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ABSTRACT Induction motors are becoming crucial components in numerous industries. The daily usage
of induction motors creates the demand for proper maintenance and slight fault detection to avoid serious
damage to the inductionmotor and the shutdown of industries. Among the various kinds of faults in induction
motors, bearing faults, broken rotor bar faults, and short-circuit insulation faults are the most common. Thus,
detection and classification of these faults in initial stage are attracting great attention. There are conventional
methods for detecting such faults, such as the vibration method for bearing faults, the self-organizing map
in the case of broken rotor bar faults, and motor current signature analysis for short-circuit insulation faults.
From an industrial point of view, diagnosis methods that can classify all these major faults are required.
However, reports on the detection and classification of these faults in initial stage using common diagnosis
methods are scarce. In this paper, all three kinds of notable faults in an induction motor were artificially
induced, and diagnoses using motor stator current spectral features and the rotation speed of the motor were
performed. The diagnosis was accomplished using an auto-tunable and arbitrary featured support vector
machine algorithm. Although the faults were minor, a high accuracy rate was obtained. The capability to
classify the faults and the high diagnosis accuracy prove the robustness and high sensitivity of the method,
enabling its practical applications in industries.

INDEX TERMS Bearing fault, diagnosis, insulation fault, rotor bar fault, induction motor, support vector
machine.

I. INTRODUCTION
Diagnosis plays an important role not only in the medical
and bioengineering fields but also in the fields of the motor
industry. Among various available motors, induction motors
(IMs) are still considered to be the most reliable and in
demand machines. The wide range of use of IMs in the elec-
trical, mechanical, and automobile sectors and their various
advantages such as low maintenance requirements, robust
construction, inexpensive availability, highly efficient opera-
tion, and high adaptability for various load conditions neces-
sitate diagnosis as part of maintenance. Moreover, IMs can be
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used in harsh environments because of their high robustness.
However, because of continuous operations and harsh oper-
ating environments, IMs often lead to critical breakdowns
due to even minor faults. These IM breakdowns should be
prevented at slight fault stages because they may result in
extra maintenance work or fatal effects on the entire industrial
system. Thus, the demand for fault detection in initial stages
is high and increasing to prevent the breakdown and extend
the usage time of IMs.

Figure 1(a) and (b) shows the occurrence percentage of
the possible class of faults in IMs and the components in
an IM, respectively. The faults of IMs are mainly classified
into two categories: electrical and mechanical faults [1], [2],
[3]. Among the possible classes of faults of IMs, bearing
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FIGURE 1. (a) Occurrence percentage of possible classes of faults in an
induction motors. (b) Class of faults in an induction motors.

faults (44%) has the highest occurrence percentage, followed
by short-circuit stator winding faults (26%), broken rotor
bar faults (18%), and other kinds of faults (12%) [4]. The
main causes of bearing faults are environmental conditions,
voltage fluctuations, contamination, and insufficient lubrica-
tion [5]. Meanwhile, short-circuit faults are caused by the
frequent start/stop of IMs, thermal deterioration due to high
temperatures, temperature rise through dust attachment to the
cooling fan, moisture absorption, and contact of rotor iron and
stator winding. In the case of broken rotor bars, the reason is
primarily overheating due to the continuous operation of a
motor. From the above three major faults, the common point
stands to be the continuous operation of IMs, and considering
its fatal impact, these faults should be identified at slight fault
stages. However, we cannot practically forecast the fault that
may occur. Thus, a common diagnosis method is in demand
for distinguishing the various types of slight faults.

Some experimental and diagnosis results for short-circuit
faults, bearing faults, and broken rotor bars are discussed
below. Short-circuit faults stand to be a crucial fault because
they only cause insignificant changes in the magnitude of
the phase current. The most common diagnosis methods
used in this regard are the park vector method [6], partial
discharge characteristics method [7], [8], [9], and load cur-
rent methods [10], [11]. Previous results found that two or
more turn-to-turn short circuits could be easily diagnosed
with practically acceptable accuracy. However, distinguish-
ing winding with one-turn-to-turn short-circuit fault from
healthy winding is still challenging.

In the case of broken rotor bar faults, the following studies
have been conducted [12], [13], [14], [15], [16], [17]. For
instance, for detecting the geometrical asymmetry of a rotor
caused by the breakage of a bar(s), the method using sideband
components has been widely studied. The sideband compo-
nents appear below and above the fundamental component
in the frequency spectrum of the load current. However, this
method has drawbacks in identifying slight faults. Recently,
characteristic frequencies and the self-organizing map [18]
have been used in detecting broken rotor bar faults by using
the amplitude of the characteristic frequency components
of the load current spectrum as features [19]. However, the
diagnosis results show the same less accuracy rate in the case
of slight fault detection in rotor bars.

For the bearing faults of IMs, various diagnosis meth-
ods have recently been proposed, including vibration [20],
[21], [22], acoustic emission [23], [24], [25], stray flux
monitoring [26], [27], and motor current signature analysis
(MCSA) [28], [29], [30], [31], [32], [33]. Although the vibra-
tion and acoustic emission methods are effective in detecting
faults, those methods are sometimes unsuitable for practical
use because vibration and acoustic sensors can detect ambient
noise. For flux monitoring methods, there can be an imple-
mentation limitation of flux sensors in practical systems.
Meanwhile, MCSA is easy to implement, robust to ambient
noise, and has cost-effective maintenance.

Until now, each fault is diagnosed using several methods,
and finding a common diagnosis method to solve all three
major faults at the initial stage is a challenging point. On the
other hand, there have been recent reports on diagnosis for
distinguishing multiple kinds of faults using MCSA. In [34],
the multiple-fault diagnosis of unbalanced shaft rotation,
bearing fault, and broken rotor bar using the combination
of the stator current and vibration signals has been reported.
TheMCSAmethod for multiple faults including broken rotor
bars and short circuits has also been applied previously [35].
However, reports on the detection and classification of these
major faults in the slight fault stage using common diagnosis
methods are scarce because of the sensitivity and implemen-
tation difficulties of such faults. In [36], the vibration signal
is combined with MCSA to increase its sensitivity in distin-
guishing the class of faults. In the MCSA method, the degree
of faults is primarily identified. However, the challenge of
identifying slight faults still exists.

Apart from the various analysis methods for detecting
motor fault, the machine learning (ML) algorithm is effective
for the high sensitivity diagnosis of faults of IMs. The above
major faults have been diagnosed with the help of the ML
algorithm, such as by combining the motor current spectral
components with support vector machine (SVM) and k-NN
[36], [37]. However, a common diagnosis method for classi-
fying all threemajor faults (short-circuit faults, bearing faults,
and broken rotor bars) and the possibility of classifications in
slight fault stages have never been reported.

In this study, the three major faults of IMs are diagnosed
using the combination of the load current spectra and SVM.
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FIGURE 2. Experimental setup. (a) Induction motor setup.
(b) Measurement system.

The purpose of the study has three main points: (1) determin-
ing a common method for identifying all three majors faults,
(2) identifying faults at slight fault stages, and (3) distinguish-
ing not only the faulty motor from the healthy motor but
also the faults among the IMs. In this diagnosis, the sideband
components of the load current spectra are used as features
of the SVM, where the motor rotation speed is used as an
additional feature. The results show that themethod discussed
is effective in identifying all three major faults.

II. EXPERIMENTAL SETUP AND INTRODUCTION OF
FAULTS
The experimental setup is shown in Figure 2. A four-pole
three-phase IM (2.2 kW, 200 V, 8.5 A) was used as a spec-
imen. A powder brake (Mitsubishi, ZKB-5HBN) was cou-
pled to the IM as a load. The rotation speeds were adjusted
to 1765, 1770, 1775, and 1780 min−1 by using the pow-
der brake. The load current, line-to-line voltage, and rota-
tion speed were monitored using current sensors (HIOKI,
9695-02), voltage sensors (HIOKI, 9666), and a tachometer
(ONOSOKKI, HT-5500), respectively. The measured data
from these sensors were sent to a desktop computer in less
than 20 seconds using a serial-based communication sys-
tem through a measurement equipment developed by the
authors. The measurement equipment had 8 channels and
8 analog-to-digital (A/D) converters. A field programmable
gate array controls 3 A/D converters with a sampling time
selection of 10µs. Totally, 7 channels were used; one for rota-
tion speed, and 3 for each current and voltage, respectively.
The full-scale current and voltage measurements are 20 A,
and 700 V. A data transfer software was created in Visual
C++ language. Data were recorded every 30 s, and the data

TABLE 1. Dimension of the bearing and the rotor.

FIGURE 3. Artificially introduced faults. (a) Hole fault on the bearing.
(b) Scratch fault on the bearing. (c) Short circuit of the winding.
(d) Broken rotor bar.

length was 217. The sampling time is chosen to obtain the
appropriate frequency resolution (0.76 Hz) and so that the
differences in the spectra between healthy and faulty cases
are distinguished. The AC power supply frequency to the IM
was 60 Hz.

The slight bearing, short-circuit faults, and broken rotor
bars in IMs were introduced artificially because collecting
such faults from factories was complicated. In the case of
the bearing fault, a hole or a scratch was introduced on
the outer diameter surface of the outer ring of the bearings.
Deep groove ball bearings (NSK, 6205ZZCM) were used
as specimens. The dimensions of the bearing are shown in
Table 1. The diameter and depth of the hole were 0.5 mm.
The length, width, and depth of scratches were 5, 0.5, and
0.5 mm, respectively. For the short-circuit faults, a one-turn
fault was made in the stator winding. For the broken rotor bar
fault, a hole was drilled into the rotor bar. The dimensions of
the rotor are shown in Table 1. The diameter and the depth of
the hole are 8 mm and 9 mm, respectively, which can cut one
rotor bar. These faults are shown in Fig. 3.
Creating and maintaining single short-circuit faults are dif-

ficult because large current flows due to short circuits damage
the components in the nearby winding. Consequently, the
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FIGURE 4. Diagnosis procedure of this study.

single-turn fault is extended to two or more turn short-circuit
faults. This may cause harmful electrical machine fault due
to the sudden increase in temperature and the large current
flow through the winding. Thus, we carefully handled the
fabrication and maintenance of the single short-circuit faults
by reducing the measurement time.

Figure 4 shows the diagnosis procedure of this study. First,
the time-domain waveform of the load current of the U phase
for each kind of fault was recorded. Second, the frequency
spectrum was obtained through fast Fourier transformation.
Then, the specific spectrum components of the load current
were extracted. Finally, the spectrum components for each
kind of fault were merged, including the healthy motor, and
diagnosed using SVM.

Two healthy IMs of the same rating were prepared for this
experiment. One of the motors was for the bearing and short-
circuit faults. The other one was for the broken rotor bar fault.
First, the load current spectra of the two healthy motors were
measured. Second, the bearing fault was introduced to the
bearing of one of the healthy motors. After the measurement
using the bearing fault, the faulty bearing was replaced with
a healthy one, followed by the introduction of a short-circuit.
The broken rotor bar was then introduced to the other healthy
motor.

III. LOAD CURRENT ANALYSIS
A. FREQUENCY SPECTRUM
Figure 5 shows the frequency spectra comparison between the
healthy and faulty cases for each class of faults. The rotation
speed was 1780 min−1. The amplitude was normalized to
a maximum frequency component of 0 dB. The frequency
resolution was 0.76 Hz according to the sampling theory. The
healthy spectra of Fig. 5(a–c) are slightly different from that
of Fig. 5(d). This was because the motor for the bearing and
short-circuit faults was different from that for the broken rotor
bar fault. Clear amplitude differences were observed at the
frequencies of 30- and 90-Hz between the healthy and faulty
cases of each class of faults. The amplitude differences at the
frequencies of 120, 150 and 180 Hz were observed for bear-
ing hole, bearing scratch and short-circuit. In this study, the
30- and 90-Hz components were used as the features for the
SVM because those components differ between healthy and
faulty cases for all classes of faults.

FIGURE 5. Frequency spectrum of the healthy and faulty cases on the
bearing at a rotation speed of 1780 min −1. (a) Healthy, bearing (hole),
(b) healthy, bearing (scratch), (c) healthy, short circuit, and (d) healthy,
broken rotor bar. The hatched range is enlarged as shown in the
surrounding figures.

The origin of the amplitude differences for the bearing
and short-circuit faults is explained by the axial stray flux,
which leaks from the stator windings in IMs [38], [39]. The
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stator winding picks up the stray flux. The current with the
corresponding frequency components is induced in the load
current spectra. The stray flux has a sideband frequency
component FB as follows:

FB = FL ± FR

where FL and FR are the frequencies of the power supply
and rotor rotation, respectively. The FL is 60 Hz in this study.
Meanwhile, FR is given by

FR = (1 − s)FL/p

where s and p are the rotor slip and the number of pole pairs,
respectively. The slip s is

s = (Ns − N ) /Ns

where Ns and N are the synchronous and rotor rotation
speeds, respectively. In our experimental setup, p and Ns are
2 and 1800 min−1, respectively. N is 1765, 1770, 1775, and
1780 min−1. Thus, FR is 29.66–29.41 Hz. Therefore, FB is
the same as the experimentally observed first-order sidebands
(30 and 90 Hz), considering the frequency resolution of our
setup (0.76 Hz). Meanwhile, the broken rotor bar faults were
diagnosed by the twice slip frequency sideband FL (1 − 2s)
[38], [39], which was different from the sideband component
FB. Nevertheless, in this study, the sideband frequency com-
ponents FB were used for the broken rotor bars as well as
the bearing and short-circuit faults because this study aims
to diagnose multiple classes of faults using a common diag-
nosis method, and the amplitude difference at the sideband
components FB was observed even for the broken rotor bar
fault.

Even in the case of the bearing, the origin of sideband
components is due to the change of the stray flux affected
by the bearing faults on the surface of the outer raceway of
the bearing. In this study, the bearing fault are not penetrat-
ing through the outer raceway. Practically, previous research
works reported that the outer raceway faults of the bearing
affect the stator current [40], [41]. Thus, the effect of bearing
scratch on the outer surface of outer raceway on the stator
current is conceivable.

B. TWO-DIMENSIONAL ANALYSIS
Initially, the features for the SVM were mapped using the
amplitudes of 30- and 90-Hz two-dimensionally, as shown
in Fig. 6. All the data for the four rotation speeds (1765,
1770, 1775, and 1780min−1) were combined. For the healthy
case, the data of the healthy motor used for the bearing and
short-circuit faults were plotted. The reproducibility of the
features for the two healthy motors was verified in advance.
The difference in the feature distribution between each kind
of fault was observed. However, feature overlapping was
observed, which can degrade the diagnosis accuracy rates.
Thus, the overlapping should be improved.

FIGURE 6. Two-dimensional feature distribution. Circles, squares,
triangles, asterisks, and inverted triangles show the healthy, bearing
(hole), bearing (scratch), short-circuit, and broken rotor bar cases,
respectively.

FIGURE 7. Three-dimensional feature distribution. Circles, squares,
triangles asterisks and inverted triangles show healthy, bearing (hole),
bearing (scratch) short-circuit and broken rotor bar, respectively.

C. THREE-DIMENSIONAL ANALYSIS
Next, a three-dimensional analysis was performed to avoid
feature overlapping. The higher-order spectral components
such as 120- and 150-Hz were candidates for the additional
features. However, these higher-order components did not
improve the overlapping according to our initial investigation.
Meanwhile, the rotation speed could be an effective addi-
tional feature to improve the overlapping [42]. Thus, three-
dimensional mapping using the rotation speed as the third
feature to improve the feature overlapping was performed
in this study. The feature distributions are shown in Fig. 7.
The overlapping of feature distributions among each kind of
fault was improved in comparison with that in Fig. 6. The
features of 30- and 90-Hz for all kinds of faults increased as
the rotation speed increased. Meanwhile, feature overlapping
was still observed. Especially, the overlapping of the short-
circuit and the broken rotor bar was large. Thus, SVM can be
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TABLE 2. Diagnosis accuracy.

used for effective diagnosis even in the presence of a slight
difference in feature overlapping.

IV. DIAGNOSIS USING SVM
A. DIAGNOSIS PROCEDURE
In this study, the diagnoses were performed using SVM as
the ML algorithm. The SVM is an algorism that finds the
hyperplane functions in feature distributions. The hyperplane
is determined to maximize the distance between the plane
and the features. The hyperparameters C and γ are swept to
maximize the accuracy rate. The hyperparameters are swept
in the range of 10−10

≤ C ≤ 1010 and 10−10
≤ γ ≤ 1010.

The accuracy rate in this study is defined as

Accuracy rate(%)

=
Number of data diagnosed properly

Total number of data used in diagnosis
×100

In this study, 70% and the remaining 30% of the data
were used as the training data and test data, respectively. The
number of data for each kind of fault and rotation speed is 40.

Two kinds of diagnoses were performed in this study:
(i) the diagnosis considering only one specific class of faults
and (ii) the diagnosis to identify the class of the faults consid-
ering all classes of faults.

B. DIAGNOSIS RESULTS
Figure 8 shows the parameter dependence of the accuracy
rates on the hyperparameters C and γ . The color bars show
the accuracy rates. Figure 8 (a)–(d) and (e) represent the
diagnoses (i) and (ii), respectively. The accuracy rate strongly
depended on the hyperparameters. The optimized parameters
for all the diagnoses were C = 2−6 and γ = 2−8.

First, diagnosis (i) considering only one specific class of
faults was performed. Table 2 shows the accuracy rates. High
accuracy rates of more than 90% were obtained for all the
diagnoses. Notably, the accuracy rate of the diagnosis of the
bearing (hole), short-circuit, and broken rotor bar was 100%.
This was because the feature overlapping in these cases was
less than that of the bearing (scratch) case, as shown in Fig. 7.
Thus, high accuracy rates can be obtained by assuming the
class of faults.

Then, diagnoses for identifying the class of faults were
performed. Table 2 shows the accuracy rate. An accuracy rate
of 90.62% was obtained. Even though the accuracy rate was

FIGURE 8. Hyperparameter dependence of the accuracy rates in SVM. The
color bars show the accuracy rates. (a) Healthy, bearing (hole),
(b) healthy, bearing (scratch), (c) healthy, short-circuit, (d) healthy, broken
rotor bar, and (e) healthy, bearing (Hole), bearing (scratch), and
short-circuit, broken rotor bar.

slightly lower than that of diagnosis (i), it was still high. Thus,
the class of faults can be identified with high accuracy.

V. DISCUSSION
In this study, a one-turn short-circuit was introduced to mimic
slight faults. The advantage of the present study is that the
diagnosis can be performedwith high accuracy. The proposed
method also gives helpful information at the initial stage
of fault to judge if the motor is to be repaired/replaced to
avoid fault extension. So far, short-circuit faults have been
introduced as multiple-turn short circuits [10], [11]. Because
of the high sensitivity of our method, such minor faults were
detected.

The accuracy rates for diagnosis (i) were higher than that
in diagnosis (ii). Thus, by performing diagnosis (i) after iden-
tifying the class of faults using diagnosis (ii), more accurate
diagnoses can be expected.

Regarding the computation time of the diagnosis, for the
case (i) and the case (ii) which includes the large dataset,
the corresponding time consumption was 36 to 40 seconds,
and 206 seconds. This mentioned time includes the tuning
time of gamma and cost parameters. Also, the computation
time depends on the configuration of the PC that is used for
machine learning. The configuration of the PC is 4 GB RAM,
and Core i5 processor.

To elucidate the advantages of the present method, the
results are compared with the other machine learning
algorithms like k-NN, random forest, decision tree and
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TABLE 3. Comparison of accuracies by the other machine learning
algorithms.

k-means. These algorithms are selected because they are
commonly used and emerging in case of the motor diagnosis.
The diagnosis case (ii) was considered and performed for
the comparison because obtaining the high accuracy rate is
more difficult than the diagnosis case (i). The accuracies
are summarized in Table 3. The accuracy rate of SVM was
90.62%, which is higher than that of other machine learning
algorithms. Thus, SVM is suitable to identify the class of the
faults.

In Fig. 7, the feature distribution moved upward as the
motor rotation speed increased. As explained in Chapter III,
the sideband components of the current spectra originate
from the change in magnetic flux. As the rotation speed
increases, the number of magnetic flux change in unit time
increases. Thus, the sideband components increase as the
rotation speed increases. The feature distribution shift due
to the change in the motor rotation speed interacts with the
neighboring feature distribution of the other class when the
rotation speed is not considered. As a comparison and to eval-
uate the necessity of rotation speed as an additional feature,
the two-dimensional feature diagnosis was performed using
the frequency components of 30- and 90-Hz. The diagnosis
accuracy rate of 62.75% was obtained for the case (ii), which
is lower than the accuracy rate using three-dimensional fea-
tures (rotation speed is included). Thus, using the same SVM
algorithm, motor rotation speed acts to be an effective feature
for obtaining high accuracy rates.

The SVM can deal with more than four features, which
can increase the accuracy rate. The higher-order components
of the motor current spectra are candidate additional features.
Meanwhile, in the case of more than four features, the feature
distribution cannot be visualized. The visualization of data
helps us in monitoring motor conditions. The SVM can be
followed by the operator’s decision when a symptom of fault
appears in the feature distribution plot. This procedure saves
time for diagnosis.

The proposed diagnosis method could be applied even
to inverter-driven IMs. Usually, the operation frequency of
inverters is a few kilohertz, which is higher enough than the
motor rotation speed. Thus, the sideband frequency compo-
nents in the load current are not affected by the operation
frequency of the inverter.

VI. CONCLUSION
In this paper, diagnoses for classifying major classes of faults
were proposed. Slight faults were introduced artificially. The
diagnoses were performed by SVM using sideband compo-

nents in the stator current and the motor rotation speed as the
features. In this study, the classes of faults were successfully
diagnosed even though feature overlapping between different
classes of faults was observed. Although the faults used to
imitate faults in initial stage were minor, high accuracy rates
were still obtained. The capability to classify the faults and
high diagnosis accuracy prove the robustness and high sensi-
tivity of the method, enabling its practical use in industries.
In this study, each class of faults was tested independently.
However, these classes of faults can occur simultaneously.
The diagnosis of simultaneous multiple classes of faults shall
be the focus of future studies.
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