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ABSTRACT In this paper, we describe how the up-to-date state of a digital twin, and its corresponding
simulation model, can be used as a fitness function of an evolutionary algorithm for optimizing a large-scale
industrial process. An ICT architecture is presented for solving the computational challenges that arise
when the fitness function evaluation takes considerable amount of time. Parallel computation of the fitness
function in a cloud computing environment is proposed and the evolutionary algorithm is connected to the
computational environment using the Function-as-a-Service approach. A case-study was conducted on the
district heating network of Espoo, the second largest city in Finland. The study shows that the architecture
is suited for optimizing the operating costs of the large district heating network, with over 800 km of water
pipes and over 14 heat producers, reaching a cost-saving of an average of 2%, and up-to 4%, over the current

industrial state-of-the-art method in use at the city of Espoo.

INDEX TERMS Cloud computing, evolutionary computation, digital twin, optimization, simulation.

I. INTRODUCTION

Evolutionary algorithms have emerged as an effective heuris-
tic for optimization problems in the process industry, see [1],
[2], [3], [4], [5], [6]. These algorithms generate solution
candidates, and the optimality of the candidates is evaluated
against a fitness or objective function. The algorithm con-
tinues to produce candidates with a higher fitness function
value, resulting in a near optimal solution after the algorithm
has been executed enough iterations. The careful design of
the fitness function is crucial for ensuring the real-world
relevance of the optimization and to manage computational
complexity. In the literature, authors usually hand craft the
fitness function as a formula. In applications to industrial
processes, this approach works best at a limited scope, such
as a control loop or subprocess. However, there is a lack of
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applications in large-scale industrial processes in which the
optimization task cannot be isolated to subprocesses.

As an example of such a process, district heating is con-
sidered. District heating is used for heating buildings in an
energy efficient way [7]. In a district heating network, one or
more power plants generates heat that is transported using hot
water pipes to buildings throughout the network. Fuel costs
can be minimized by adjusting the outgoing water tempera-
ture of those plants [8]. Slow thermohydraulic phenomenon
occurs due to flow-delays in the hundreds of kilometres of
pipes [9]. Optimizing for such a complex state is difficult,
but a dynamic process simulator with a model of the district
heating network can be used for this purpose [10]. A dynamic
simulator captures automation systems and environmental
conditions and can determine the time-dependent impacts of
transients such as valve closures or weather changes [10].
When optimizing a district heating network by changing
setpoints, faster changes will increase the complexity of the
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optimization problem without significant benefits to the oper-
ating plan of the network, due to the slow thermohydraulic
phenomenon. Additionally, since the heat propagation in the
piping network takes several hours, a long time window is
needed to evaluate the goodness of a candidate solution,
in order to avoid short-sighted optimization of immediate
benefits at the expense of longer-term costs [9]. The length of
the time window should be sufficient to capture heat propa-
gation effects throughout the network and longer-term impact
of charging or using the thermal energy storage. However, for
reasons of computational complexity, a shorter time window
is preferable.

A district heating simulation captures the network in an
ideal condition. In practice, a large network continuously
experiences minor outages of pipelines or plants. The piping
has redundancies that permit the automation system to exploit
alternative routes to ensure the smooth operation of the net-
work despite these outages. Unfortunately, this undermines
the real-world relevance of the simulation-based approach.
In recent years, the digital twin has emerged as a technique
for maintaining up-to-date virtual replicas of physical sys-
tems, to be used for various monitoring and optimization
applications deployed in cyber-space, see [11], [12], [13],
and [14]. In this paper, the term digital twin is defined as a
model that represents a real physical system, which is updated
24/7 using real measurement data from the real physical
system. We investigate the use of a digital twin of an industrial
process to implement the fitness function of an evolutionary
optimization algorithm. The following research questions are
considered:

1. How can we use simulation and optimization algorithms
to minimize the heating energy production cost of a district
heating network with several production plants?

2. What kind of ICT architecture can support the use
of a digital twin as the fitness function of an evolutionary
algorithm that optimizes a large-scale industrial process?

3. What are the trade-offs between computational complex-
ity and fidelity, and how can the computational challenges be
mitigated with parallel computing and cloud computing?

4. How does the decision to use an evolutionary computa-
tion impact the architecture and computational challenges?

5. How does the proposed architecture and approach for
handling the trade-offs perform in a case study? In this article,
we investigated one specific type of evolutionary algorithm in
a case study of the entire district heating system of Espoo, the
second largest city in Finland.

Il. RELATED WORK
A. DISTRICT HEATING NETWORKS

District heating networks are examples of large-scale indus-
trial processes, which from an optimization task’s point-of-
view cannot be isolated to subprocesses. District heating is
the established solution for heating buildings in Northern
Europe, see [15], [16], and due to its energy efficiency bene-
fits, see [7], it has recently been applied in a number of other
countries, see [17], [18], and [19]. A power plant generates
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heat, which is transmitted to end users in an urban district
through a network of hot water pipelines. Heat-exchangers
at the end user buildings extract the energy required for
space heating and service water heating, and the cooled water
returns to the power plant through separate return pipelines.
The network can span the geographical area of a large city,
and it may contain several heat-generating producers, some
of which may be CHP (combined heat and power) plants,
HOB (heat only boilers) plants, heat-pumps or waste heat
facilities. The optimization target is to adjust the temperature
of the outgoing water at each plant, so that the fuel costs are
minimized, see [8]. The optimization is greatly complicated
by the thermohydraulic delays in the network, since any
change of temperature at a plant will take several hours to
propagate to end users, see [20], depending on each user’s
distance from the plant. The demand for space and service
water heating can be forecast, but the forecasts involve uncer-
tainty. The price of fuel and electricity varies by the hour,
and a price forecast is available to the optimizer. The district
heating network permits broad variations in the temperature
of the district heating water, so significant potential for fuel
cost optimization is possible through proactively raising the
temperature and using the hundreds of kilometres of district
heating pipeline as a thermal energy storage.

In order to apply an evolutionary algorithm, the design
of the fitness function becomes exceedingly difficult, due to
slow thermohydraulic phenomenon and very large state space
of the city-wide district heating network, see [9]. A simulator
that captures this phenomenon at a sufficient level of detail
can be used to implement the fitness function. As input,
it receives a candidate solution that specifies the outgoing
temperature at the power plants. The simulator includes the
automation system of the network and the power plants,
so the mass flow in the outgoing pipeline from the power
plant will be automatically adjusted in simulation to meet
the heating need at the end users. The automation system
at the simulator will adjust the fuel burn accordingly, so the
simulator will be able to output the fuel cost for the time
interval to be optimized. This cost is the fitness value of
the above-mentioned candidate solution. By adjusting the
fidelity of the simulation model, a trade-off can be made
between computational complexity and real-world relevance.
In order to cope with the resulting computational complexity,
parallel computing techniques can be used to exploit high
performance computing resources in the cloud.

B. EVOLUTIONARY ALGORITHMS IN

INDUSTRIAL PROCESSES

Evolutionary algorithms are optimization algorithms that are
inspired by biology, where a population evolves through var-
ious operations from generation to generation in an attempt
to find an optimal solution to the problem presented [21].
Operations that modify the population include mutations,
recombination and selection. An ““individual” in the popu-
lation is referred to as a candidate solution and how well it
solves the problem is evaluated using a fitness function [22].
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Evolutionary algorithms are well-suited to solving various
optimization problems, including black-box problems where
the details of the problem are not known by the algorithm.
Covariance matrix adaptation evolution strategy (CMA-ES)
[23] is an optimization strategy for solving numeric optimiza-
tion problems [24] and is classified as an evolutionary algo-
rithm. In this sub-section we review successful applications
of CMA-ES in industrial process optimization problems.

The scope of this paper does not cover general use-cases
for evolutionary algorithms, nor the details of various evo-
lutionary algorithms. For a comprehensive literary review
on those subjects, see [25]. The problem dimension of the
optimization problem presented in this paper is limited to
32 decision variables, see [26] for a comparison of variants of
the CMA-ES algorithm, which work well with larger problem
dimensions.

Evolutionary algorithms have been used successfully in
various process industry optimization problems, see [27],
[28], [29], and [30].

In this paper, we utilize CMA-ES for solving an optimiza-
tion problem of the district heating network of Espoo, the
second largest city of Finland. Generally speaking, in evo-
lutionary algorithms, there is a concept of a population size.
In CMA-ES, however, this is replaced by a normal distri-
bution and each iteration Y candidate solutions are sampled
from this normal distribution. Then, the algorithm performs
X iterations, also known as generations, where each iteration
attempts to find a better candidate solution to the problem
than the previous iteration. Specific for CMA-ES, however,
the candidate solutions are created from a multivariate normal
distribution and it is this distribution that is modified each
iteration. The distribution acts as the mutation operation in
other evolutionary algorithms and the size and direction of
the distribution vary from generation to generation.

CMA-ES have been used successfully in many process-
and energy-systems. In [5], they applied CMA-ES to
solve economic dispatch problems for conventional and
wind-thermal power systems. In [6], they used CMA-ES
to optimize the temperature of reactors, in a hydrocracking
process. The latter also trained a model offline, then applied
the trained model in an online process, much like [4] also did.

Some optimization problems have multiple objectives that
must be optimized simultaneously. The scope of this paper
is limited to exactly 1 optimization objective, but for more
information on CMA-ES utilized on multi-objective prob-
lems, see [31], [32], and [33].

C. DIGITAL TWINS

A digital twin is a digital representation of a physical system,
which is simulated in real-time alongside a real physical
system, given the same input data as the real physical system
[34]. Reference [35] defines three key aspects necessary to
make a model a digital twin: The model itself, a data-set
that “evolves” over time and a way to update or adjusting
the model based on this data-set. According to [36], the term
digital twin has been used in various contexts with different
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definitions. Their definition of a digital twin is applicable
for the digital twin of the Espoo district heating network
discussed in this paper, and is the following:

“A virtual representation of a physical system (and
its associated environment and processes) that is updated
through the exchange of information between the physical
and virtual systems.” [36].

Having a model of the physical system is useful in various
stages of a project, whether it is a digital twin or not. Firstly,
during the design-phase of the system, the model can guide
the design process by showing weaknesses in the design or
verify the correctness of the design [10], [37]. The model
can also be used as part of training to introduce the physical
system in a safe environment [38]. The model can further be
connected to the physical system’s signals, making it a digital
twin, which can provide virtual measurements of the physical
system from places where no measurement sensors exists in
the real-world [39]. Further, the digital twin can be used to
find an optimal way of operating the physical system, e.g.
to reduce costs or increase productivity [40].

Digital Twins, security considerations and the technologies
surrounding them have been surveyed thoroughly by [41],
[42] and [43]. References [44], [45], and [46] have investi-
gate enabling technologies for digital twins, the latter also
including a comprehensive summary of digital twins used in
different fields.

Reference [47] introduces a classification system for dig-
ital twins. According to their definition, the Espoo district
heating network digital twin introduced in this paper falls
somewhere between the subcategories digital shadow and a
digital twin. The operators of the district heating network can
choose between various levels of automation, from manual
to automatic. When operating in manual mode, the model
described in this paper falls into the digital shadow cate-
gory. In the automatic mode, however, instructions are sent
directly to the district heating network from the CMA-ES
optimization’s results that have been calculated based on the
digital twin model. This virtual-to-physical and physical-to-
virtual connections are typical characteristics of digital twins,
according to [48].

D. CLOUD-COMPUTING ASPECTS OF DIGITAL TWINS

A systematic review of industrial digital twins has been done
by [49], with a special focus on the cloud-based technologies
enabling digital twins. A comprehensive reference model for
a cloud-based digital twin architecture has been proposed
by [50] and the related works therein. In their architecture,
physical assets have a one-to-one virtual counterpart and
when the physical asset undergoes a state change the virtual
counterpart is updated to reflect this new state.

In some cases, monitoring the physical system is the goal
of a digital twin, like the bridge-health monitoring cases dis-
cussed by [51] or the monitoring of robotics devices discussed
by [52]. Sometimes a digital twin is used to optimize the oper-
ation of a physical system, as has been explored by [53]. In all
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of the cases listed here, signals from sensors in the physical
system are sent to a digital twin, which was deployed as a
cloud-service. One of the enabling technologies for sending
sensor data is MQTT (Message Queuing Telemetry Transport
protocol) as described by [54].

The closest state-of-the-art to this paper involves a
cloud-based optimization digital twin approach, and is intro-
duced by [55]. In their approach, a neural network model was
trained on time-series data from an ironmaking process fac-
tory. A genetic algorithm used this neural network model and
attempted to optimize multiple variables in the ironmaking
process. The cloud-based optimization service was used in
real-time by the ironmaking process factory to optimize the
current operational parameters affecting the ironmaking pro-
cess. These aspects mimic the district heating case discussed
in this paper, i.e. an evolutionary algorithm is executed on a
cloud-based digital twin, to optimize the operations of the real
physical system.

ill. ARCHITECTURE AND METHODOLOGY

A. FUNCTION-AS-A-SERVICE

FaaS (Function-as-a-service) enables execution of parallel
computing, without the function caller knowing anything
about the servers on which the computations are performed.
Essentially, FaaS is an ICT architecture that enables functions
to be computed in parallel, where functions are hosted on a
cloud-computing platform and exposed to clients as HTTP
endpoints. Clients call the HTTP endpoint with a certain
payload, e.g. json and receive a reply payload, e.g. json. The
FaaS ICT architecture ensures that the call made by the client
is scheduled to an existing or a new computational instance
in the cloud-computing platform, typically a container. For
the purpose of this paper, and from an evolutionary algo-
rithm’s point-of-view, a fitness function can be evaluated as
a remotely computed function in a FaaS architecture.

FaaS comes in many forms, from pay-as-you-go solutions
such as Google Cloud Functions,! Azure Functions,? and
AWS Lambda® to self-hosted options such as Knative,*
Nuclio® or OpenFaa$S.% For a technology review of these and
other FaaS platforms and a classification framework for them,
see [56]. For a parallelism benchmark for the biggest pay-as-
you-go FaaS providers, see [57].

A typical function in a FaaS platform is either a piece
of code written in one of the languages supported by the
FaaS provider [58], or a custom container image created by
the user. In pay-as-you-go offerings, there are limitations
placed on things like the operating system available, size of
container images and size of function payloads. For many, the
limitations are not a problem. However, with a self-hosted

1 https://cloud.google.com/functions
2https://azure.microsoft.com/en—us/servi(:cs/functions/
3https://aws.arnazon.com/lambda/
4https://knativc.dev/docs/

5 https://github.com/nuclio/nuclio
6https://Www.ope:nfaas.com/
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solution such a OpenFaaS, the limitations can be avoided
altogether.

Reference [59] identify “warm” containers as being an
important pattern for FaaS application developers. A “warm”
start refers to a container which is already running at the
time a function-call is scheduled to it, whereas a ‘“‘cold”
start requires the container to be started. Various mitigation
strategies for the “cold” start have been suggested, see [60]
and [61].

Essentially, a “cold” start FaaS container architecture is
acceptable when the number of function calls is low, infre-
quent and there is no time-constraints for how long it takes
to receive the results from the function. This results in lower
costs when the containers are in shut-down state, in exchange
for slower function replies due to the time it takes to start
the containers again. In contrast, a “warm” start architecture
should be used when the function is frequently called and
it is important to minimize the time it takes to receive the
results from the function. From an optimization algorithm’s
point-of-view, such as discussed in this paper, a “warm’ start
architecture is crucial to ensure as-fast-as-possible function
calls. [59]

B. CMA-ES ALGORITHM IMPLEMENTATION

CMA-ES is used as the evolutionary algorithm for gener-
ating the setpoints to the district heating network. Unlike
the genetic algorithm, which generates a new population at
each iteration, CMA-ES generates a normal distribution, from
which a candidate solution is sampled [24]. In the Espoo
district heating network case, the candidate solution contains
functions of time that specify the supply temperature set-
points at the heat producers and the setpoints for usage of
a thermal energy storage tank, the same two variables chosen
by [8]. The candidate solution also contains the dispatch list,
which is the optimized order in which the heat producers
are allowed to be started in the network, based on forecast
cost, capacity, and limitations. However, the final decision
for how to operate the network is the responsibility of TLA
(top-level automation), an automation software system. The
TLA exists in the real network and the digital twin model, and
requires inputs such as heat producer’s supply temperature,
and the dispatch list. The TLA has been developed completely
separately from the work described in this paper.

The temperature setpoint is interpolated from hourly time
series selected by CMA-ES. For heat accumulator, the set-
point is piece-wise constant value selected by CMA-ES for
each hour, due to the slow thermohydraulic phenomenon
intrinsic to a district heating network, described in section I.
The phenomenon also involves a trade-off between compu-
tational complexity and accuracy, and for our case study a
16-hour time-window was chosen. Thus, the sampling of
the CMA-ES candidate solution should give 16 values
for the supply temperature setpoint and another 16 values
for the thermal (heat) storage setpoint. Therefore, our formu-
lation of the CMA-ES algorithm results in a 32-dimensional
normal distribution, and sampling it results in these 164-16
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TABLE 1. Pycma library parameters.

TABLE 2. Parameters for the initial C(0) covariance matrix creation.

Parameter Value Description ‘ l Parameter Value Description

popsize 36 The population size, i.e. number of sam- 0 L The correlation between values in the
ples taken from the normal distribution. 12 generated distribution, a small # means
This represents the number of candidate larger correlation.
solutions tried every iteration. STsp 1.0 The supply temperature setpoint scal-

x0 32-10.0]  The candidate solution phenotype array ing, smaller modifications are allowed
and its dimensions, contains 16 + 16 in the Ornstein—Uhlenbeck than for the
values. storage tank setpoints.

D Dynamic  The initial standard deviation (step- SQace 3.0 The heat storage tank setpoint scaling,
length), set to be the same as the last o three times larger modifications are al-
of the previous optimization-cycle, if no lowed in the Ornstein—Uhlenbeck than
previous oy exists, then 1.0 is used. for the supply temperature setpoints,

setpoint values. The optimality of the candidate solution is
evaluated against a fitness function. The algorithm contin-
ues to produce candidates with a higher fitness function,
hopefully resulting in a near optimal solution after the algo-
rithm has been executed for a sufficient number of itera-
tions. The careful design of the fitness function is crucial
for ensuring the real-world relevance of the optimization
and to manage computational complexity. In the literature
of evolutionary algorithm applications to industrial processes
(see section II-B), authors usually hand craft the fitness func-
tion as a formula. This approach works best at a limited
scope, such as a control loop or subprocess. However, the
optimization task often cannot be isolated to a subprocess in
large-scale industrial processes.

As mentioned before, in our case study, the CMA-ES
created candidate solutions for how the district heating net-
work should be operated. A good candidate solution operates
the plant as cheaply as possible, while keeping the heat at
sufficient levels for all consumers. To test how well they
performed, an equation was not used: instead, a dynamic
process simulation was used. The inputs to the simulation
were the candidate solution’s setpoints, in addition to a dis-
patch list and forecast environment data. The simulation time
was 28 (16+12) hours, simulated faster-than-real-time. The
results of the simulation gave the fuel consumption for each
heat-producing plant in the network for the 28 hours. Using
fuel-costs, the total cost for operating the network could be
calculated, which was the final fitness value for the candidate
solution.

The CMA-ES algorithm [62] used in this project was
implemented by the pycma library [63]. The CMA-ES algo-
rithm was given 1 hour real-time to solve the optimization
problem and the best candidate found at that point was chosen
as the best solution. The pycma library parameters used and
the description of them can be seen in Table. 1. As can be
seen, the population size was 36, the phenotype dimensions
was 16416 and the o depends on the previous optimization
hour’s results.

Smooth operation is preferred in a district heating net-
work. This means that the operating plan suggested by the
CMA-ES algorithm should not contain large increases or
large decreases in temperature. This is true for both the supply
temperature and the thermal storage tank setpoints. Pycma
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allowing a larger area to be explored
faster.

library creates, in the beginning of the optimization, candidate
solutions x with zero mean and identity covariance matrix.
We transform these to y = Ax + b. A is chosen so that the
initial covariance of y is

2 o
sTSpE 0

2 0>
0 sQaCCE

C0) = ey

where E?. = ¢ 9=/l and b is the initial guess. y is the trans-

formed candidate solution with proper smoothed temperature
setpoints that are acceptable to the district heating network
operation. b is the initial guess for the solution (step 2b in
Fig. 2), which is derived from the best candidate solution of
the previous optimization run. The parameter values for 6,
sTsp and sQacc and their descriptions can be seen in Table 2.
Thus, supply temperature and thermal storage tank setpoints
are initially independent of each other, and each has the
covariance of the Ornstein-Uhlenbeck process (e /"1 [64].
This is a well-known mathematical approach for achieving
desired covariance between variables [65].

The transformation of the candidate solutions X to
smoothed candidate solutions y is done in every iteration of
the CMA-ES algorithm, using the same matrix A and vector b
created before the first iteration.

C. CONCEPTUAL ARCHITECTURE
In our case-study, a dynamic process simulation model that
contains a model of the district heating network of Espoo
is used both as the digital twin and the optimization fitness
function evaluator. As illustrated in step 1la of Fig. 2, the
digital twin instance is continuously updated against sensor
measurements from the physical process. Fig. 1 shows the
flow of data from sensors to the digital twin. Sensors in the
district heating network send signals to a shared data platform
with timestamps, identifiers, and values, whenever a value
changes. These values are further sent to an online simulation
manager whenever the values changes. This online simulation
manager ensures the tracking instance is running in real-time
by sending values and simulation instructions periodically to
the dynamic process simulator.

The conceptual architecture seen in Fig. 2 contains various
steps and stages, labeled with a number for the step and a
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Physical
Sensors

T
Send values immediately
when changed

Data Platform

T
Send values immediately
when changed

Online Simulation Manager

I
Send values periodically and
simulate forward to catch-up with real-time

Dynamic Process
Simulator
Tracking Instance

FIGURE 1. Data-flow from sensors in the real Espoo district heating
network to the digital twin tracking instance.

letter for the stage, i.e. 1a means step 1 stage a. The lists below
describe each stage and step in detail.

Stages in Fig. 2:

o Stage a. Background stage, performed independently
from the CMA-ES optimization algorithm.

« Stage b. Preparation stage performed once per hour,
at the beginning of the optimization.

« Stage c¢. Main optimization stage, performed multiple
times on multiple optimization simulation instances.

« Stage d. Clean-up stage performed once per hour, at the
end of the optimization. At the end of this stage, the
optimization algorithm has provided a suggested plan
for how to operate the district heating network most
cost-efficiently. The plan consists of the setpoints for the
thermal storage tank and the heat producers’ supply tem-
perature for the next 16 hours. The thermal storage tank
setpoint corresponds to a charge or discharge operation,
i.e. the storage tank is either filled or emptied a certain
amount.

Steps in Fig. 2:

la. The digital twin simulation model is kept up-to-date
with sensor values from the physical process.

2b. Each hour, the CMA-ES algorithm keeps the previous
hour’s distribution’s mean and the step-length (o), but
not the covariance matrix, and uses these as the initial
guess for the next hour’s optimization. If no previous
best candidate solution exists, a default value is used
instead (this occurs only once, when deploying the
architecture for the first time).

3b. The state of the digital twin is captured as an initial
condition to initialize the separate optimization (fitness
function) instances of the simulator.

4b. The optimization simulation model requires as inputs
the outside air temperature and the heat consumption at
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end-user locations. Since the future is being simulated
by the CMA-ES optimizer, real measurements cannot
be used for these values. Instead, they are supplied
by a forecast-generator for the duration of the opti-
mization (16412 hours). The forecast-generator had
already been implemented before this project began
and it utilized historical data and machine-learning for
predicting consumer behaviour.
5¢ A candidate solution is a 32-dimensional matrix
with 16 CHP supply temperature setpoints and 16 ther-
mal storage temperature setpoints, representing the
temperature setpoints for the next 16 hours, one value
per hour for both types.
6¢ Using the 16 hours of setpoints generated by sampling
the CMA-ES candidate solution, the fitness function
instance is run for 16 hours. After that, to account for
thermohydraulic delays in the system, it is run for a
further 12 hours without decisions or optimizations.

7c¢ The result of running the fitness function instance
for 16412 hours is a fuel consumption, for all heat
producers in the network, for each hour. The fitness
function also includes penalty information if acceptable
service for all consumers has not been reached. Fuel
consumption is converted to operating costs for each
producer, by multiplying the fuel cost for that hour
with the consumption, efficiency of the producer and
taxation of the specific fuel. The final result is the total
operating cost for the 28-hour period, plus penalties,
and this is the fitness value for the CMA-ES candidate
solution.

8d After 1 hour, the CMA-ES algorithm is stopped and

the best candidate solution found is suggested as the
operating plan of the district heating network.

9d The system is currently deployed in a semi-automatic

mode, in which all setpoints used during the optimiza-
tion are sent to the operators of the district heating
network for evaluation and they can choose to utilize
those setpoints in the real district heating network if
they accept them.

Since the training begins anew once per hour, there is
only one hour time to complete the CMA-ES and to find
the best solution. Due to computational limitations, it is not
possible to run as many iterations of the CMA-ES as would
be desirable to achieve a near optimal solution. To mitigate
this problem, N fitness function instances of the simulator
are run in parallel. In Fig. 2, this has been illustrated for
N=4. The 32-dimensional distribution that is maintained by
CMA-ES is sampled N times, and each sample is sent to a
dedicated fitness function instance of the simulator. Each of
these instances run in parallel and return a separate fitness
value. The interaction between CMA-ES and the simulator is
illustrated with dashed lines. To avoid clutter, these lines are
drawn only between one candidate solution and one instance,
but the same interactions are performed for all N instances.
In addition, a medium fidelity model of the district heating
network is used, where the number of pipes and consumers
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FIGURE 2. Conceptual architecture.

are reduced by combining them into fewer larger pipes and
consumers.

The setpoints of the district heating model are updated once
per hour, so the training of the CMA-ES algorithm is per-
formed once per hour, as specified in the flowchart in Fig. 3.
The algorithm has two nested loops: one iteration of the
outer loop is one iteration of the CMA-ES algorithm, and the
inner loop exploits the parallel computation capabilities of
the architecture. Specifically, the inner loop initiates N con-
current fitness function instances of the simulator (see Fig. 2)
to evaluate the fitness of N candidate solutions sampled from
the distribution maintained by the CMA-ES algorithm. The
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TABLE 3. Symbols used in flowcharts.

Symbol Description

N The number of candidate solutions in one iteration of
CMA-ES

IC1win Initial condition for a simulator based on the current
state of the digital twin simulator

t Running time of the algorithm

Simye s A reference simulator used to estimate the state of the
system 1h into the future

1Crcy Initial condition of Sim . ¢

distribution  32-dimensional normal distribution maintained by
CMA-ES

candidate; The ** candidate solution sampled from the 32-
dimensional distribution, containing 16 supply tem-
perature setpoints and 16 thermal storage tank set-
points

fitness; The fitness value of candidate;

Sim; The fitness function simulator for obtaining fitness;
for candidate;

sp_CHPIJ] 16 element array of setpoints for the supply temper-
ature of the CHP, HOB, heat-pump or waste heat
producers

sp_tank|] 16 element array of setpoints for the temperature of
the thermal storage tank

Suel]] 28 element array of hourly fuel consumption of all
the CHP, HOB, heat-pump or waste heat producers,
as determined by Sim;

price]| 28 element array of hourly fuel prices

inner loop of Fig. 3 references another flowchart in Fig. 4
that specifies how the fitness of one candidate solution is
evaluated. A live deployment of the algorithm requires that
the CMA-ES algorithm is able to output the setpoints to the
district heating network after 1-hour of execution. Thus, the
outer loop in Fig. 3 is iterated until the 1-hour execution time
limit is reached. In other words, the number of iterations
of the CMA-ES algorithm is limited by the computational
capacity. Thus, the procedure will generate setpoints to run
the system starting one hour into the future. For this purpose,
the fitness function instances of the simulator are initialized
with the expected state of the system one hour into the future.
This state is obtained by initializing a reference simulator
with the initial condition of the digital twin and running it one
hour into the future. The reference simulator and fitness func-
tion simulators are all running faster than real time to estimate
the future state of the district heating network, so they use
forecasts of weather and consumption as the environmental
data (see Fig. 2). All italicized symbols in Fig. 3 and Fig. 4
are defined in Table. 3.

IV. DETAILED DESIGN AND IMPLEMENTATION

In our district heating network case, there was a
time-constraint to find an optimal solution to suggested to
the district heating network operators. As such, an algorithm
that could provide good candidate solutions given only a
few iterations was needed. From the related work described
above, CMA-ES has been proven to be a good choice when
the number of iterations is limited. A complex dynamic
simulation model of the entire district heating network of
Espoo is used to solve the CMA-ES candidate solutions
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values of candidate solutions

t>=1h

T

Done

FIGURE 3. One iteration of the CMA-ES algorithm.

where a global optimum is impossible to calculate numer-
ically. The model is more complex than the PID controller
model, data-driven hydrocracking model or thermodynamic
chemical/phase models introduced in the related works
above.

In the previously mentioned works, a single computational
program was enough to calculate the results of all candidate
solutions. However, in our approach, we combined CMA-ES
and serverless concepts such as Function-as-a-Service to
utilize distributed computational capacity when solving the
CMA-ES candidate solutions. A distributed and thus parallel
computational approach was needed due to the complexity
and simulation time of the model.

The components needed for the candidate ICT architecture
presented in this paper are as follows: A simulation tool,
an evolutionary algorithm implementation, a function-as-a-
service framework where multiple instances of the simulation
tool is deployed. For our case, the simulator used is Apros,’
a dynamic process simulator, see [10] for a scientific intro-
duction to Apros and [39] for examples of simulation-based
digital twin approaches using Apros. The evolutionary algo-
rithm, CMA-ES, was implemented in Python, based on the
package pycma.? The function-as-a-service framework used
was OpenFaaS. See Fig. 5 for an overview of the architecture

7http://www.apros.fi/en/
8https:// github.com/CMA-ES/pycma
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Evaluate candidate;

Fetch IC.f
Initialize Sim; with IC,er
hour=1
fitness; =0

Run Sim; for 1h
Use sp_CHP[hour] and sp_tank[hour]
fitness; = fitness; + (fuel[hour] * price[hour])

Run Sim; for 1h
Use sp_CHP[16] and sp_tank[16]
fitness; = fitness, + (fuel[hour] * price[hour])

Return fitness;

FIGURE 4. Concurrent evaluation of the fitness of one candidate solution.
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FIGURE 5. OpenFaa$ architecture for utilizing parallel Apros 6 instances
as fitness functions in an evolutionary algorithm (CMA-ES).

and section IV-A for an overview of the district heating
network Apros model.

The Python code was written in such a way that all candi-
date solutions were executed in parallel. Each of the candidate
solutions perform an http request to our OpenFaaS instance.
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The payload of the http request contains the instructions to
the Simulator (Apros 6) to simulate the model in a particu-
lar way, representing the candidate solution. The functions
return the fuel consumed during the simulation, as well as
the consumer’s pressures and outlet water temperatures. The
predicted prices for fuel is fetched from a forecasting service
and used by the CMA-ES Python algorithm to calculate the
actual fitness value for a candidate solution, based on the fuel
consumed by the candidate solution.

A. THE SIMULATION MODEL

The underlying simulation model was implemented in the
Apros® simulation software [66]. The model can be divided
into two main parts, a thermohydraulic model and an automa-
tion model. The thermohydraulic model is used to simulate
the flow rates, temperatures and pressures throughout the
network and is based on the conservation equations for mass,
energy and momentum. The equations are partial differential
equations with one spatial coordinate and are discretized
with respect to this coordinate with a so-called staggered
grid scheme in which two grids are used, one for solving
pressures and temperatures and another for flows [67]. This
results in a set of ordinary differential equations, which in
turn are integrated over time with the implicit Euler method.
This results then, during every time step, in a set of algebraic
equations which are solved. In addition, inside every time step
the material properties of the fluid, e.g. density and viscosity,
are estimated, e.g. using lookup tables.

In order to derive correct coefficients to the underlying
equations, physical dimensions of the network are used.
Namely, pipeline lengths, diameters, elevations and pres-
sure loss parameters are used. Furthermore, equipment char-
acteristics such as pump curves are entered to the model
and taken into account via source terms in the equations.
Finally, pipe and insulation materials are taken into account
when calculating the temperatures and heat losses to the
environment.

The automation model consists of function blocks which
are similar to those found in all real-life automation system.
Such blocks included adders, multipliers, limiters, integra-
tors, (PID) controllers etc., which are connected to each other
using analog or binary signals. The resulting automation
model is solved in a sequential modular manner every time
step. In this solution method boundary-type modules (set
points) are selected as a starting points and then the solution
proceeds module by module through the network, following
the signal connections. Loops arising from the automation
model structure are cut either at user defined locations or
arbitrarily.

The two models are connected, similarly as in real-life:
measurement modules pick desired values from the ther-
mohydraulic model for the automation model and so-called
actuator modules transfer automation’s control signals to the
thermohydraulic model (e.g. valve positions or pump rotation
speeds). Furthermore, in the tracking instance, the online
simulation manager sends measurement data to modules of
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the automation model which then processes and transfers
them to the thermohydraulic model.

In order to facilitate efficient modelling, the software was
extended to better suit district heating simulations using
so-called user components or in other words hierarchical
models. With user components certain parts of the model
which are replicated numerous times can be packaged into
one reusable component, a prime example being a dis-
trict heating pipe which includes two pipelines (one going
towards the customers and one returning) as well as heat loss
calculations.

Two versions of this model was developed, a high-fidelity
and a medium fidelity versions. For the purpose of the
CMA-ES optimization, in order to limit the computational
requirements, the medium fidelity model was used. The
medium fidelity model was validated in two stages. Firstly,
an expert evaluation was used to ascertain that the results are
reasonable and an optimization can be built upon them. Sec-
ondly, comparisons were made with real-life measurements
over five one-week validation periods. For each validation
period, over 100 measurements were utilized. Three valida-
tion figures were chosen to be presented in this paper. They
represent the district heating network operating at an aver-
age outside air temperatures of Espoo. Fig. 6 is important,
because the heat reaching the consumers must be accurately
modelled. Fig. 7 is an example of the behaviour of the
producers in the model. Fig. 8 is important to model correctly,
since the optimization algorithm decides how it should be
operated. Due to confidentiality, values have been scaled with
(2), where MAX was the maximum value of the reference
and simulated values. Error tolerances in the validations is
defined as 5% below or above the reference data. All mea-
surements for the medium fidelity model should preferably
always stay within the error tolerance region, but case-by-
case judgement is applied for measurements that go outside
this region, as seen in Fig. 7. In our case study, the result of
all of the case-by-case judgements by industrial end users was
positive in the sense that the model was approved for indus-
trial application of the optimization problem presented in this
paper. As is normal, during the validation discrepancies were
detected. Their severities were evaluated and most important
ones were corrected. This iteration was continued until the
end customers and the development team were satisfied with
the model.

A digital twin model can be modified and adapted to the
tracking data in order to better fit the desired measurements,
see [39]. However, in our case, the Apros model is not adapted
in this way. Instead, KPIs (key-performance indicators) track
how well the digital twin model is calculating the same
outputs which exists in the real system. Optimized operating
plans suggested by the CMA-ES algorithm are not used
when the tracking digital twin’s KPIs are bad. The reason
for no adaptation is to speed up the initialization-step of the
CMA-ES algorithm, where all parallel optimization Apros
instances are reset into a state that matches the tracking digital
twin. Exporting the Apros 6 model and importing it is a
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FIGURE 6. Model validation comparison of consumer average supply
temperatures.
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FIGURE 7. Model validation comparison of a representative consumer’s
regional supply temperature.
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FIGURE 8. Model validation comparison of energy stored in the heat
storage tank.

time-consuming operation for a model of any decent com-
plexity, which is why an orders-of-magnitude faster initial
condition is used. However, an initial condition does not
capture adaptations made on a model.

B. PARALLEL CMA-ES ARCHITECTURE

Due to the relatively slow simulation speeds of the dynamic
process simulator, multiple instances of the simulator are
needed to calculate the fitness function values of all the
candidate solutions. In our case study, the CMA-ES algo-
rithm’s population size was 36 and therefore to maximize
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the simulation speed, 36 Apros 6 function instances were
deployed, ready to compute the fitness function values of
the candidate solutions generated by CMA-ES, one Apros
6 instance for each candidate solution. A headless version (i.e.
non-desktop version, without user-interface) of Apros 6 was
packaged as a Windows Docker container, using Windows
containers.’ These headless Apros 6 instances implemented
the function interface and registered as functions in the Open-
FaaS instance.

For the purpose of the architecture discussed in this paper,
FaaS means that the Python CMA-ES algorithm contacts
the OpenFaaS instances using an HTTP request whenever
it wants a candidate solution’s fitness function value eval-
uated. The OpenFaaS instance then distributes the request
to one of the available Apros 6 instances. In other words,
a fitness function evaluation in the CMA-ES algorithm is,
in our architecture, a single HTTP request with a payload as
the input, and the http response content is the fitness function
results. The fitness function itself is a simulation in Apros 6,
using a specific model, initial condition, environment data
and candidate solution setpoints.

The deployed function often comes with limitations in
ready-made solutions such as AWS Lambda. For a com-
plex computational function such as Apros, a custom
solution was required. A Windows docker container running
of-watchdog!'® as a reverse proxy for receiving HTTP
requests was implemented. For Apros 6, a plugin was devel-
oped that starts a local service that the of-watchdog is con-
nected to. Of-watchdog serves as the entrypoint of the docker
container and ensures that the container used is compatible
with the OpenFaaS framework. The of-watchdog is a reverse
proxy that sits between the OpenFaaS server and the Apros
function implementation. See Fig. 9 for a visualization of
how http requests are handled by the of-watchdog and Apros
inside the container.

To mitigate the cold-start problems described in
section III-A, the amount of Apros containers available to
respond to the FaaS jobs was kept static. Further, all con-
tainers were kept running at all times, ensuring ““warm” -start
for all the function calls.

C. NOISY NEIGHBOUR PROBLEM

An important aspect in cloud computing is the noisy neigh-
bour problem, described in greater detail by [68] and [69].
The servers typically used in cloud computing are virtual
machines, hosted on a physical server with multiple other vir-
tual machines. The person paying for the virtual machine does
not control the physical server or the other virtual machines.
This means that it is possible to pay for a virtual machine that
is running on a heavily utilized physical server. This is noticed
in the performance of the virtual machine, which can be
significantly slower than another equal virtual machine run-
ning on another physical server. In the CMA-ES optimization

9https://docs.microsoft.(:om/en—us/virtualization/windowsc:ontainers/
10https:// github.com/openfaas/of-watchdog
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FIGURE 9. Apros 6 function container with OpenFaa$ function
implementation, using of-watchdog proxy. HTTP requests are received by
the container’s of-watchdog instance and forwarded directly to the Apros
6 service.

scenario, each simulation result must finish in order for the
CMA-ES algorithm to create and start the next generation.
This means the CMA-ES algorithm’s performance is equal
to the slowest virtual machine that is running the Apros
optimization jobs. The noisy neighbour problem can be seen
in Fig. 10. All virtual machine running Apros OpenFaaS
optimization jobs were equally powerful, i.e. same speed as
promised by the cloud provider. In reality, the speeds were
completely different, due to the noisy neighbour problem.
Values for Fig. 10 were taken after running 400 CMA-ES
generations (i.e. fitness function evaluations) on each virtual
machine.

D. CONNECTING CMA-ES WITH A DIGITAL TWIN

See Fig. 11 for an overview of how the CMA-ES utilized
the initial condition and the Apros 6 functions to solve the
fitness functions. Apros 6 requires a model that represents
the district heating network. Before simulation, an initial
condition can be provided to the model that represents the
network in a particular state. During optimization, we utilize
a tracking Apros 6 instance, i.e. a digital twin, of the district
heating network. This digital twin is kept synchronized with
the real district heating network, completely independently
from the optimization algorithm and Apros 6 OpenFaaS func-
tions. When CMA-ES begins an optimization calculation,
it requests the most up-to-date initial condition that the digital
twin can provide, i.e. it captures the current state of real
network in a binary initial condition blob that can be provided
to the Apros 6 functions as a starting point.

E. CMA-ES IMPLEMENTATION DETAILS

In our case, CMA-ES performs as many iterations (genera-
tions) as possible during a 1-hour (real-time) time-window.
A 1-hour time-window was chosen for multiple reasons.
Firstly, the changes in forecasts should be taken into account
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FIGURE 10. Visualization of the noisy neighbour problem, each Apros
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FIGURE 11. Implementation of CMA-ES in a digital twin setting. The
algorithm utilized the initial condition of a tracking Apros 6 instance as
the starting-point for the model.

as quickly as possible. By running an optimization algorithm
continuously once an hour, the forecast data will at most
be 1-hour old for any of the candidate solutions suggested
by CMA-ES. Secondly, the way power plants are allowed
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FIGURE 12. The best CMA-ES candidate solution for each generation.

to operate can change at any time, i.e. enforced maximum
capacity or shutdowns due to maintenance. These types of
changes effectively invalidate any candidate solution sug-
gested by CMA-ES, until CMA-ES takes them into account.
Further, the change cannot be taken into account mid-
optimization, since it changes what the function is attempting
to optimize, invalidating any progress that has been done up
until that point.

Thus, with longer time-windows, there is a higher potential
for outdated and invalid candidate-solutions to be suggested
by the CMA-ES algorithm. However, with too short time-
windows, CMA-ES does not have enough time to perform
enough generations to find any significant savings. As seen
from Fig. 12, CMA-ES quickly finds better candidate solu-
tions with few generations. Table. 4 visualizes the total reduc-
tion of the fitness function value, given different amounts of
CMA-ES generations. As can be seen in Fig. 12 and Table. 4,
there is a diminishing return for adding more generations.
A compromise of 1-hour was chosen in this project, since
the CMA-ES algorithm was observed to perform well enough
with the roughly 18 generations it had time to perform during
the 1-hour window. The fitness function value was reduced by
4% in that time, compared to a 5.2% reduction after 415 gen-
erations. However, the improvements that can be reached are
subject to the randomness of the CMA-ES algorithm, as seen
in Fig. 13. In practice, the randomness results in cost-savings
that vary hour-by-hour by the CMA-ES algorithms, as seen
in Fig. 12. Values in Fig. 12 have been scaled according to
(2), where MAX was the fitness function value of the initial
guess before generation 1.

Because CMA-ES has 1-hour to complete the optimization
task, it means that the solution it suggests will be received
1-hour from when it started. We do not want to unnecessarily
try to find an optimal way to run the plan during the hour
that is lost this way. To avoid this, at the beginning of the
optimization, the initial condition for the current state of
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TABLE 4. Fitness function value reductions given different amounts of
generations.

Generation | Fitness function value reduction
1 2.69%
5 2.85%
10 3.15%
15 4.01%
20 3.93%
25 3.98%
35 4.08%
50 4.41%

100 4.50%
200 4.95%
415 5.22%

the network is taken and simulated 1-hour forward with the
current set-points. The new initial condition received this way
better represents the state of the network as it will look like
when the optimizer suggests its final solution.

The optimization problem attempts to find the cheapest
possible way to run the district heating network, based on fuel
price forecasts and weather forecasts, for the next 28 hours.
The network must at all times have enough pressure in the
pipes to continue operation and must satisfy all consumers’
demands for heating. The plant also contains a long-term
water tank used for heat accumulation when excess and/or
cheap fuel is available, which is then utilized when demand is
high or fuel is expensive. An optimization function that wants
to operate the plant as cheaply as possible would always drain
this heat accumulator of all power, since it is ““free energy”.
In order to prevent this, a long-term operational goal for the
heat accumulator was specified by the company running the
district heating network and the optimizer must always utilize
the heat accumulator in a way that respects this plan, or be
penalized heavily in the fitness function’s evaluation.

A single candidate solution contains 32 data-points,
16 supply temperature set-points and 16 heat accumulator set-
points. These 16 values are provided to the Apros 6 model
once per hour. Supply temperature values are interpolated,
whereas the heat accumulator values always set the desired
value for the next hour. The restrictions on the heat accumu-
lator only apply at the very end and at that point, the power
remaining in the heat accumulator must equal to or higher
than specified by the long-term plan. After the simulation has
performed 16 hours of simulation, i.e. used all the set-points
provided to it and simulated the model 16 hours forward,
it will perform an additional 12 hours worth of simulation
based purely on the weather forecast.

F. CMA-ES RANDOMNESS

It is well known that evolutionary algorithms have innate
randomness in their search and CMA-ES is no exception
to this. To demonstrate the randomness, see Fig. 13 below,
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FIGURE 13. CMA-ES algorithm randomness for finding the best candidate
solution.

where the CMA-ES algorithm introduced in this paper has
been executed five times with the same inputs. The number
of generations has been capped at 17, to reflect the typical
number of generations our CMA-ES algorithm has time to
calculate during the 1-hour window (see section V). The
names of the colored series in Fig. 13 reflect the best can-
didate solution of that series, when compared to the overall
worst guess of all the data-points shown in Fig. 13.

The inputs for the CMA-ES algorithm in Fig. 13 were taken
between 00.00 9" Aug. 2021 and 04.00 10" Aug. 2021 (a
28-hour period). The inputs include all the necessary data
needed by the model and CMA-ES, i.e. weather-data, fuel
prices and Espoo district heating network plant availability
data for that time-period.

V. RESULTS

The CMA-ES optimization algorithm was used to optimize
the operating plan of the district heating network of Espoo,
which contains over 800 km of water pipes and over 14 pro-
ducers, including CHP plants, HOB plants, heat-pumps or
waste heat facilities. However, only the 14 biggest producers
were modelled in the medium fidelity Apros 6 model used in
the optimization.

The results seen in Fig. 14 have been taken from 49 consec-
utive CMA-ES optimization iterations, each lasting 1 hour,
with a population size of 36. During those 1-hour periods, the
CMA-ES algorithm was tasked to find as good a candidate
solution as possible, with 36 parallel Apros 6 instances, with
as many generations as it had time with. In practice, the algo-
rithm usually had time to run 17-18 generations each hour.
To mitigate randomness of the CMA-ES algorithm, at the
beginning of each optimization, the previous optimization’s
distribution’s mean and the step-length (o9) is used as the
initial guesses for the CMA-ES algorithm. This is done to
ensure the algorithm begins searching in a space that has
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(Expert operator plan).

TABLE 5. Comparison of total operating cost (scaled) for the time period
Nov 2 12.00 to Nov 4 12.00.

Expert operator plan | Optimized plan
1.0 0.978

previously been found to be good, ensuring the algorithm
doesn’t start from scratch each hour.

As can be seen in section IV-F and Fig. 13, the algorithm
typically improves each generation, but not always towards
the same solution. Given the relatively small number of gener-
ations (17-18) that our CMA-ES algorithm has time with, this
randomness does play a large part to explain the differences
of achieved operating-cost improvements seen in Fig. 14.

The best candidate solution produced by the CMA-ES
algorithm after each 1-hour optimization has been compared
with the expert operator plan, see Fig. 14 and Fig. 15.
In real district heating networks automatic operating-cost
optimization solutions have not yet been taken into use.
Instead, human operators of the district heating networks
decide hourly setpoints for the heat storage and the supply
temperature of the CHP and HOB plants. This is also the case
with our Espoo case-study network. In this paper, the term
‘expert operator plan’ means those human-decided setpoints
for a period of one or more days. The real costs cannot be
disclosed in this paper due to confidentiality. Instead, scaled
values have been used in Fig. 14, obtained using (2).

Vactual
MAX'’

where MAX was the highest operating cost observed between
12.00 2™ Nov. 2022 and 12.00 4™ Nov. 2022. For that same
time-period, we reached about 2% cost savings compared to
industrial state-of-the-art (i.e. the expert operator plan), see
Table. 5.

@

Vicaled =

VI. DISCUSSION

In this paper, we have presented an approach and architecture
that fulfils the research questions’ goals. In this chapter, those
research questions will be discussed, and results are analysed.
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FIGURE 15. Cost saving when using the best CMA-ES candidate solution
plan instead of the expert operator plan.

1. How can we use simulation and optimization algorithms
to minimize the heating energy production cost of a district
heating network with several production plants?

Firstly, a model that represents the network, including its
pipes, consumers and producers, is needed. The model should
take into account delays inherent to the network, caused by
the potentially hundreds of kilometres of pipes that trans-
port heated water. Secondly, an optimization algorithm that
can simulate this model is needed, so that the optimization
algorithm can learn from the model. Evolutionary algorithms
can be used as the optimization algorithm, in which case the
problem needs to be described as a fitness function. This
fitness function should be designed in such a way that it
minimizes the cost for operating the plant. In a district heating
network, this can be done by modifying the supply tem-
perature (i.e. the outgoing water temperature) of producers:
A lower temperature reduces costs. However, a balance must
be found, as the supply temperature needs to be kept high
enough so that the heat demands of the consumers is met.
Further, if a heat storage tank exists in the network, the fitness
function should be rewarded for charging the tank when fuel
prices are low and discharging it when fuel prices are high.

2. What kind of ICT architecture can support the use
of a digital twin as the fitness function of an evolutionary
algorithm that optimizes a large-scale industrial process?

An evolutionary algorithm needs to be able to utilize
parallel computing when evaluating the fitness function of
the digital twin model, due to the computational complexity
and slow simulation speeds associated with a model of a
large-scale industrial process. Further, a digital twin of this
model must track the state of the real industrial process,
i.e. it must receive real measurements from sensors in the
physical system, in real-time. Copies of the digital twin
model should be deployed in parallel in such a manner that
the evolutionary algorithm can use them for fitness function
evaluation. Additionally, the state of the digital twin model
must be exportable so that the parallel copies of the digital
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twin can be initialized with the correct state of the real phys-
ical system, at the beginning of each hour.

3. What are the trade-offs between computational complex-
ity and fidelity, and how can the computational challenges be
mitigated with parallel computing and cloud computing?

As computational complexity increases the time it takes
to evaluate a single fitness function also increases. A high-
fidelity model of an industrial process will be computation-
ally complex, but provide the most accurate results compared
to the real process. As fidelity is lowered, complexity is
reduced and fitness function evaluation is faster. A trade-
off must be done between the detail of the model and the
speed at which the model can be simulated. Computational
complexity can also occur due to the need to evaluate multiple
fitness functions at the same time. Parallel computing can
further be utilized to take advantage of additional resources
beyond a single server and cloud computing allows these
resources to be bought on-demand. Further, cloud computing
allows each fitness function evaluation to be performed on
their own virtual machine. As with anything in the cloud,
however, the noisy neighbour problem should be taken into
account, and further work on this is discussed in section VII.

As with anything in the cloud, however, the noisy neigh-
bour problem should be taken into account.

4. How does the decision to use an evolutionary computa-
tion impact the architecture and computational challenges?

In evolutionary algorithms there is the concept of a popula-
tion. Each individual in the population has a different fitness
value, which is typically evaluated at the same time for the
entire population. Thus, a parallel computing architecture
benefits the evolutionary algorithm greatly, especially if the
fitness function evaluation is time-consuming.

5. How does the proposed architecture and approach for
handling the trade-offs perform in a case study?

The architecture presented in this paper performs well on
the case study of the district heating network of Espoo. The
network contains over 800 km of water pipes and over 14 heat
producers, including CHP-plants, HOB-plants, heat pumps
and waste heat facilities. A medium fidelity Apros 6 model
was chosen over a high-fidelity model, in order to speed up
fitness function evaluation. In this medium fidelity model,
only the 14 biggest heat producers were modelled. In addi-
tion, closely located consumers and pipes were combined to
simplify the network model. 36 parallel Apros 6 instances
were used by a CMA-ES optimization algorithm, connected
to an OpenFaaS instance. During the chosen 1-hour time-
window, an average of 18 generations could be evaluated by
CMA-ES and operating costs were reduced on average by
2%, compared to industrial state-of-the-art.

The total operating costs were calculated by running two
operating plans on the medium fidelity Apros 6 model of
the network, the expert operator plan and the optimized
plan. These costs were compared and form the basis of the
cost-saving results discussed in this paper. To reach this
result, 36 virtual machines running 36 Apros 6 optimiza-
tion instances was used by the CMA-ES algorithm. A few
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additional virtual machines were used for running the digital
twin Apros 6 instances and the rest of the software compo-
nents, including the Python CMA-ES implementation. Sepa-
rate virtual machines were needed for each Apros 6 instance
due to performance reasons, in order to reach sufficient sim-
ulation speeds. As mentioned before, we cannot disclose the
real operating costs of the case-study network in this paper
due to confidentiality. However, we can disclose that reducing
the operating costs of the district heating network by an
average of 2% is a significant cost-saving reduction com-
pared to the costs of the required virtual machines from EC2
on-demand Windows instances on AWS.

VII. CONCLUSION

In the paper, we have presented an architecture and approach
for utilizing the up-to-date state of a digital twin, represented
by a process simulation model, as the starting point for
optimization computations. The architecture allows an evolu-
tionary algorithm, in our case study CMA-ES, to leveraging
parallel computations and cloud computing for the evalua-
tion of fitness functions. A function-as-a-service approach
connects the evolutionary algorithm’s requests with the calcu-
lation capacity of multiple parallel process simulation nodes,
which perform the fitness function evaluation. The case study
presented in this paper shows that this approach is effective
for optimizing a large-scale industrial process.

In daily use, observed between Nov. 21d 2022 and Nov. 4™
2022, the optimized operating plan for the district heating
network of Espoo reduces costs by an average of 2% and
up-to 4%, compared to the expert operator plan. Reaching
a 2% reduction in operating costs for the district heating
network of Espoo significantly out-weights the infrastructure
costs needed by the architecture described in this paper. These
cost-savings were reached when both the optimized plan
and the expert operator plan were simulated on the medium
fidelity model and the simulation results were compared. The
optimized plan would have to be executed on the real district
heating network to translate into actual monetary savings,
which in the end is the final decision of the network operators.

In a world with increasing energy prices and higher
demands, optimizing the utilization of the available energy
becomes increasingly important. The presented architecture
and approach could be utilized for the optimization of other
types of large industrial processes, not only district heating
networks. The key benefit of this approach is that parallel
computation allows optimizations to be performed on cases
that would otherwise be infeasible to optimize. One emerging
category of applications for the apparatus developed in this
paper could be demand response capable industrial processes.
Such processes would reschedule their operations so that
energy intensive actions would occur during electricity mar-
ket intervals with low prices.

Future work includes the elimination of mitigation of
the noisy neighbour problem. Virtual machines hosted on
platforms such as AWS are subject to the noisy-neighbour
problem. Further, the cost-to-performance for on-demand

VOLUME 11, 2023

virtual machines, especially Windows Server types, makes
them an expensive choice. Since the CMA-ES generation
always waits for the slowest instance, a single cloud instance
experiencing a noisy-neighbour will impact the performance
of the whole CMA-ES algorithm. To eliminate the noisy
neighbour problem, an on-premise dedicated cluster should
be considered, instead of virtual machines from a public
cloud-provider. Given only the removal of the noisy neigh-
bour problem, as visualized in Fig. 10, all fitness function
evaluations could be reduced in less than 170 seconds. This
change alone would increase the number of generations the
CMA-ES algorithm would have time to do from 18 to 21,
without using more powerful hardware.

Future work is also required for industrial deployment of
the proposed optimization method. The optimization results
obtained in this paper assumes that the data measurements
received from the real district heating network are reliable and
accurate. In practice, due to the nature of a daily production
system, faults can occur in system that causes the incoming
data to be faulted or missing. Further, our results also assume
that the medium fidelity model behaves as the real physical
system, meaning that an operating plan simulated with the
model would give similar cost-savings in the real process.
During live operation, steps were taken to mitigate these
challenges: Data outside accepted min/max boundaries, and
data that was not been received in a certain time-period,
cause the optimization result to be flagged as unreliable.
Additionally, the validity of the medium fidelity model was
checked continuously by the digital twin instance with KPIs,
which compare the simulated results of the tracking digital
twin model with the real measurements of the network. Dis-
crepancies outside acceptable limits flagged the optimization
result as unreliable. Still, there are many questions that need
to be answered:

1. How to know if an optimized operating plans is actually
sensible and reliable, when applied to the real network?

2. How to know if the digital twin model and the forecasts
used by the optimization algorithm, match reality accurately
enough so that decisions based on them can be relied on?

3. How to know if received real measurements are reliable
and intact?
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