
IEEE SYSTEMS, MAN AND CYBERNETICS SOCIETY SECTION

Received 8 February 2023, accepted 1 March 2023, date of publication 9 March 2023, date of current version 15 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3254591

Optimization Reinforced PID-Sliding Mode
Controller for Rotary Inverted Pendulum
ARULMOZHI NAGARAJAN 1, (Member, IEEE),
AND ARULDOSS ALBERT VICTOIRE 2, (Member, IEEE)
1Government College of Technology at Coimbatore, Coimbatore, Tamilnadu 641013, India
2Anna University Regional Campus at Coimbatore, Coimbatore, Tamilnadu 641046, India

Corresponding author: Arulmozhi Nagarajan (arulmozhi6@gct.ac.in)

ABSTRACT The control of a rotary inverted pendulum (RIP) is challenging because it is an underactuated,
highly sensitive, and unsteady system. Sliding mode control (SMC) is a nonlinear control method with
high-frequency switching control. Designing a proportional integral derivative (PID) controller for a RIP
is challenging due to its nonlinearity and instability in open-loop characteristics. The primacy of the SMC
over the PID is the stability of the closed-loop. Hybrid control of a PID-SMC controller can provide
better performance because this technique demonstrates less chatter, higher precision, no oscillation, and
adequate gain tuning. To achieve gain tuning, the PID and SMC parameters must be optimized. Thus, this
paper proposed a congruently tuned control strategy (CTCS) to fine-tune the controller parameters. The
proposed strategy uses an improved whale optimization algorithm (WOA), i.e., the modified Manhattan
distance updatedWOA (MMD-WOA) to identify effective coefficient values for the sliding surface to reduce
tracking errors while reaching the desired position. The proposed CTCS for a RIP with the MMD-WOAwas
implemented, and the results are very promising.

INDEX TERMS Rotary inverted pendulum, congruently tuned control strategy, sliding mode control,
optimization, stability criteria.

I. INTRODUCTION
In the control engineering field, the inverted pendulum (IP)
is the most difficult system to control [1], [2]. IPs are highly
nonlinear, underactuated, multivariable, and exhibit open-
loop instability, and non-minimum phase. Currently, different
types of IPs are available, and the most common are the
linear, spherical, double, and rotary IPs. The rotary IP (RIP) is
the most commonly investigated nonlinear system due to its
static instability. A pendulum stabilization method has been
proposed previously [3], [4] to improve the performance of
the RIP. This method has been applied in various applica-
tions, e.g., position control, aerospace vehicle control, and
robotics [5]. Due to their structural simplicity and sturdiness
[6], [7], various tracking and stabilization control techniques,
including linear control, nonlinear control, and self-learning
control, are used. To maintain an erect pendulum position [4],
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[8], [9], complex control methods, e.g., full state feedback,
proportional integral derivative (PID) control, and linear
quadratic regulator (LQR) control, are employed to achieve
the stability of the unstable RIP [10]. Friction forces in the
joints of a nonlinear RIP can lead to steady-state errors within
limited periods and reduce performance [11]. In addition, the
sliding mode controller (SMC) is a unique and effective non-
linear control method due to its simple design and robustness
[12], [13]. However, the SMC has a major problem with chat-
tering phenomena, which can result in damage to actuators
[14], [15]. In addition, for control rider-motorcycle systems,
a simple model derived from a variant of the RIP system is
used to control circular movement on tracks with variable
radii. The RIP system is employed in various applications,
e.g., aerospace vehicle control, position control, and robotics
[16], [17]. The RIP system incorporates an arm that is driven
by voltage and revolves horizontally, and the pendulum is
attached to this and revolves along with a vertical position.
In a RIP, the pendulum alwaysmoves in a plane perpendicular
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to that of the rotating arm. Issues related to ‘‘nonlinearity,
robustness, following up and tracking’’ are demonstrated by
the pendulum [18], [19], [20], [21]. The control of this system
is essential and complex due to its two degrees of freedom
and single control input. Thus, the pendulum has become the
benchmark for various control techniques. In the literature,
most controlmodels are linearmethods, and suchmethods are
not suitable for controlling due to disturbances and nonlin-
earities. Among nonlinear methods, SMC is more robust and
accurate. Therefore, a system is required to realize optimal
gain parameter tuning.

Our primary contributions are summarized as follows.
• A control strategy that integrates a PID controller and

SMC strategy is proposed to address the nonlinearity issues
of underactuated RIP systems.

• In the proposed strategy, controller parameters are opti-
mized using a modified Manhattan distance updated WOA
(MMD-WOA).

• Response for sinusoidal input and its variation in Phase,
amplitude and an error analysis is conducted to evaluate the
performance of the proposed method compared to conven-
tional models.

The remainder of this paper is organized as follows.
Related work is summarized in Section II, and Section III
describes the system model of the proposed PID-SMC
optimization method using the MMD-WOA algorithm.
Section IV describes the optimal tuning of the coefficients
of controllers using the proposed MMD-WOA algorithm.
Finally, the paper is concluded in Section V.

II. LITERATURE REVIEW
In 2017, a previous study [1] compared LQR performance in
terms of the integral square error criterion for a step-change in
pendulum angle. That study also performed uncertainty tests
by adding loads to the end of the pendulum. The simulation
results demonstrated that the proposed method generated
better responses compared to conventional control strategies.
In 2020, another study [2] introduced a grey wolf optimizer
via particle swarm optimization (PSO) based on the adaptive
constant method to tune the parameters of a variable structure
adaptive fuzzy controller with reduced LQR (RLQR). Due to
its high performance, grey wolf optimization can realize real-
time implementation.

In 2017, a previous study [3] proposed the 2-loop fractional
PID (2-Loop FPID) control method for a rotary type single
IP to improve its potential. Here, a simple graphical tun-
ing method was developed based on the frequency response
to regulate the parameters of the 2-Loop FPID controller.
In addition, dynamic PSO was employed to fine-tune the
same parameters. In addition, saturation nonlinearity was
compensated by integrating the back-calculation anti-windup
method. They have investigated the 2-Loop FPID method in
terms of robustness.

In 2019, a previous study [4] proposed an intelli-
gently optimized self-tuning fractional-order control strat-
egy for an IP to improve its attitude stabilization. In this

strategy, the fractional-order proportional derivative con-
trollers are employed to reduce deflections in its state trajec-
tories. In addition, the system’s immunity against exogenous
disturbances was improved by dynamically adjusting the PD
gains of each controller using piecewise nonlinear functions,
which is accomplished at the end of each sampling interval.
Here, the fractional-number power of the derivative operator
and nonlinear gain-adjustment functions of each controller
are selected using the PSO algorithm. The authors tested
their model in the ‘‘QNET Rotary Inverted Pendulum setup
via ‘hardware-in-the-loop experiments’,’’ and the results have
exhibited significant improvement in the ‘‘error elimination
capability, convergence-rate, transient recovery, and distur-
bance rejection capability.’’

In 2020, another study [5] proposed a continuous fuzzy-
based super-twisting stabilization algorithm (FBSTSA) to
solve stability issues in underactuated RIP systems. Initially,
a new sliding surface is introduced utilizing integrating a
fully-actuated rotary arm and underactuated pendulum vari-
ables to resolve the under-actuation problem. The continuous
FBSTSA is used to tune the control gains concerning the
fuzzy rules. With the proposed FBSTSA, they demonstrated
that the sliding variable can reach zero at a defined time
limit, and then the closed-loop system state converges to zero
asymptotically.

A previous study [6] projected an optimized interval type 2
fuzzy proportional derivative controller (IT2F-PDC) in series
form for the RIP. Here, the IT2F-PDC parameters are opti-
mized using a genetic algorithm (GA) and PSO. In addition,
the goal of this study was to usher the pendulum to its
equilibrium position. Experimental results demonstrated the
potency and strength of GA-PSO-based controllers for RIPs
by considering load disturbances, parameter variation, and
noise effects.

In 2019, a previous study [7] applied a model-free back-
stepping (MFBS) control technique to study the control
mechanism of a RIP. Then, the system model’s ordinary
representation was made using the MFBS technique, and it
further estimated the unknown dynamics. The MFBS-based
control design was compared to the LQR control invariant
settings, and the results demonstrated that the performance
of the proposed control system was good in terms of control
performance.

In 2020, Reference [8] developed a fuzzy-based linear
quadratic regulator (FLQR) and a FLQ Gaussian (FLQG)
controller for a double link RIP (DLRIP) system to control the
steadiness of the system. In this study, the FLQR and FLQG
controllers were analyzed dynamically and compared to tra-
ditional LQR and LQG controllers. The authors compared
control performance in terms of the time required for settling,
peak overshoot, error in the steady-state and the overall root
mean square errors (RMSE).

In 2021, [36] advocated a control law based on feedback
linearization blended with PI controller that avoids the hectic
task of finding a solution for partial differential equations
for the pendulum process and the results are tested for step
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FIGURE 1. A rotary inverted pendulum setup.

FIGURE 2. Parameters associated with rotary inverted pendulum setup.

response of the primary angles. Reference [37] presented
an adaptive SMC for the position and Tracking control of
Quadrotor UAV in the presence of Disturbance and is com-
pared with the duo of PID and SMC and the outcomes are
tested for step responses with square wave as input.

III. THE PROPOSED CONTROL STRATEGY
A. ROTARY INVERTED PENDULUM (RIP)
The system model of the RIP is displayed in Fig.1. It com-
prises a rotary cart base and a pendulum. At the center surface
of the cart, the pendulum is pivoted which can revolve about
the hinge in the alike perpendicular surface with a circular
rail-like arrangement. The rotor arm angle, θ (in radians)
and pendulum angle, α (in radians) and other parameters
associated with the system are represented in Fig. 2. The total
kinetic and potential energy of the system is found primarily
to compute the Euler-Lagrangian derivatives to yield the
Equations of Motion (EOM) of RIP. The resultant non-linear

EOM of the RIP system is represented by (1) - (3),[
Jp − mprl cos θ

−mprl cos θJr + Jp sin2 θ

] [
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]
+
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Here, g = 9.8 m/s2 is the acceleration due to gravity, and
τ is the applied torque. There is no friction within the cart
and the rotary arm base or within the rotary arm and the
pendulum. Thus, system’s friction is assumed to be zero.
Solving for acceleration terms and having defined the states
of the system, the linearized state space model of the RIP is
given by (4)-(6) [27], [28], [29].

˙X (t) = Ax(t) + Bu(t)

Y (t) = Cx(t) (4)

where

A =
1
JT


0 0 JT 0
0 0 0 JT
0 1

4M
2
pL

2
pLrg −K1Dr K2Dp

0 −
1
2mpLpg(K3) 1

2mpLpLrDr −K3Dp

 (5)

B =
1
JT


0
0
K1

−K2

 ;C =

[
1 0 0 0
0 1 0 0

]
(6)

where

K1 = (Jp +
1
4
mpL2p )

K2 =
1
2
mpLpLr

K3 = (Jr + mpLr2)

and the corresponding states and output (7) are defined to be

x =
[
θ α θ̇ α̇

]T
; y =

[
θ α

]T (7)

where θ represents the angular measurements of rotor arm
angle, (in radians) with respect to the base and α represents
Pendulum angle, (in radians); θ̇ and α̇ are their correspond-
ing velocities respectively. Table 1 enlists the values of the
parameters used for the analysis. Thus, the main objective is
to control the pendulum angle such that it tracks the position
appropriately and comes to rest in a vertical position whereas
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FIGURE 3. Congruently tuned control strategy.

the cart can have a minor shift with respect to origin [26].
The system matrix A and Input matrix B of RIP (8)-(9) is
obtained using the parameter values enumerated in Table - 1
and is given by

A =


0 0 1 0
0 0 0 1
0 149.2751 −0.0104 0
0 261.6091 −0.0103 0

 (8)

B =
[
0 0 49.7275 49.1493

]T (9)

and the Eigenvalues are computed to be in (10)[
0 −16.1773 16.1714 −0.0046

]T (10)

which indicated a presence of one pole in the right half of
s-plane indicating the unstable nature of the system.

B. CONGRUENTLY TUNED CONTROL STRATEGY (CTCS)
The main aspiration of the control scheme is balancing the
RIP, so that the pendulum always rests in an upright manner
in its inverted position by controlling the position of the cart
on the circular track rapidly and precisely. Fig.3 manifests
the congruently tuned control strategy. The proposed strategy
comprises a PID and SMC, which are used to control the RIP.
The PID block comprises a proportional gain (Kp), an integral
gain (Ki), and a derivative gain (Kd). In addition, a feedback
signal from the pendulummonitors the error between the sys-
tem output and the desired position. Then, the relevant error
signal e(t) should be provided to the PID and SMC blocks,
which are used to control the RIP andwhose parameters are to
be fine-tuned. The SMC controller, which has inputs, i.e., the
error signal e(t), derivative error, and the feedback signal
from the pendulum, helps reduce the chattering problem with
adequate gain tuning. Thus, the output of the PID and SMC
controller is finely tuned, coherent to the constraints of the
pendulum system, and creates a controller domain where
both the PID and SMC can coexist. The proposed CTCS
combines the PID and SMC without conflict in consideration
of constraint priorities.

Sliding mode control has been recorded to be a robust
and impressive control methodology for the stabilization of
underactuated nonlinear systems [34]. The strategy is based

TABLE 1. RIP parameters.

on characterizing exponentially stable (sliding) surfaces as
a function of the system states and utilizing the Lyapunov
theory to establish all closed-loop system trajectories reach
the assured surfaces in finite time. Since the closed-loop
system dynamics on the surfaces are exponentially stable, the
system trajectories slide along the surfaces until they rise to
the origin. The slidingmode control law designated for under-
actuated systems assorts the stabilization problem based on
equilibrium. The sliding mode control law is determined with
defined Lyapunov function for a underactuated two-degree-
of-freedom nonlinear system, that guarantees exponential
stability and the Lyapunov function also allows to predict
the field of attraction on the sliding surface securing that all
closed-loop system trajectories approaching this field will
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FIGURE 4. Robust stability analysis of SMC-PID controller.

FIGURE 5. Magnitude response of sensitivity of control action due to
input and noises in output.

concur exponentially to the origin while sliding along the
surface.

The robust stability analysis is recorded to have a peak
value of less than 1 and of value 0.2 for the SMC-PID con-
troller. This result is shown in Figure 4 and Figure 5 displays
the magnitude response of sensitivity of control action with
respect to the reference and noise in the outputs of rotary
inverted pendulum SMC-PID Controller that publishes to
be in limited magnitudes at low frequencies with exclusive
disparities for the controller scheme.

The feedback linearization for a class of non-linear system
[34] in (11) is calculated as mentioned below:

φ̈ = g(φ, t) + h(φ, t)ut (11)

According to [31], the control input of PID (12) is defined as

uPID = Kpe(t) + Ki

∫
e(t)dt + Kd

d
dt
e(t) (12)

The sliding mode control is given by (13)-(14)

uSMC =
V − g(φ, t)
h(φ, t)

where

V = φ̈d (t) + c1e(t) + c2 ˙e(t)

uSMC =
φ̈(t) + c1e(t) + c2 ˙e(t) − g(φ, t)

h(φ, t)
(13)

The overall combination of SMC and PID approach of the
proposed controller is given by (14)

ut = uSMC + uPID

ut =
φ̈(t) + c1e(t) + c2 ˙e(t) − g(φ, t)

h(φ, t)
+

Kpe(t) + Ki

∫
e(t)dt + Kd

d
dt
e(t) (14)

C. OPTIMIZATION BASED PID-SMC CONTROLLER
Owing to its underactuated nature with the availability of
one actuator for two degrees of freedom and the open-loop
characteristics instability, designing of control strategy for
RIP using PID controller is a quiet challenging task. The
major problem in sliding mode control is chattering phenom-
ena, because of its low control accuracy. Hence, a hybrid
control of PID based SMC Controller with better perfor-
mance is opted with adequate gain tuning to reduce the
chattering. In order to achieve tuned gains, the parameters
of PID controller namely, ‘‘proportional gain (Kp), Integral
gain(Ki) and Derivative gain (Kd ) and the coefficients (c1)and
(c2)of SMC will be fine-tuned by a Modified Manhattan
Distance Updated Whale Optimization Algorithm (MMD-
WOA), obtained via improving the standard WOA. Thus, the
MMD-WOA is presented to choose the prompt sliding sur-
face coefficients and the gain parameters as well to minimize
tracking error.

IV. OPTIMAL TUNING OF GAIN PARAMETERS AND
SLIDING SURFACE COEFFICIENTS BY MMD-WOA
A. SOLUTION ENCODING AND OBJECTIVE FUNCTION
For precise error minimization, the presented work plans to
tune the proportional, integral and derivative gain constraints
(Kp,Ki,Kd ) of PID controller and the coefficients (c1,c2) of
the SMC, such that the error between tracking position and
the desired position can be minimized. Thus, the defined
function for the objective (OF) of the proposed methodology
is specified in (15).Here, (φd (t))represents the desired posi-
tion, (φ(t)) represents the tracking position.

error = φd (t) − φ(t)

OF = Min(error) (15)

B. MODIFIED MANHATTAN DISTANCE UPDATED WOA
ALGORITHM
The whale optimization algorithm (WOA) is a compara-
bly new meta-heuristic optimization approach [22] which is
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inspirited by the bubble-net hunting of humpback whales.
The implementation of WOA is uncomplicated and has
meagre modifications in their parameters, that prints out-
performing results when compared to particle swarm opti-
mization (PSO), grey wolf optimizer (GWO), gravitational
search algorithm, and so on. WOA has a good convergence
rate, but the performance of WOA in finding the global
optimal solution of an underactuated, non-linear, unstable
process with multiple local optimal solutions is not ideal.
In this work, a Modified Manhattan-Distance based whale
optimization algorithm (MMD-WOA) algorithm is proposed,
with four main enhancements: (1) Distance based posi-
tion identification (2) Logarithmic based position updation
to handle nonlinearities (3) Nonlinear fitness estimation
design is introduced to balance the ratio of exploitation
phase and exploration phase. (4) Random position cluster-
ing and shrinking encircling strategy is picked to disinte-
grate population into numbers of groups for bettering the
diversity of population. Location based exploration phase
are used to augment the search of prompt sliding sur-
face co-efficients and gain parameters and also minimize
error.

Modified Manhattan Distance Updated Whale Optimiza-
tion Algorithm (MMD-WOA) is a novel meta-heuristic
algorithm that is developed from the classical Whale Opti-
mization Algorithm (WOA) [22] which is based on the
Whale’s behaviour while hunting the prey: It incorpo-
rates three main phases namely, ‘‘Encircling prey, Bubble-
net attacking model and Searching for prey’’. Circling
the prey: Naturally, the Whales are capable of identify-
ing the prey’s present location and they start to surround
the prey. However, the location of the optimum solution
(i.e., (Kp,Ki,Kd ) and (c1,c2)) are not known in advance,
so that the algorithm is used to find the solution which
approaches the optimum one. As soon as the best agent
is fixed, while the iteration repeats, the other agents will
try to upgrade their locations with respect to the best
agent.

Ds = |CsX∗
s (t) − Xs(t)| (16)

Xs(t + 1) = w ∗ w1 ∗ (Xs(t) − AsDs) (17)

Here, As and Ds are coefficient vectors (16), t refers the
current iteration,X∗

s represents the position vector of acquired
optimal solution and the position vector is represented as Xs
the real value is indicated by ||, and represents the multiplica-
tion. The vector evaluation of As is based on the modified
Manhattan distance as per (18) and hence it is called as
MMD-WOA and Cs is formulated as per (19), in which rs
represents the random vector limited over the interval (0,1).

As =
1
N

N∑
s=1

|Xs − X∗
s |

|Xmaxs − Xmins |
(18)

Cs = 2rs (19)

Bubble-net Attacking Model: The bubble-net behaviour of
humpback whales comprises of 2 approaches. a. Shrinking
Encircling model: From the current position of the optimal
whale and the true position of the whale, a new position for
whale can be fixed by assigning the values for As among
(-1,1) randomly. b. Spiral Updating position: This phase cal-
culates the distance among the whale location (Xs,Ys) and
prey location(X∗

s ,Y
∗
s ) stated in (20), wherein h refers a fixed

term that defines the logarithmic spiral form, f is a random
number in (−1,1) and Ds = |X∗

s (t) − Xs(t)| indicates the
distance among whale and prey.

Xs(t + 1) = Dsehf cos 2π f + X∗
s (t) (20)

For modelling the concurrent behaviour, it is presumed that a
chance of 50% is there to select among either ‘‘the shrinking
encircling mechanism or the spiral mode’’ for the whale’s
location upgrade throughout optimization. So, the arithmetic
modelling is explained in (21).

Xs(t + 1) =

{
X∗
s (t) − AsDsifpr < 0.5
Dsehf cos 2π f + X∗

s (t)ifpr ≥ 0.5
(21)

Prey Searching: In this phase, humpback whales search is
randomly based on the location. Therefore, use of As with
arbitrary values > 1 or < 1 will force the whale to relocate
away from the whale which is a reference one. The randomly
selected search agent is deployed to upgrade the location of
the search agent within the global search. Now, mathematical
model for the exploration phase (22)-(23) is given as

Ds = |CsXsran − Xs| (22)

Xs(t + 1) = w ∗ (1 − w1) ∗ Xsran − AsDs (23)

where, Xsran indicates the random position vector selected
among the present population. Fig.6 represents the flowchart
structure of the proposed Modified Manhattan Distance
Updated-WOA algorithm.

The algorithmwas subjected to 30 iterations and the choice
of controller parameters were suggested by the algorithm and
as proportional gain (Kp)= 0 to 20, Integral gain(Ki)= 0 to 2
and Derivative gain (Kd ) = 0 to 2 and the coefficients
(c1) and (c2) of SMC to be from 0 to 5;

V. RESULTS AND DISCUSSIONS
The proposed PID-SMC controller for the RIP was exe-
cuted in MATLAB/Simulink and analysis was done. The
performance of Sliding Mode Controller (SMC), Fire Fly
Algorithm (FFA) andWhale Optimization Algorithm (WOA)
is compared with the proposed MMD-WOA to stabilize
the tracking position of RIP for the upright position. φd (t).
Finally, superposition of these actions constitutes the mech-
anism of the control strategy. Here, the performance of the
SMC, FireFly algorithm (FFA), and WOA were compared to
that of the proposed MMD-WOA in terms of stabilizing the
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FIGURE 6. Flowchart of proposed MMD-WOA.

tracking position of a RIP in the upright position. The param-
eters of PID controller namely, proportional gain (Kp), Inte-
gral gain (Ki) and Derivative gain (Kd) is computed to be
15.9446,1.9406 and 1.6452 respectively and the coefficients
(c1) and (c2) of SMC is 4.6210 and 4.1349 respectively.The
MMD -WOA parameters As is chosen to be 1 and w1
to be 0.

The algorithm is iterated for a maximum of 30 times
with ode 45 solver with variable-step type and enabling auto
updation of step size to enable smooth conduction of analysis
with sine wave input. Figure 7 show a Convergence curve of
FFA, and WOA controllers compared to that of the proposed
MMD-WOA,that ensures MMD-WOA responds rapidly to
load variations with fewer tuning parameters and Ds the
distance factor also acts as a limiting factor to prevent the
values frequently leaving from search space leading to a
quick exploration phase. Figure 8 compares different control
techniques by analyzing the response, the control signal,

FIGURE 7. Convergence curve of optimization algorithms.

and the error signal based on the desired tracking position.
Figure 8(a) shows the time response. As can be seen, tracking
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FIGURE 8. Performance analysis of proposed over traditional methods.

FIGURE 9. Case-1-performance analysis of proposed over traditional methods.

FIGURE 10. Case-2-performance analysis of proposed over traditional methods.

stability at the desired reference position is achieved after
1 s. Thus, the proposed MMD-WOA controller is much
better compared to the conventional WOA. The stabilization
times of the SMC and FFA are 1.8 s and 1.6 s, respectively.
Figure 8(b) compares the control signal. As shown, the pro-
posed strategy exhibits effortless control over that of classical
approaches, and it is also clear that chattering is absent.
Figure 8(c) shows the error signal. Here, the steady-state
error at the desired reference position is taken as zero.
After 0.5 s, the proposed MMD-WOA controller reaches
the desired reference position faster than the compared
controllers.

A. PERFORMANCE ANALYSIS
Figures 9 and 10 show performance analysis of SMC, FFA,
and WOA controllers compared to that of the proposed
MMD-WOA. Case-I and II results are based on the ampli-
tude variation. Hence, the position of the desired tracking
point changes to φd (t) = 1 sinπ t and φd (t) = 10 sinπ t
respectively. Here, the amplitude of the desired reference
position is set to 1 rad/sB2 and 10 rad/s2. In addition, the
proposed controller reaches the desired reference position
after 0.8 s and 3 s compared to the other controllers. Case III
and IV are imprinted in Figures 11 and 12 respectively
when the position of the desired tracking point changes to
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FIGURE 11. Case-3-performance analysis of proposed over traditional methods.

FIGURE 12. Case-4-performance analysis of proposed over traditional methods.

FIGURE 13. Error signal and control signal of controllers on discussion.

TABLE 2. Error performance analysis for proposed work.

φd (t) = 0.1 sin π
2 t and φd (t) = 0.1 sin π

4 t based on the
frequency variation. The stability of the reference position
tracking frequency completes one cycle after π/2 rad/sec

TABLE 3. Error performance analysis for case-1.

TABLE 4. Error performance analysis for case-2.

TABLE 5. Error performance analysis for case-3.

and π/4 rad/sec. Note that the frequency of the proposed
controller is not as accurate as the reference controller; how-
ever, the proposed MMD-WOA controller is much better
than that of the other controllers. Thus, optimized gain can
be achieved by controlling the parameters, and the desired
control signal and error signal output are obtained. Figure 13

24428 VOLUME 11, 2023



A. Nagarajan, A. A. Victoire: Optimization Reinforced PID-Sliding Mode Controller for Rotary Inverted Pendulum

TABLE 6. Error performance analysis for case-4.

shows the corresponding error signal and control signal for
various controllers.

B. ANALYSIS ON ERROR MEASURES
The analyses of the presented model by considering the error
metrics for the different cases are revealed from the tabulated
values. From table 2, the MAE performance of the proposed
MMD-WOA scheme is 34.55% better than SMC, 82.91%
better than FFA and 82.07% better thanWOA schemes. Also,
MSE of the suggestedMMD-WOAmodel is 1.9% better than
WOA-PIDSMC scheme. Moreover, the RMSE measure of
the presented MMD-WOA technique is 48.72% superior to
SMC, 30.48% better than FFA and 0.13% better than WOA.

VI. CONCLUSION
This paper has proposed the CTCS with a modified Man-
hattan distance updated WOA for rotary inverted pendu-
lums. A performance analysis demonstrated that the proposed
strategy outperformed SMC, the FireFly algorithm, and the
conventional WOA in terms of error reduction, as shown
in Tables 2 to 6. In addition, the proposed control strategy
exhibits less chattering, higher precision, and no oscillation.
The gain tuning of the proposed strategy realizes excel-
lent position tracking and minimal control effort (Figure 7),
and for different cases, analysis are carried out in terms of
amplitude and phase angle variations that are obvious in
Figures 8–11. Thus, the simulation and error performance
results suggest that the optimal tuning of the gain parameters
obtained by the proposed strategy can improve reliability and
minimize errors by enhancing the quality of the result. As a
result, it is believed that the proposed control strategy would
be highly effective for the control of underactuated, unstable,
and non-minimum phase systems.
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