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ABSTRACT Automatic Target Recognition (ATR) using Correlation Pattern Recognition (CPR) in
IoT-based applications encounters limitations like limited memory and inadequate computational resources.
One reason is the required quantity of reference templates for each target/object to cover all features of a
target/object. To mitigate the issue of reference templates per target/object without accuracy degradation,
this paper proposes energy compaction-based CPR autoencoder-training. Additionally, a newly proposed
performance metric known as Peak Energy Gain (PEG) estimates the quality of the correlation plane
and the feature compression capability CPR methods. The proposed, composite filtering strategy, Eigen
Maximum Average Correlation Height (EMACH), and Extended Eigen Maximum Average Correlation
Height (E2MACH) are vigorously validated using publicly available biometric and object image databases.
By training a single reference template, the proposed training method achieves 97.97% mean accuracy with
the second-best approach of E2MACH that attains 53.04% mean accuracy on the Pose Estimation Database.
For bio-metric fingerprint verification, the mean Equal Error Rate (EER) of the proposed approach and
the composite strategy is 3% and 29.69%, respectively on the FVC2002DB1A database. Similarly, the
mean EER of the proposed approach and the composite strategy is 10.55% and 26.32%, respectively on
the FVC2006IA database. For FEI faces dataset, the proposed method achieves 1.41% mean EER, and the
composite filtering approach achieves 21.43% mean EER. On the University of Tehran Iris database, the
proposed autoencoder-based methodology obtains 19.07%, and 18.07% mean EER on the left and right side
iris instances, respectively. The comparative results for each dataset demonstrate superiority of AE-based
method over the state-of-the-art CPR methods.

INDEX TERMS Automatic target recognition, correlation pattern recognition, energy compaction, principle
component analysis, autoencder, peak energy gain, bio-metric verification, object detection.

I. INTRODUCTION
Correlation Pattern Recognition (CPR) development came
across many stages to address multiple challenges which
impede its good recognition performance. Human visual per-
ception is invariant to clutter, illumination, rotation, scale,
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occlusion, and noise, however, these are the real issues for
artificial vision systems like, CPR. Multiple attempts have
been made to resolve these challenges. The most common
steps are pre-processing before training or testing CPRfilters.
Pre-processing steps may be log-polar transform, wavelet
transform, or extraction of scale invariant features. Despite
all these developments, the basic training framework of
the advanced CPR filters e.g. Eigen Maximum Average
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CorrelationHeight (EMACH) [1], Extended EigenMaximum
Average Correlation Heigh E2MACH [2], and composite
filtering strategy [3] approaches remain susceptible to a high
number of training samples.

These advanced CPR techniques rely on the computation
of covariance matrix training observations. Then the covari-
ance matrix is decomposed using the linear transformation
of Principle Component Analysis (PCA) or Singular Value
Decomposition (SVD). The consequent matrices are the rep-
resentation of the training observations in an alternative coor-
dinate system. The resulting coordinates are uncorrelated
with each other. However, the first coordinate has the largest
possible variance and is most informative as compared to the
others. Therefore, CPR techniques readily employ a scaled
version of the first coordinate as a reference template or
filter. It is also known as an eigenvector. The transformation
has another property as it reduces multiple observations to
a single reference template. The dimension reduction prop-
erty could reconstruct the input observation using a single
or only a few eigenvectors. Usually, a less reconstruction
error implies a more accurate reconstruction of observations.
Auto-encoders are neural networks with the same purpose of
minimizing the reconstruction error. A single-hidden-layer
autoencoder and activation function with minimum recon-
struction error is related with PCA [4], [5], since weights of
the autoencoder and the first few coordinates of PCA span
the same PCA subspace. However, both are not identical.
Autoencoder can handle greater sample complexity as com-
pared to PCA. In this paper, we propose auto encoder-based
training for CPR filters.

A. RELATED WORK
The matched filter (MF) [6], [7], [8] is a beginning point
in a series of advanced correlation filters, which is ideal for
recognizing the trained reference images in the presence of
additive white noise. Its implementation using coherent opti-
cal computers has been described in the literature. Distortions
in test images like rotations and scaling of the object, face,
or fingerprint impede the performance of the MF. The lack
of tolerance to distortions gave rise to the requirement of a
separate MF for each appearance of an object, face, or fin-
gerprint. Furthermore, several distinct filters are required for
different poses, expressions, illuminations, occlusions, and
various angles of a single subject. This unfeasible quantity
of filters limits the practical deployment of MFs.

A new type of filter called synthetic discriminant function
(SDF) [9] filter was introduced to address this problem.
An earlier version of SDF was a weighted sum of MFs,
which ensured the already specified output at the origin after
correlation with training images. The value associated with
trained images was ‘‘one’’ while for false targets, it was
‘‘zero’’. A peak identified the positive target detection at the
origin of the output plane, if the object was centered in the test
image. Despite, the attainment of a uniform peak response
against training images, SDFs lacked tolerance against input

noise that produced large side lobes in the output plane.
To handle this challenge, a variant of SDF known asminimum
variance synthetic discriminant function (MVSDF) [10], [11]
has been proposed that emphasizes low frequencies. Another
filter known asminimum average correlation energy (MACE)
[12], [13] enhanced the peak sharpness in output images.
However, it gave importance to high frequencies. An optimal
trade-off [14] was possible between MVSDFs and MACE.
SDFs considered hard assumptions, that were ‘‘zero’’ for
false targets and ‘‘one’’ for trained images. On the contrary,
an unconstrained filter [15] like Maximum Average Correla-
tion Height Filter (MACH) can show better performance on
non-trained images. MACH filter detects a false image that is
relatively close to the mean of training samples as the target
becasue of its dependency on the average of training samples.
Eigen Maximum Average Correlation Height (EMACH) [1]
and Extended Eigen Maximum Average Correlation Height
(EEMACH) [2] filters resolved this problem by introducing
a tunable parameter that lowers the contribution of the mean
of training samples in the overall design of the filter. Distance
classifier correlation filter (DCCF) [16] is another variation
of the SDFs filter. This filter utilizes the distance between a
prototype correlation output array and the resultant correla-
tion array for the classification of the test image. This change
of measure is more appealing to multi-class problems than
using only a peak to detect the target.

Circular harmonic function (CHF) [17] filters utilized alge-
braic solution to attain distortion invariance like in-plane
rotation. This support enables only one reference tem-
plate to detect all in-plane rotation of the target. Further-
more, to extend the correlation filters to more complex and
non-linear mapping of input, a statistical approach known as
a polynomial correlation filter (PCF) [18] is employed. How-
ever, this approach involves computation of different powers
of input values at the inference stage. Therefore, PCFs were
computationally expensive and not feasible for low precision
data types.

In addition to CHF, the log-polar transform [19] was pro-
posed to accomplish distortion tolerance like in-plane and
scale-invariance. By involving log-polar as a pre-processing
step at the training phase of theMACHfilter, in-plane rotation
of object translated into a horizontal shift of peak while
scaling of object resulted in a vertical shift of peak in out-
put correlation plane. To achieve the out-of-plane invariance
across the 360-degree range, pre-processed images were used
to train the wavelet-modified MACH (WaveMACH) filter.
However, its simulation results were limited to only three
classes.

Kumar et al. [20] employed different advanced correla-
tion approaches for biometrics verification. There were input
images of the face, fingerprints, and iris with various illumi-
nations, facial expressions, and additive white noise tested
for these filters. The results were obtained for different
distortion sets. Evaluations were considered for multiclass
datasets.
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Alam et al. [21] studied different types of filters that
fall under the categories of matched filter-based correla-
tion (MFC) and joint transform correlation (JTC). These
filters have been using various measurement criterion for per-
formance evaluation. However, the authors investigated a uni-
fied framework for eight performance parameters under the
same constraints with the same SAR images. Several authors
have claimed that the consequent analysis was supportive in
deciding the relevance of these filters to the different practical
fields. Alam and Bhuiyan [22] proposed a review of recent
trends in CPR filters. The authors presented an investigation
of these filters on Forward-Looking Infrared Imagery (FLIR)
that experimented with the detection/tracking of single and
multiple targets. Chiang et al. [23] investigated the statistical
properties of SDF, MVSDF, and MACE filters for Synthetic
Aperture Radar (SAR) images. Authors have proposed mod-
ified versions of these SDF-type filters. An analysis of the
performance of thesemodified filters comparedwith standard
filters in white and color noise is performed like degradation
of performance due to misestimation of noise statistics and
image normalization. Bhuiyan et al. [24] proposed a Power
EMACHfilter by introducing a power function on all training
images before the training stage. The same was repeated with
the test image at the inference stage. However, the outcomes
demonstrated non-significant improvement in performance.

Akbar et al. [25] proposed the rotational invariant corre-
lation filter for human motion detection. Akbar et al. [26]
proposed an FPGA implementation of a correlation filter
in LabVIEW that reduced the processing time with a loss
in accuracy. Masood et al. [27], [28] suggested a Proximal
Gradient (PG) filter and modified MACH for target tracking
and detection. Tahsin et al. [29] claimed the fully invariant
correlation filter against noise, clutter, occlusion, and in-plane
rotation. The authors have pre-processedWMACE filter with
the Difference of Gaussian (DoG) and logarithmic transform.

Rodriguez et al. [30] proposed the integration of Support
Vector Machine (SVM) and CPR filter for enhacne localiza-
tion of the target within the input scene. Fernandez and Vijaya
Kumar [31] offered the partial-aliasing correlation filters to
increase the performance of CPR filters.

Yang et. al. [32] proposed Neural Network Rotation
Recognition Filter (NNRRF) based on the physical recog-
nition process of a planar integrated 2F optical correlator.
This filter design aims to overcome the limitation of existing
filters in the case of a large rotation distortion. The results
are compared with traditional optimal trade-off synthetic
discriminant function (OTSDF) filters which demonstrate
improvement in the recognition of optical correlators for
rotating distortion targets. However, the suggested approach
does not handle scale and color invariance issues. Xu et. al.
[33] proposed a Neural Network based optical filter that
emulates the working of a 4F optical correlator. The pro-
posed approach achieves more than 300% average peak
than OTSDF. The newly proposed technique enables high
recognition ability in distorted environments. Xu et. al. [34],

[35] proposed a simulation system established on the under-
standing of the lens-less integrated micro-optic correlator
structure and 2F structure. OTSDF filter for different distor-
tions is designed. Experimental results demonstrate that the
lens-less coaxial integratedmicro-optical correlator can accu-
rately detect the target in presence of rotational and scaling
distortion.

FIGURE 1. Optimization diagram of proposed Auto encoder-based
Correlation Pattern Recognition training.

B. MOTIVATION AND RESEARCH CHALLENGES
1) HIGH NUMBER OF REFERENCE TRAINING TEMPLATES
FOR A SINGLE TARGET
Typically, multiple trained templates are employed to detect
a single target in CPR filters [1], [2], [3]. A reference tem-
plate trains with a limited number of training samples. These
samples merely cover a limited range of aspects/angles of the
target. During the inference phase, many reference templates
are required to incorporate all aspects of the target/object.
Reducing the number of reference templates per target to
minimum will greatly enhance the capacity of CPR training
process.

2) COMPUTATIONAL COMPLEXITY OF INFERENCE PHASE
Multiple reference templates for a single target produces
multiple responses. A high number of operations that involves
cross-correlation between reference templates and the test-
ing scene is required, i.e., the total number of operations is
equal to the product of the number of operations per output
for cross-correlation and the number of reference templates
per target. Limiting the number of reference templates to
one will reduce the total number of operations required for
inference.

3) WORKLOAD REDUCTION FOR THE POST-PROCESSING
OF INFERENCE
To localize the target in the output plane as a result of
inference, post-processing of the output plane incurs extra
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TABLE 1. Detailed description of variables used in the paper.

workload for the output of each reference template, e.g., nor-
malizing the output plane before the target localization.
The post-processing workload can be reduced to a
minimum by limiting inference to a single reference
template.

4) ANALYSIS OF PEAK CORRELATION ENERGY AND
CLASSIFICATION ACCURACY OF EXISTING CPR ALGORITHMS
CPR approaches utilize training methods that have a limited
number of training samples. Figure 2 analyses the mean
classification accuracy (Figure 2.(a)) and mean peak cor-
relation energy (Figure 2.(b)) metrices of these algorithms
against ascending number of training samples per refer-
ence template. All the algorithms exhibit decaying average
peak correlation energy and accuracy responses by increas-
ing the number of samples for training. A reference tem-
plate with four training samples has 100%, 85%, and 70%
mean accuracy for EMACH [1], E2MACH [2], and com-
posite filtering strategy [3] filters, respectively. For the same
sequence, the average PCE responses are 33, 22, and 10.
On the contrary, by increasing the number of samples per
reference template to 72, the mean accuracy response falls
to almost 65%, 52%, and 50% for E2MACH , composite
filtering strategy, and EMACH filters, respectively. All the
corresponding mean PCE responses drop to below 20. The
analysis identifies the degradation in performance metrics
for the high number of training samples. The proposed strat-
egy demonstrates superior performance compared to existing
approaches in handling the loss of performance. This paper
mainly focuses on enhancing the capacity of reference
template.

5) ASSOCIATED RESEARCH CHALLENGES
To achieve the above-specified goals, important scientific
challenges which are associated with the existing CPR strate-
gies need to be highlighted. The following challenges exist
for the CPR algorithms:

1) Few numbers of training instances per reference tem-
plate: All CPR statistical methods are limited to the
small number of samples for training. These samples
do not differ much from each other. Typically, each
instance carries a slight variation from its neighbor
samples while having a few-degree rotation (in-plane
or out-of-plane). Increasing the number of instances
per reference template with more variation of samples
might be a challenge to solve.

2) Loss of information in feature space of dataset: Previ-
ous CPR approaches loose most of the feature infor-
mation of training instances due to their dependency
on the mean of samples or over-utilization of principle
component analysis. Using the leading principle com-
ponent in CPR leads to seizing the use of any feature
information that is perpendicular to it.

3) Hardware implementation issues and challenges:
Implementation of the state-of-art statistical methods
of CPR faces shortage of hardware resources like lim-
ited memory availability, memory transmission rate
[36], and capacity for parallel execution of operations.
Reducing the number of reference templates eases the
hardware implementation of these statistical methods
of CPR.

4) Exploration of possible CPR training strategies to
enhance the capacity of reference template for high
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number of training samples without performance
degradation.

FIGURE 2. Classification accuracy and Peak Correlation Energy (PCE)
comparison graphs of the existing state-of-the-art and proposed CPR
training algorithms with increasing sample complexity (N).

Recent research trends in the CPR area emphasize increas-
ing the accuracy and efficiency of these filters. Sabir et al.
[37] proposed compression techniques of the power-of-two
and dynamic fix point quantization schemes for spatial
domain correlation filters. A modified method of training
these filters has been introduced that results in low preci-
sion data type implementation of CPR. Additionally, a step
enhanced the sparsity of these filters, which improved the
target searching time. The proposed method handled the
memory limitation and improved the efficiency of these fil-
ters. Gardezi et al. [38] claimed to achieve full invariance
of spatial domain correlation filter using Affine Scale Shift
Invariant Feature Transform (ASIFT). Awan et al. [39] sep-
arated the object from the background before correlation to
reduce the side lobes in the outcomes. In order to achieve
better performance, an auto-contour-based approach has been
proposed.

C. NOVEL CONTRIBUTIONS
Subsequently, to handle the challenges mentioned earlier,
following contributions have been made:

1) An autoencoder-based CPR training (Step 1 in
Figure 1) has been proposed to enhance the recognition
capability of training templates with a high sample
complexity.

2) Peak Energy Gain (PEG) (Step 2 in Figure 1),
a performance metric based on energy compres-
sion of instances, is presented and compared with
existing CPR approaches to demonstrate its superior
performance.

3) Extensive performance investigation (Step 3 in
Figure 1) of the proposed and existing CPR approaches
using various object and biometric databases has been
presented in this paper. The resultant analysis (Step 4 in
Figure 1) demonstrates a high classification and identi-
fication performance advantage over the existing CPR
techniques for both object and biometric applications.

This paper is organized into multiple sections. The complete
methodology is comprehensively presented in Section II.
Each step is explained in detail. Section III describes the

mathematical framework of the energy compaction prop-
erty of CPR. It establishes a metric to estimate the com-
pression capability of new auto-encoder-based CPR training.
Section IV provides the mathematical relationship between
CPR objective function and reconstruction error. It also com-
pares the reconstruction error of the proposed and existing
approaches. The proposed method is validated by compre-
hensive experimentation of object and bio-metric databases
in Section V.

II. METHODOLOGY
Despite the success of CPR in tackling the challenges of
rotation, scale, occlusion, clutter, and lighting conditions,
it requires multiple reference templates per object/target
for training to cover each feature of the object/target. The
computational complexity of inference increases due to the
number and size of reference templates. The pre-processing
for achieving invariance further adds to the computational
complexity of the CPR process. Figure 3 exhibits step-
to-step methodology of the proposed approach. The pro-
posed method consists of two data flows. Training stream
and inference stream. In training stream, instances with a
black background and centered objects apply for training.
These out-of-plane images cover every aspect object/target
(Step 1 Figure 3) for a particular elevation angle. However,
one training image is distinctive from another, i.e., each out-
of-plane rotation of the same object/target comprises of a
different instance. This variation increases as the image count
increases in the training set. The consecutive out-of-plane
training images incrementally appends the previous training
images thus creating different training sets. These training
sets contain instance’s variations that support investigating
the filter’s response against a progressively enhanced sam-
ple variation. The training process picks one training set
after another to train a reference template per set. Although,
the CPR’s training performs in either frequency or spatial
domain. The proposedmethod opts for old fashion frequency-
based training. The proposed approach reshapes Fast Fourier
Transformed instances (Step 2 Figure 3) to bring convenience
for employing the statistical method. These frequency sam-
ples (Step 2.(a) in Figure 3) are converted into vector columns
before the mathematical transform. The resultant vectors for
each instance concatenate to form a matrix. Subsequently,
each frequency transformed instance (Step 2.(b) Figure 3)
reshapes into a diagonal matrix. These matrices process
mathematically to get an average matrix. The product of the
inverse of this matrix and the transpose of the concatenated
matrix (Step 2.(a) Figure 3) provides the resultant matrix
that contains both the real and imaginary parts. However,
to effectively train the auto-encoder, these parts separate
into two matrices and concatenate to assemble a matrix for
the next step. This matrix feeds into a single-layer auto-
encoder (Step 2 Figure 3) to acquire Minimum Mean Square
Error (MMSE) over a number of iterations. After training, the
product of the weighted vector (Step 2 Figure 3) and the trans-
pose of instancesmatrix reshapes to acquire a single reference
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FIGURE 3. Complete block diagram of the step-by-step implementation of the proposed AE-based Correlation Pattern Recognition.

template. The training process (from step 1 to step 3) repeats
itself for each set to produce a different reference template.
In case of the inference stream, the approach searches the
target over the input testing database. The target localization
accomplishes matching the reference template over the input
scene in a traditional windowing fashion (Step 4 Figure 3).
Themethod performs cross-correlation between the reference
template (Step 2 Figure 3) and Fast Fourier Transform (FFT)
of the selected window (Step 4 Figure 3) in the input scene.
The Inverse Fast Fourier Transform (IFFT) of the correlation
plane provides the correlation plane in the spatial domain.
Post-processing (Step 5 Figure 3) of this output plane pro-
vides the detection score. Typically, this score is the peak
output value of correlated surface known as correlation output
peak intensity (COPI).

FIGURE 4. Architecture of a single neuron in auto-encoder. Note that in
our case N1 = 1.

III. ENERGY COMPACTION PROPERTY
This section provides a mathematical framework for the
energy compaction property of the proposed CPR method

based on an auto-encoder. A typical CPR training only
squeezes a limited number of samples into a reference tem-
plate. This limitation is due to eigen analysis, which reduces
the dimensionality of data. Conventionally, the training pro-
cess employs the PCA that acquires the eigenvector with
the maximum eigenvalue. Eigen analysis merely learns a
linear function that converts the input data into an alterna-
tive domain, with projection vectors specified by the data’s
variance. The projection vectors are known as eigenvectors.
The vector with the maximum eigenvalue contains maximum
variance. Restricting this vector as a reference template will
considerably reduce the excessive dimensionality of data.
However, the prime reason for considering this vector is
to maximize the pre-defined objective function. To achieve
good energy compaction, the transform should utilize a few
coefficients to conserve the energy of the input signals.
For instance, discrete cosine transform and discrete wavelet
transform only exploit a few frequency coefficients to rep-
resent the number of images while causing others to have
zero values. The higher number of image samples at the
input, and more zero coefficients at the output, implies a
better compaction property of transform. Similarly, the sound
compression capability of the CPR technique is define by
a high number of training instances per reference template
for CPR training. We are interested in producing a reference
template(s) that cover more samples in this paper.

Sub-band coding is the most widely used transform cod-
ing method that divides the input signal into constituent
frequency bands. Usually, in a pre-processing step, this
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transform decomposes the signal that reinforces the data com-
pression capability. Any sub-band coding can be described
mathematically using analysis and synthesis transform. Pre-
vious coding techniques [40] provide us with a mathematical
framework that generalizes the bit allocation procedure of
linear system energy. For any such linear sub-band coding
system, the analysis transform is described in the mathemat-
ical form [41].

σ 2
z = Aσ 2

x (1)

where input vector that contains the corresponding frequency
coefficient from each training sample and filter coefficients
h(n) decide the Ak during transmission and Bk is defined by
filter coefficients g(n) and quantized errors at the receiver.
This paper is limited only to the transmission side Ak and
single channel k = 1 due to the requirement of one training
template for all training samples. However, unlike coding
systems, auto-encoder training is a non-linear system. It is
necessary to provide a solution to extend the same mathemat-
ical framework for auto-encoder. In contrast to coding, a non-
linear activation function in an auto-encoder induces more
complexity in the energy compaction property. For a single
layer auto-encoder, an expression generalizes the energy rep-
resentation for linear convolution operation as follows,

Ez = AEx (2)

where Ex and Ez denote energies of x and y due to linear con-
volution operation respectively. A is a vector with dimensions
N×1 and N represents the number of training samples,

Ex = E(x2), Ez = E(z2) (3)

E(z2) = AE(x2) (4)

Equations (1) and (4) become identical when average in
equation (1) approaches to zero. The auto-encoder utilizes the
Sigmoid activation function f (z) =

1
1+e−z , and the following

equation is acquired:

E(y2) =

∫
∞

−∞

(
1

1 + e−z
)2p(z) dz (5)

We transform f 2(z) usingMaclaurin series,

f 2(z) =
1
4

+
1
4
z+

1
16
z2 −

1
48
z3 −

1
96
z4 . . .

By ignoring the higher order terms, we approximate f 2(z),

f 2(z) ≈
1
4

+
1
4
z+

1
16
z2

We can write equation (5) as,

E(y2) =

∫
∞

−∞

1
4
p(z) dz+

1
4

∫
∞

−∞

zp(z) dz+
1
16

∫
∞

−∞

z2p(z) dz

= E(
1
4
) +

1
4

E(z) +
1
16

E(z2)

E(
1
4
) =

1
4
, µz ≡ E(z) = 0,

We simplify the solution,

E(y2) =
A
16

E(x2) +
1
4

(6)

Equation (6) can be generalized forM conventional layers,

E(y2) =



AE(x2), M=1(
1
16

)M−1 (
5M
m=1Am

)
E(x2)

+
1
4

M∑
l=2

((
1
16

)M−l

5M−l+1
m=1 Am

)
, M > 1

5M
m=1Am denotes the matrix multiplication that has output

with dimensions K × 2N and input x has 1 × 2N dimen-
sions that is twice the number of corresponding frequency
coefficients of training samples. In case of a single layered
autoencoder, K = 1 as it has only one output channel.
Further input is either the FFT of gray or three channel RGB
image. The average energy of this input has the dimension
equal to one. However, we have employed a single layered
autoencoder that contains only one weight layer. Architecture
of a single neuron is depicted in Figure 4. Therefore, A can
be expressed as,

A =
E(y2)
E(x2)

(7)

For large number of training frequency coefficients, average
of training samples tends to be zero. As per definition of
second moment E[(x−µ)2] = σ 2

x , the equation (7) becomes,

A =
σ 2
y

σ 2
x

(8)

where σ 2
x denotes the variance of input that can be calculated

using standard variance equation. Same is true of output vari-
ance. As per Parseval’s theorem, energy is conserved in time
and frequency domain,

∫
∞

−∞
|E(f )|2 df =

∫
∞

−∞
|e(t)|2 dt , thus

equation (9) is valid for both domains. Figure 5 demonstrates
the relationship between input and output variance.

IV. RECONSTRUCTION ERROR AND CORRELATION
PATTERN RECOGNITION METHODS
Previous CPR techniques readily utilized PCA transform and
mean vector approach to acquire a reference template for
cross-correlation with inference images. Peak height in the
correlation output plane is maximized by defining the criteria
or objective function. However, the EMACH and EEMACH
training processes create covariance metrics from defined
criteria. In order to obtain a reference template, dimen-
sion reduction of these covariance matrices is a must. PCA
provides the mechanism to convert these criteria matrices
into eigenvalues λ and eigenvectors. However, among these
eigenvectors, only the column vector corresponding to the
maximum eigenvalue provides the reference template. This
column vector maximizes the objective function as compared
to other vectors having smaller eigenvalues. Additionally, this
column vector also contains the highest variance of projection
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FIGURE 5. Transform analysis of (a) EMACH (b) E2MACH (c) composite
filtering strategy (d) AE-based approach.

along the data compared to the other vectors i.e., the vector
contains the highest information about all training samples.
However, this vector does not ensure the maximum discrim-
inatory performance as it depends on the value of β.
Among many properties of PCA, one is dimension reduc-

tion, where for all possible linear transforms, it may perform
the reconstruction of samples using a few eigenvectors with
maximum eigenvalues. The approach can be extended to a

single leading eigenvector with maximum eigenvalue instead
of a few eigenvectors. Typically, a reference template of
EMACH and E2MACH utilizes the first principal component
vector of PCA transform.However, this first principle compo-
nent determines the vector in the feature domain along which
projections have highest variance.

Let D be the matrix of centered data having N samples as
rows and e is the unit vector that define an axis in feature
space. Where covariance is defined as 6 =

1
N−1D

TD. The
main objective is to find e that results in maximum variance
of projection De.

var(De) =
1

(N − 1)
eTDTDe = eT6e (9)

The Euclidean or Frobenius norm F determines the recon-
struction error between original points and the projected or
estimated points.

min
e

∥D− eeTD∥
2
F (10)

∥D− eeTD∥
2

= tr((D− eeTD)(D− eeTD)T ) (11)

Simplifying the equation(11),

∥D− eeTD∥
2

= C1 − C2eT6e (12)

= C1 − C2var(De) (13)

Because,

C1 = tr(DDT ) + tr(DeeT eeTD)

C2 = 2(N − 1)

where C1 and C2 denote the constants. Only the first prin-
ciple component vector provides the direction in feature
space where the projections of this vector e deliver the high-
est variance. Therefore, only the first principle component
in equation(12) ensures maximum variance and minimum
reconstruction error.
EMACH filter provides a generalized mathematical

framework for maximizing the objective function Jβ
x in

equation 16. Othermethods like EEMACH and composite fil-
tering strategy are the improved extensions of this framework.

Cβ
x =

1
N

N∑
i=1

(xi − βm)(xi − βm)+ (14)

Sβ
x =

1
N

N∑
i=1

[Xi − (1 − β)M ][Xi − (1 − β)M ]+

(15)

Jβ
x =

h+Cβ
x h

h+(1 + Sβ
x )h

(16)

(1 + Sβ
x )

−1Cβ
x h = λh (17)

where xi and Xi denote the samples in spatial and frequency
domains while mi and Mi are sample averages in spatial
and frequency domains. Small alphabets represent sample
in vector form, and the capital alphabet shows the sample
along a diagonal matrix. β controls the contribution of the
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sample’s mean in filter design. N denote the total number of
samples.h represents the filter. Eigen value λ is the maximum
value in eigenvalue matrix and its corresponding Eigen vector
(1+ Sβ

x )−1Cβ
x demonstrates the basic design of the EMACH

filter.
AE-based CPR training provide the (1 + Sβ

x )−1Cβ
x matrix

to auto encoder instead of performing its Eigenvalue decom-
position. In order to maximize the objective function Jβ

x ,
the reconstruction error should be minimum. So, both Cβ

x
and Sβ

x are modified in (18) and equation (19), respectively.
Mathematical proof of these equations are given in appendix.

Cβ
x =

1
N

N∑
i=1

(xi − βm̂−
N
√
MSE − Var[x̂i]
(2 − β)

)

× (xi − βm̂−
N
√
MSE − Var[x̂i]
(2 − β)

)+ (18)

Sβ
x =

1
N

N∑
i=1

(Xi − (1 − β)M̂ −
N (1 − β)

√
MSE − Var[x̂i]

β(2 − β)
)

× (Xi − (1 − β)M̂ −
N (1 − β)

√
MSE − Var[x̂i]

β(2 − β)
)+

(19)

To investigate the effectiveness of AE-based CPR train-
ing, the Euclidean norm of the proposed technique should
be less than previous approaches. Therefore, the following
percentage difference is present for comparison between the
proposed method and its counterparts.

1% =
(ρ − τi)

ρ
× 100

(20)

where,

ρ = ∥D− Do∥2 (21)

Do =

∣∣∣eερedρ∣∣∣D (22)

τi = ∥D− eieTi D∥
2 (23)

1% denotes the percentage difference of reconstruc-
tion error of the AE training method and the previous
approaches. Equation (21) provides the Frobenius norm
by utilizing the proposed method. eερ and edρ denote
the weights of encoder and decoder of AE in equation
(22). Where equation (23) provides three options i =

EMACH ,E2MACH , compositefilteringstrategy to have a fair
comparison of reconstruction error of previous techniques
with the proposed approach ρ.
Figure 6 (a-c) is demonstrating less Euclidean norm value

as compared to EMACH, E2MACH , and the composite
approach that identifies the distinction of the AE-based
approach. For EMACH, Figure 6 (a) has the greatest differ-
ence between norm values that increases with a growth in the
number of training samples. Conversely, in Figure 6 (b-c),
this difference is decreased along with a rise in the count of
training samples.

FIGURE 6. Frobenius norm comparison graphs of the proposed approach
with the existing state-of-the-art CPR algorithms with growing sample
complexity (a) EMACH (b) E2MACH (c) composite filtering strategy. Each
case presents a percentage difference below zero, which demonstrates
that the proposed approach achieves less average Euclidean norm value
during the reconstruction of input.

FIGURE 7. Comparison of performance metrics after proposed AE-based
CPR training i.e. proposed average PEG and conventional metric, average
Correlation Output Peak Intensity (COPI), and consequent accuracy
difference with increasing sample complexity (N).

A. PEAK ENERGY GAIN (PEG)
Interpreting the output correlation plane for target detection
requires defining some performance metric or score. This
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performance measure describes the quality of the CPR algo-
rithm, as it conveys the separation between the target from the
background. Finding a metric that maximizes the difference
between target and background responses is the key to good
performance. Previous approaches [1], [2], [3] have widely
employed the correlation output peak intensity (COPI) to
detect and localize the target in the test scene. A threshold
value is calculated by the weighted mean of COPI values of
training samples. Any COPI response above the threshold is
considered a target. Otherwise, it is background. Side lobes
in the output correlation plane are always the issue as they
could mislead the detection process. However, COPI does not
consider the energy compaction property due to the filtering
of the CPR algorithm. Here, we have introduced a newmetric
for target detection that assumes the energy compaction of
the CPR filter. Figure 7 is the accuracy difference achieved
after employing the newly proposed performance measure,
peak energy gain (PEG). The performance is considerably
enhanced over COPI due to the proposed metric.

ϑ =
CP−MCP√∑
x
∑

y |CP|2
(24)

NCP =
ϑ

σϑ

(25)

ι = max(NCP) (26)

PEG = −
ι

log10 (A) + C
(27)

whereas CP denotes the correlation output plane and MCP
is the average of this plane. σϑ is variance of the output ϑ .
NCP is the normalized correlation plane. ι denotes the peak
intensity of the normalized correlation plane. PEG denotes
the peak energy gain. C illustrates the constant term it con-
trollers the energy gain bias where C ≥ 5 in our case. While
equation (9) describes the A.

Figure 7 demonstrates the comparison of COPImetric with
the proposed PEG measure. AE-based correlation filter has
been trained for an increasing number of training samples,
and their corresponding average values of COPI (red line) and
PEG (saffron line) are compared along with their standard
deviation. Similarly, 1acc (gray line) defines the difference
in accuracy due to PEG and COPI.

1acc = ACCPEG − ACCCOPI (28)

where ACCPEG and ACCCOPI denote the accuracy because of
PEG and COPI metrics. Note that the experiment setting for
both readings is the same. The gray line in Figure 7 is above
the value of one for almost all counts of training instances
that demonstrate the better performance of the proposed
metric.

V. EXPERIMENTAL RESULTS AND DISCUSSION
Performance evaluation of the target detection model is a key
step in the model development process. It provides us with a
good idea to establish the suitability of the detection model
for a particular application. Previous approaches [1], [2], [3]

are limited to assess the performance using simple correlation
output peak intensity (COPI) score or through the graphs of
ROC curves of a few classes. In biometric systems, equal
error rate (EER) is vital along with accuracy, False Accep-
tance Rate (FAR), and False Rejection Rate (FRR). Where
FAR is defined as the rate of identification of false or invalid
users and FRR is defined as the system failure in identifica-
tion of the valid user. However, for object detection, accuracy
is the most vital metric for performance evaluation. Here,
we have performed a more rigorous experimental evaluation
of proposed and existing schemes of CPR by employing a
large number of classes with a variety of sources e.g, object,
fingerprint, face, and iris.

We have investigated the proposed and existing approaches
using various publicly available databases. These datasets are
included for biometric identification and object recognition.
Evaluation of biometric identification involves fingerprint,
face, and, iris classification while object recognition intro-
duces the target recognition with a variety of object complex-
ity, scalability and, poses. Table 2 demonstrates the details
of these image databases. In order to grasp the maximum
knowledge about the target, each class is trained on alterna-
tive samples from the dataset and tested on the rest of the
samples from the class. The training set is 60% and the testing
set is 40% of samples from each class.

Experimental databases contain multiple classes or indi-
viduals or categories, which alter the performance evalua-
tion into a multi-classification problem. Traditionally, ROC
analysis is sufficient to report CPR performance. However,
ROC analysis is usually performed for binary classification
problems. For biometric identification, performance evalu-
ation based on EER and ROC analysis is widely employed
for binary classification problems due to its analysis sim-
plicity and ease of vision. However, the same is not true for
the multi-classification problems where the utilization of a
single threshold is not possible for each class. For n multi-
class problem, employing a single threshold result in n × n
confusionmatrix, which contains n correct entries along diag-
onal and (n2 − n) possible errors excluding diagonal entries.
In order to evaluate the multi-class problem, each class must
hold its decision threshold, which increases the complexity of
the decision thresholding process more than the binary clas-
sification problem. We have a multi-classification problem,
where n classes are considered as independent classes. Each
class is regarded as a binary classification problem, where
the true instances are predicted positives and the rest are neg-
ative instances. Subsequently, n classes generate n different
ROC graphs where each class corresponds to a ROC graph.
Hence, we have n EER and accuracy values for n different
thresholds.

Amsterdam Library of Object Images (ALOI) [42] is an
object image database of 1000 classes. The details of datasets
are shown in Table 2. The databases contain different datasets,
where each dataset corresponds to 72 different viewpoints
for each object, a wide variety of object images under illu-
mination conditions, color illumination under temperature
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TABLE 2. Details of databases used in experimental evaluation.

TABLE 3. Results of performance evaluation of autoencoder-based, EMACH, EEMACH, and composite strategy-based CPR methods for object recognition
for one trained reference template per object.

conditions, and wide-baseline stereo. The first dataset has
72 out-of-plan object images with 5◦ intervals covering each

aspect of the object. The second dataset is generated using
different camera positions and five lights by switching on
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TABLE 4. Results of performance evaluation of autoencoder-based, EMACH, EEMACH, and composite strategy-based CPR methods for bio-metric
identification one trained reference template per individual.
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FIGURE 8. Visualization of output planes and their projections corresponding to the existing, and AE-based CPR training methods. 1st , 2nd , 3rd , 4rth, and
5th columns represent source image, EMACH, E2MACH, composite filtering strategy, and proposed approach respectively. Each graph holds its
performance metrics of COPI, PCE, and PEG values.

one at a time. Under three other conditions, eight lighting
conditions, 24 instances are produced for each object. For the
third dataset, the frontal view of each object under the 5k tem-
perature interval from 2175K to 3075k is recorded. The left,
right, and front angle orientations of each object are utilized
to construct the fourth dataset. However, only 750 classes
are included in this dataset. Table 3 compares the proposed
approaches with the state-of-the-art CPR schemes for object-
based recognition. In the case of viewpoint testing, the

experimental investigation concludes the 38% accuracy with
a 0.82 precision rate, 0.38 recall, and 0.43 F1 value for the
proposed autoencoder-based approach. The composite filter-
ing strategy approach achieves the nearest accuracy of 8.49%.
For the illumination condition dataset, the AE-based method
achieves 24.68% accuracy with the second-best EEMACH
approach that attains 7.15% accuracy. Similarly, precision,
recall, and F1 values are much better than EEMACH. Table 3
reports the 47.61% and 36.62% accuracy of the AE-based
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FIGURE 9. Peak energy gain responses of a single trained reference template testing using AE-based (1st row) and composite filtering strategy
(3rd row) against elevation angles (0◦-90◦) with an interval of 5◦. Each elevation angle has an output-of-plane rotation of (0◦-180◦) with an interval of
5. AE-based (2nd row) and composite filtering strategy (4rth row) represent the mean and standard deviation of each elevation across (0◦-90◦)
out-of-plane rotations. 1st , 2nd , and 3rd columns represent training strides of 2, 3, and 4 respectively.

approach for color illumination under different temperatures
and wide-baseline stereo datasets. These accuracies, preci-
sion, recall rates, and F1 values are much better than the exist-
ing state-of-art CPR techniques. Note that the utilized object
database contains multiple cases of the same object/class
with different colors while CPR techniques inherently do not
have color recognition ability. This may be the cause of low
accuracy on the ALOI database. Object Pose Estimation [43]
image database has 16 objects/classes with different elevation

angles. Table 3 illustrates the performancemeasures of exper-
imentation evaluations for the database. Each object/class has
been recorded using 19 different elevation angles from 0◦

to 90◦ with 5◦ interval. 37 out-of-plane images have been
recorded for each elevation angle with 5◦ interval. For exper-
imentation evaluation, we have selected an elevation angle of
20◦ for training and testing the CPR methods for all objects.
The database contains both black background and clut-
tered background image datasets. For black background, the
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FIGURE 10. Peak energy gain responses of a single trained reference template testing using E2MACH (1st row) and EMACH (3rd row) against elevation
angles (0◦-90◦) with an interval of 5. Each elevation angle has an output-of-plane rotation of (0◦-180◦) with an interval of 5◦. E2MACH (2nd row) and
EMACH (4rth row) represent the mean and standard deviation of each elevation across (0◦-90◦) out-of-plane rotations. 1st , 2nd , and 3rd columns
represent training strides of 2, 3, and 4 respectively.

AE-based approach attains 94.97% accuracy with 0.95 preci-
sion, recall rate, and F1 value. Themost comparable approach
of EEMACH achieves 53.04% accuracy with a 0.71 precision
rate, 0.53 recall, and 0.52 F1 value. On the contrary, the
cluttered background dataset achieves 41.49% accuracy with
the nearest accuracy of 12.67% of the the composite strategy
method. The reported accuracy degradation may be due to the
object like clutter in the background. FVC 2002DB1A [44]
and 20061A [45] are the databases for finger verification.
Their details are mentioned in table 2. For the AE-based
method, table 4 reports the averages of 96.92% accuracy,

3% EER, 12.63% FAR, and 2.98% FRR. The second best
approach is composite strategy method which declares aver-
ages of 70.37% accuracy, 29.69% EER, 31.75% FAR, and
29.61% FRR. On the FVC 20061A database, the averages of
89.45% accuracy, 10.55% EER, 13.39% FAR, and 10.53%
FRR are reported. The composite strategy method achieves
the second highest averages of 73.70% accuracy, 26.32%
EER, 27.86% FAR, and 26.29% FRR. Level Three Synthetic
Fingerprint is the publicly available database of synthetic
fingerprints. It contains five sets from R1 to R5. For each
set, the average accuracies of the AE-based method stay
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above 99% while EER and FRR remain equal or below
0.57%. The average FAR stays around 10%. The second
best technique is the composite strategy method for all data
sets. PICS-Pain expression subset [46] belongs to a database
of faces of female and male individuals. Dataset maintains
different facial expressions of each individual. CPR schemes
are utilized to classify these individuals with a variety of
expressions. The AE-based approach achieves averages of
96.53% accuracy, 2.49% EER, 15.86% FAR, and 2.38% FRR
while EEMACH approach the obtains second-best averages
of 80.46% accuracy, 19.70% EER, 23.81% FAR, and 19.16%
FRR. On PICS-Stirling faces [46] database, the top two
techniques of AE-based and EEMACH achieve the mean
accuracies of 96.78% and 91.57%, respectively while the
corresponding FAR are 12.65% and 14.81%, respectively.
For AE-based and EEMACH methods, FRR are 2.95% and
8.25%, respectively. On FEI faces [47], the achieved accu-
racies of the top two approaches 98.57% and 87.58% mean
accuracy, 1.41%, and 12.43%mean EER, 7.18%, and 14.14%
mean FAR, and 1.40% and 12.41% mean FRR. The two
best-performed methods are AE-based and EEMACH. Uni-
versity of Tehran Iris [48] database has instances covering
both left and right-sided iris images with distribution is
described in table 2. The corresponding average accuracies
of left and right-sided iris images are 80.59% and 81.55%
respectively, while the mean EER for the same datasets is
19.07% and 18.07% respectively as described in table 4.
Likewise, the mean FAR for the left and right sides of the
iris datasets are 51.08% and 56.48%, respectively, and for
the same datasets, the average FRR is 19.02% and 18.01%,
respectively. The second-best approach for both datasets is
EEMACH.Multimedia University Iris [49] database contains
the iris images of the left and right sides as described in
Table 2. Left and right side samples are trained separately
with a train reference template per individual. Table 4 shows
the average accuracies for the left and right sides of the
iris datasets are 53.01% and 53.43%, respectively, while the
mean EER of the same iris datasets is 46.84% and 47.57%,
respectively. The average FAR for the left and right sides
of the iris datasets are 67.78% and 64.44%, respectively,
and for the same datasets, FRR is 46.52% and 46.16%,
respectively. For both datasets, the second-best results belong
to the EEMACH approach. Figure 8 provides the visualiza-
tion output plane with the COPI, PEG and, PEC of each CPR
method.

A. RESILIENCE TESTS
Stringent environment conditions like noise and different
illumination changes during the image acquiring process
could severely degrade the target detection/prediction pro-
cess. These conditions could modify the target perception
and change the intensities of the target which may cause
the predictor/detector to confuse the target with the back-
ground. In order to verify the invariance of the AE-based CPR
training model against these harsh environmental conditions,

FIGURE 11. PEG comparison of existing and proposed CPR-based
schemes for (a)&(b) moving lighting test, (c)&(d) noise test, and (e)&(f)
scaled test.

we evaluated proposed and existing CPR statistical models on
publicly available databases [43] against the artificial moving
lighting conditions and scalability. Figure 11.a is illustrating
the example from dataset 02 for illumination changes and
Figure 11.e is demonstrating the object’s different scalability
with the background. In both graphs of Figure 11.b and
Figure 11.f, the average PEG response of AE-based method
is better than existing approaches. In addition to these vari-
ations, noise is another challenge for detection algorithms.
Salt and pepper noise is induced with noise density from
0.01 to 0.2. Figure 11.c is illustrating a sample with noise
density of 0.2. In Figure 11.d, despite the greater gradual fall
in PEG value for the proposed approach with noise intensity,
its value is still above the PEG values of existing approaches.
The consequent value of PEG of these evaluations shows
the resilience of the proposed approach against the variable
environmental and scale instances.

B. ELEVATION ANGLES TEST
Experimental evaluation has been extended to acquire the
PEG responses for different elevation angles. For each object,
the database provides images with a 0◦-90◦ degree range.
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Further, for each elevation angle, 0◦-180◦ degree out-of-plane
images are recorded with 5◦ intervals. Therefore, 703 images
are acquired for each category. We have contemplated three
study cases of training in the car category. The first case
considers a training set with a stride of 2, i-e, 10◦ difference
between consecutive training samples. Similarly, the second
and third cases are tested using strides 3 and 4. A single
reference template is trained for each training method per
case. In total, 12 reference templates are trained. Figure 9
demonstrates each study case for the AE-based proposed
approach and composite filtering strategy. Figure 10 rep-
resents the same cases for EEMACH and EMACH filters.
The proposed approach has the highest PEC response, while
these scores remain invariant to each training stride. However,
in the case of the composite filtering scheme and EEMACH,
these responses have slightly variant PEG values for each
training stride. While the EMACH filter has negative scores
which are almost invariant across each stride. The experimen-
tal evaluation proves the resiliency of the AE-based approach
as compared to the existing approaches.

VI. CONCLUSION
The designs for existing strategies for CPR statistical
approaches are intrinsically constrained by a limited num-
ber of training features. Consequently, each target requires
multiple reference templates for recognition, which increases
the computational workload and memory prerequisites for
inference. The existing state-of-the-art CPR training proce-
dures rely heavily on PCA to mitigate the redundancy in
feature space. However, PCA Transform only assesses the
feature projection along the specific axis in the feature space.
Thus, a new auto-encoder-based CPR training framework
has been introduced in this paper with enhanced energy
compression ability. The mathematical relationship has been
established to depict the energy compression capability of
the Transform. A new performance metric PEG, based on
this relationship has been suggested, which summarizes the
quality of the output plane using both COPI and energy com-
pression capability. To perform a comparative analysis of the
multi-classification ability of the existing and proposed CPR
strategies, various publicly available databases of the object
and biometric images are utilized. These databases maintain
datasets which test the resilience against different viewpoints,
scales, noises, and elevation angles. The experimental evalu-
ation demonstrates the excellent performance of the proposed
AE-based method over the existing CPR approaches. The
proposed approach achieves multiclass accuracy of almost
94% for the Object Pose Estimation dataset with the black
background. Similarly, attained accuracy with background
drops to nearly 41%. However, in the case of the Amsterdam
Library of Object Images (ALOI) which contains 1000 object
categories, 38% accuracy is observed. Increasing the database
size and complexity results in a significant drop in accuracy.
The AE-based approach achieves 80% accuracy for most of
the fingerprint, face, and Iris multi-class datasets. However,
for the MMU dataset, the reported accuracy is nearly 53%.

However, these datasets have less number of categories as
compared to ALOI.

In order to handle more complex datasets, attention-based
compression [50] or variational autoencoder may be con-
sidered for future work. Similarly, using the convolutional
auto-encoders for CPR training instead of single-layer auto-
encoders could be explored to enhance the energy com-
pression capability of CPR methods. Scale-invariant Feature
Transform (SIFT) can also be considered for pre-processing
before CPR training for future work. Subsequently, auto-
encoder-based CPR training can be used for enhancing
accuracy.

APPENDIX
RELATIONSHIP BETWEEN MEAN SQUARE ERROR AND
OBJECTIVE FUNCTION

Cβ
x =

1
N

N∑
i=1

(xi − βm)(xi − βm)+ (29)

Ĉβ
x =

1
N

N∑
i=1

(x̂i − βm̂)(x̂i − βm̂)+

=
1
N

N∑
i=1

(x̂i − βm̂)2

=
1
N

N∑
i=1

[x̂2i + β2m̂2
− 2β x̂im̂]

=
1
N
[
N∑
i=1

x̂2i +

N∑
i=1

β2m̂2
− 2β

N∑
i=1

x̂im̂]

=
1
N
[
N∑
i=1

x̂2i + Nβ2(
1
N

N∑
i=1

x̂i)2 −
2β
N

(
N∑
i=1

x̂i)2]

=
1
N
[
N∑
i=1

x̂2i +
β2

N
(
N∑
i=1

x̂i)2 −
2β
N

(
N∑
i=1

x̂i)2]

=
1
N
[
N∑
i=1

x̂2i +
β

N
(β − 2)(

N∑
i=1

x̂i)2]

=
1
N

N∑
i=1

x̂2i +
β

N 2 (β − 2)(
N∑
i=1

x̂i)2

∵
∂Ĉβ

x

∂ x̂i
= 0

2
N

N∑
i=1

x̂i +
2β
N 2 (β − 2)

N∑
i=1

x̂i = 0

N∑
i=1

x̂i +
β

N
(β − 2)

N∑
i=1

x̂i = 0

N∑
i=1

x̂i + β(β − 2)m̂ = 0

m̂ =

∑N
i=1 x̂i

β(2 − β)
(30)
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Similarly,

m =

∑N
i=1 xi

β(2 − β)
(31)

Difference between eq. (30) and (31),

m− m̂ =
1

β(2 − β)

N∑
i=1

(xi − x̂i)

m = m̂+
1

β(2 − β)

N∑
i=1

(xi − x̂i) (32)

We know that Mean Square Error is,

MSE = Var[x̂i] + Bias2[x̂i]

∵ Bias[x̂i] = E(xi − x̂i)

E(xi − x̂i) =

√
MSE − Var[x̂i] (33)

Substituting eq. (33) into eq. (32),

m = m̂+
N
√
MSE − Var[x̂i]
β(2 − β)

(34)

Substituting eq. (34) into eq. (29),

Cβ
x =

1
N

N∑
i=1

(xi − βm̂−
N
√
MSE − Var[x̂i]
(2 − β)

)

× (xi − βm̂−
N
√
MSE − Var[x̂i]
(2 − β)

)+ (35)

Sβ
x =

1
N

N∑
i=1

(Xi − (1 − β)M̂ −
N (1 − β)

√
MSE − Var[x̂i]

β(2 − β)
)

× (Xi − (1 − β)M̂ −
N (1 − β)

√
MSE − Var[x̂i]

β(2 − β)
)+

(36)
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