COM frame. Algorithm 6 inserts
the data by checking the angular velocity motion. When
the angular velocity along the z-axis or y-axis exhibits no
motion, the column of the temporary observation matrix
is filled with zero vectors 03×1. Otherwise, the column
vector is not replaced by a zero vector. Finally, according
to (20), observation matrix H2 ∈ R3×2 is inserted. Then,
Algorithm 7 obtains the processed observation matrix H2,
collective thrust Ti, estimated values θ2,i, and variances 6

θ̂2,i
at the previous step for mass and sensor location, where
θ2,i =

[
m̂i COM m̂zIMU

]T
. By computing the gain matrix

KRLS2, the estimated values θ̂2,i+1 and variances 6
θ̂2,i+1

.

The x- and y-coordinates of the sensor location can be
computed using COM offset in (20).

E. RLS AND RLS2 WITH LOW PASS FILTER
The algorithm is the same as Algorithms 5 and 7, except for
the fact that the observation matrices H1 and H2, collective
thrust Ti and moment M i are processed through a LPF. The
domains of (10) and (20) can be converted into the Laplace
domain as follows:

M(s) = H1(s)θ1(s), (32) 0
0

T (s)

 = H2(s)θ2(s). (33)

In (32) and (33), the transfer function of the low-pass filter
can be multiplied by both sides, and the transfer function of
(32) and (33) can be represented as

HLPF (s)M(s) = HLPF (s)H1(s)21, (34)

HLPF (s)

 0
0

T (s)

 = HLPF (s)H2(s)22. (35)

whereHLPF =
1

(1/τ )s+1 I3×3 and τ denotes the time constant.
By taking the inverse z-transform to the left-hand side of
(34) and (35), the moment M and collective thrust Ti can be
expressed as

MLPF [i+ 1] =

(
1 −

Ts
τ

)
MLPF [i] +

Ts
τ
M i (36)

TLPF [i+ 1] =

(
1 −

Ts
τ

)
TLPF [i] +

Ts
τ
T [i] (37)

where Ts is the sampling time and αRLS = Ts/τ is chosen
for convenience. Because each component for the observation
matrices cannot be superposed immediately, the wholematrix
H1 and H2 according to [37] and [42] should be processed
through a low-pass filter such as

H1,LPF [i+ 1] = (1 − αLPF )H1,LPF [i]

+ αLPFH1[i], (38)

H2,LPF [i+ 1] = (1 − αLPF )H2,LPF [i]

+ αLPFH2[i]. (39)

F. PD CONTROLLER IMPLEMENTATION
As identification requires data acquisition, it is necessary to
implement a controller and trajectory generation. We adopted
a cascaded PD control algorithm. The position control law is
expressed as follows:

fp = m(r̈des + Kp,p(rdes −
W rdes)

+ Kp,d (ṙdes −
W ṙCOM )) (40)

where f p =
[
fx fy fz

]T is the force vector in the world
frame. Kp,p ∈ R3×3 and Kp,d ∈ R3×3 are the proportional
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and derivative gains for the position control law, respectively,
and these matrices are diagonal positive definite matrices.
W rdes denotes the desired position expressed in the world
frame.

The attitude control law is as follows:

Mo = Ko,p

φdes − φs
θdes − θs
ψdes − ψs

− Ko,d

pq
r


+ roff ×

 0
0√
f T f

 , (41)

φdes = arcsin

 fx sinψdes − fy cosψdes√
f T f

, (42)

θdes = arcsin

 fx cosψdes + fy sinψdes√
f T f

, (43)

φs = arcsin(2(qyqz + qwqx)), (44)

θs = atan2

(
2(qxqz − qwqy)

cosφs
,
1 − 2(q2x + q2y)

cosφs

)
, (45)

ψs = − atan2

(
2(qxqz − qwqz)

cosφs
,
1 − 2(q2x + q2z )

cosφs

)
. (46)

Ko,p ∈ R3×3 and Ko,d ∈ R3×3 denote the proportional
gain and derivative gain matrices, respectively, for the
orientation control law. Likewise, the two gain matrices
comprise diagonal positive-definite matrices. p, q, and r are
the elements of the angular velocity along the x, y, and z-axes,
respectively. φdes, θdes, andψdes are desired Euler angles (roll,
pitch, and yaw), and the Euler angle about z−x ′

−y′′ is chosen.
The desired ψdes was created through trajectory generation.
φs, θs, ψs are the Euler angles of the quadrotor state (roll,
pitch, and yaw, respectively). qx , qy, qz, and qw are elements
of the quaternion that can be acquired by IMU or a camera
sensor. Finally, the rotor thrust should be clamped because
there is a constraint on rotor speed. The inverse dynamic
relationship between the rotor and the tuple of the collective
thrust and moment is


FR1
FR2
FR3
FR4

 =
1
4


1

√
2
l

√
2
l

CT
CM

1
√
2
l −

√
2
l −

CT
CM

1 −

√
2
l −

√
2
l

CT
CM

1 −

√
2
l

√
2
l −

CT
CM




T

Mx

My

Mz

 (47)

where T =

√
f Tp f p,

Mx = Mo(1),My = Mo(2),, andMz = Mo(3).

The clamping law is

FRi = min
(
max

(
FRi,FR,min

)
,FR,max

)
. (48)

In (48), FR,min and FR,max represent the minimum and
maximum rotor thrust, respectively.

G. TRAJECTORY GENERATION
This study adopts the triple integral method for position
trajectory generation and the double integral method for yaw
trajectory. The triple integral method considers the control
input as a jerk. Specifically, to reach the target position,
it should be integrated thrice. In contrast, the control input of
the double integral is acceleration. To achieve the yaw target,
the control input must be integrated twice. The two methods
are divided into bang-bang control and bang-off-bang control
depending on constraints, target position, and yaw target.
This study adopts only the bang-off-bang control to create
a trajectory for position and yaw trajectory generation.
Because this study mainly focuses on inertia parameter
identification, we do not provide a detailed description of
trajectory generation.

IV. SIMULATION ENVIRONMENT SETUP
A. SENSOR DATA GENERATION
The software we used was MATLAB 2021 a, and the
simulator was based on the customized Runge–Kutta fourth
order. The IMU sensor model was implemented using the
imusensor function. To reflect on a real IMU sensor,
we analyzed IMU sensor noise first. The IMU sensor data
were acquired using Pixhawk 4. Noise density should be
reflected to generate fake IMU data. The definition of
gyroscope noise density is

NDgyro =
σω

√
SR

(49)

where σω =

√
1
N

∑N
i=1

(
ωIMU [i] − ωgnd [i],

)2
.

In (49), SR, σω andN denote the sampling rate, root-mean-
square error of the angular velocity for each component, and
the number of samples, respectively. ND denotes the noise
density abbreviation. ωgnd is the ground truth of angular
velocity. In the static state, the ground truth of the angular
velocity was zero. The noise density of the linear acceleration
can be defined as

NDacc =
σa

√
SR

(50)

where σa =

√
1
N

∑N
i=1

(
aIMU [i] − agnd [i]

)2
.

In (50), σa denotes the root-mean-square error of the linear
acceleration. The ground truths of the acceleration element
for the static environment were set as ax = 0 m/s2, ay = 0
m/s2, and az = 9.81 m/s2. Similarly, the root-mean-square
error was tested under static conditions. The sampling rate
was set to 100 Hz.

Table 1 shows the angular velocity’s RMSE and noise
density for IMU and the simulated noise density and
resolution setting for the angular velocity, which are given.
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TABLE 1. RMSE and noise density of gyro data for IMU and simulation setup for gyro data.

TABLE 2. RMSE and noise density of linear acceleration for IMU and simulation setup for linear acceleration.

TABLE 3. Quadrotor model MOI and COM offset information.

TABLE 4. Mass and sensor location information.

We assume that the noise of each rotor thrust obtained
through RPM data follows a zero-mean Gaussian normal
distribution:

wFRi ∼ N (0, σ 2(N 2)) (51)

where i = 1, 2, 3, 4.
In (51), σ 2 and i represent the variance of the thrust

noise and index of the rotor, respectively. The noise level
is approximately ±0.5 g with 150 g rotor thrust when
testing thrust with constant pulse width modulation (PWM).
By empirically adjusting the noise around that level, the
standard deviation σ of each thrust noise was nearly
0.0022 N; therefore, the noise of each thrust in the simulator
was set to 0.0022 N.

B. SIMULATION MODEL
The simulation model comprises a dynamic and kine-
matic model in (6)–(9), computed through the customized
Runge–Kutta fourth order. The noise vector of the rotor thrust
was added to each rotor thrust after the inverse dynamic
in (39) was taken for the tuple of the collective thrust and
moment. In the simulation, the ratio of CT to CM was 0.7.
Table 3 lists the MOI and COM offset values. The mass and

TABLE 5. Control gain and trajectory generator setup.

sensor locations in the COM frame are presented in Table 4.
The COM of quadrotor itself is assumed to be at the CG.
The quadrotor itself and the package is assumed to weigh
200 and 300 grams, respectively, and the package fixed to the
quadrotor is assumed to cause the CG of the vehicle including
the package to move to 8 and -21 millimeters along x and y
axis relative to COM frame.

C. CONTROLLER AND TRAJECTORY GENERATOR SETTING
Table 5 shows the PD gain matrices for the position control
and attitude control, as well as the constraints for the position
trajectory generator and yaw trajectory generator. First,
the position trajectory for hovering was applied. The first
target height was 1 m without any horizontal motion. Next,
the second position trajectory should be applied to excite
sufficiently for the estimator to infer the dynamic parameters.
The second target position was applied 1m to the x and y axes
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TABLE 6. Estimator initial values and variance setup.

FIGURE 5. Generated trajectory data for inertia parameter estimation.

simultaneously while maintaining the height of the first target
position. The final destination of this yaw trajectory was 45◦

(0.7854 rad) from the initial yaw.

D. GENERATED FLIGHT DATA
In Figure 5, the blue and red lines denote the desired position
and yaw trajectory generated through the triple integral
method and the aerial vehicle’s tracked position and yaw data.
During Interval 1, the vehicle reached the designated height
but did not move in the horizontal direction. In contrast,
a horizontal motion was applied during Interval 2. During
Interval 3, yaw motion was created.

V. SIMULATION RESULTS
The estimator setup is presented in Table 8 before explaining
the simulation analysis. Table 8 shows the initial values and
variances for KF, RLS, and RLS2, as well as the low-pass
filter coefficients and estimator conditions.

A. ANGULAR ACCELERATION DATA ANALYSIS
The angular acceleration data are shown in Figure 6. The
blue, red, and yellow lines represent the differentiation of
angular velocity measured by IMU, the one estimated by
KF, and the ground truth, respectively. As mentioned in
the generated flight data subsection, during Interval 1, only
vertical motion exists; therefore, the angular acceleration
data show insufficient excitation for the dynamic parameter
estimator to infer the parameter. Angular acceleration along
the x- and y-axes shows that oscillation occurs during Interval
2. The one along the z-axis oscillates enough for the estimator
to correct the z-axis MOI parameter during Interval 3. The
differentiation of angular velocity estimated byKF tends to be
noisy before Interval 2 or 3. After the beginning of Interval 2,
the noise of the x- and y-axis angular accelerations through
KF becomes less than that through IMU. In addition, the noise
of the z-axis through KF does so after the start of Interval 3.
The noise is mitigated when the oscillation starts because
the KF puts more confidence in the process model than
in the measurement model, and the process model has less
noise than the IMU sensor. Table 7 shows each component’s
root-mean-square error (RMSE) from 0 to 50 s. Angular
acceleration through KF is more accurate than that through
IMU because, while RMSE of the KF data is approximately
5 to 6 rad/s2, that of IMU takes about 7.
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FIGURE 6. Comparison of angular acceleration along x, y, and z axis.

TABLE 7. RMSE of angular acceleration.

FIGURE 7. MOI value estimation results along x, y, and z axis.

TABLE 8. MOI estimation result.

B. MOI ESTIMATION RESULTS
Figure 7 shows that the blue, red, yellow, and dotted lines
are the estimated values of MOI through RLS, RLS with
LPF, and RLS with KF and ground truth values. Even

FIGURE 8. COM offset estimation results.

TABLE 9. COM offset estimation result.

though Interval 1 does not have sufficient oscillation to
correct MOI in Figure 6, RLS and RLS with LPF start to
correct MOI parameters during that interval. Eventually, the
estimation of the x-axis MOI parameter abruptly increased
during Interval 1, and that of the y-axis sharply decreased.
However, observability-aware RLS with KF does not correct
MOI values at that interval. It corrects the x- and y-axis MOI
values during Interval 2 and the z-axis MOI during Interval 3.
Therefore, according to Figures 6 and 7, the correction law
works. Consequently, the relative error for MOI estimation
in Table 8 is much lower for the observability-aware inertia
parameter estimation method than for RLS or RLS with LPF.
The observability-aware inertia estimation method showed
that the absolute value of the relative error was within
3 percent.

C. COM OFFSET RESULTS
In Figure 9, at 5.28 s, the estimator starts to correct COM
offset values. This is because the data processing and dynamic
parameter estimator RLS begin to correct these values when
the estimator is activated. COM offset estimation using RLS
with LPF has surge values, whereas the observability-aware
inertia parameter identification method and RLS do not.
This incorrect COM offset estimation was attributed to an
inaccurate MOI estimation. The final estimation result of
COM offset is not different from RLS, RLSwith LPF, and the
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TABLE 10. COM offset estimation result.

FIGURE 9. Mass estimation results.

FIGURE 10. Sensor location estimation results.

observability-aware inertia parameter identification method.
Table 9 shows that the performances of the three methods are
approximately the same because the observability of COM
offset is always guaranteed during flight.

FIGURE 11. The red circle showing that the surge of the estimated sensor
location for RLS with LPF method.

D. MASS ESTIMATION RESULTS
The fact that the collective thrust is always greater than zero
makes the estimation of mass and COM offset consistently
observable. Therefore, there is no significant difference in the
performance between RLS, RLS with LPF, and our proposed
method, as shown in Figure 9. In Table 10, the relative errors
of the mass estimation through the three methods are almost
the same.

E. SENSOR LOCATION ESTIMATION RESULTS
With the RLS method, the relative height between COM
and IMU is incorrect in Figure 10; however, because COM
offset can be easily estimated, the inference on the x and y
coordinates of IMU in COM can be performed accurately.
In contrast, RLS with a low-pass filter has a surge in the
sensor location about x and y, as shown in Figure 11. This
is because the COM offset was estimated inaccurately at the
beginning of the inference. Our approach does not show surge
results for the x and y coordinates, and the observability-
aware inertia parameter estimation approach estimates the
relative height at the end of all trajectories. In Table 9, the final
estimated values for the mass and the x and y components
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of the sensor location have no significant differences among
the three methods. However, RLS tends to be susceptible to
the effect of angular acceleration noise; therefore, the relative
height is inaccurate. In contrast, our approach and RLS with
LPF showed absolute values of relative error within 8 and
5 percent, respectively.

VI. CONCLUSION
This study derived the process model’s variance to reflect the
MOI’s uncertainty. This derived variance makes it possible
to adjust the proportion of confidence in the process model
to that of the measurement model. Through KF, the noise
amplitude significantly decreases when sufficient excitation
is applied to the aerial vehicle. In addition, MOI correction
law makes RLS aware of the appropriate time to correct the
parameter. Our approach has no sharp decrease or increase in
MOI, COM offset, or sensor location estimation compared
to RLS with LPF and RLS. Therefore, the stable flight
would be possible by using the real-time observability-
aware inertia parameter identification when the quadrotor
transports the non-symmetric package or building block for
construction.

In addition, this study shows that the dynamic param-
eter estimator infers on parameters even during the time-
optimal trajectory instead of the extreme one to make the
parameter observable. Thus, our overall algorithm pipeline is
expected to save energy and guarantee control stability while
considering position and attitude control coupling. Hence,
applying the coupling between the translational dynamic and
orientational models with consideration of the COM offset
would be possible through the algorithm of the observability-
aware RLS with KF.

In future work, adaptive control and trajectory generation
considering the coupling between position control and
attitude control will be covered. In addition, a disturbance
observer (DOB) will be used to reject the disturbance
by combining the observability-aware inertia parameter
identification. Moreover, the estimation and compensation
of the reaction torque generated by the movement of the
manipulator will be dealt with in future work.
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