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ABSTRACT Multiple gas detection in mixed-gas environments is a challenging issue in many engineering
industries because some of the gases can raise defect rates and reduce production efficiency. For chemo-
resistive gas sensors, a precise estimation can be challenging because of the measurement variance and
non-linear nature of the gas sensors, especially in a low concentration environment. A simple application
of the deep learning models, however, does not yield sufficiently accurate predictions of the concentrations
of multiple gases in gas mixtures; thus, it is essential to develop basic strategies for enhancing the accuracy
in all possible ways. In this study, we develop a deep learning framework for achieving high accuracy of
gas concentration prediction by studying the essential pre-processing techniques, learning task design, and
architecture design. For the pre-processing, we study several aspects of processing time-series sensor data
and identify the key techniques for complementing deep learning models’ limitations. We utilize the mixed-
gas nature for the learning task design and show that multi-task learning can generate a synergistic effect.
Additionally, we show that a further improvement is possible by considering on-off classification as a part
of the hybrid learning task. Concerning architecture design, we investigate Multi-Layer Perceptron (MLP),
Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) models after applying the
identified pre-processing techniques. CNN outperformed other models in a joint analysis with the learning
task. The effectiveness of our framework is confirmed with the UCI gas mixture dataset acquired using a
chemical detection platform where 16 chemical sensors are exposed to ethylene, CO, and methane gases.
Using the dataset, we study the basic techniques that can be effective to mixed-gas prediction. For the
UCI dataset, our deep learning framework achieves a significant improvement in estimation accuracy when
compared to the previous studies.

INDEX TERMS Chemical sensors, gas concentration prediction, deep neural network, pre-processing
techniques, mixed-gas framework, hybrid-task.

I. INTRODUCTION gases can increase the defect rate and decrease production
Detection of multiple gases in mixed-gas environments is an efficiency. Various methods have been proposed for the
essential problem in many engineering fields because certain detection based on the chemical and physical properties
of gases. For instance, metal oxide semiconductor sensors
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of analysis [1], [2]. However, these sensors have limitations,
such as the lack of stability over time (also known as
sensor drift) [3], [4], [5], [6] and cross-sensitivity to multiple
gases [2], [7]. Because of such limitations, modeling of gas
concentration prediction using these sensors is quite difficult,
and advanced and customized modeling strategies are highly
desired. In addition, the gases are usually released as mixtures
of multiple gases in practical settings; thus, a more complex
and challenging problem than building a simple model
targeting a single gas must be solved. Many efforts have been
made to address these limitations by developing sophisticated
gas detection algorithms. In the early stages, traditional
machine learning algorithms were used for gas detection,
and more complex models were proposed to achieve better
performance [2], [8], [9]. Recently, deep neural models have
been actively utilized, and studies are being conducted to
improve their performance through the development of novel
and effective model structures [10], [11], [12].

In building these high-performing models, pre-processing
plays an essential role, as well as novel model structures.
Without proper pre-processing procedures, a model is usually
not adequately trained to perform the target task. In the
case of conventional benchmark datasets used in vision
and language fields, typical pre-processing such as simple
normalization can yield sufficient performance. However, it is
unclear which pre-processing techniques should be explored
and used for other application datasets obtained in an actual
industrial environment. In the field of mixed-gas prediction,
the previous studies [4], [13] are limited in that they have
not carefully examined the pre-processing techniques that
are specific to the nature of the mixed-gas data. Therefore,
we focus on carefully studying a dataset for the purpose of
developing specific pre-processing techniques for the mixed-
gas prediction field. As we will show later, the identified pre-
processing techniques turn out to be essential for improving
prediction accuracy.

In deep learning, the success of representation learning
or feature learning is heavily dependent on the choice
of the learning task. For instance, a cross-entropy loss is
typically chosen for classification tasks, and a mean square
loss is chosen for regression tasks [14]. At the same time,
it is well known that a learning task does not need to
be a single goal. Choosing multiple goals is called multi-
task learning. According to [15], multi-task learning is an
approach to inductive transfer that improves generalization
by using the domain information contained in the training
signals of related tasks as an inductive bias. According to
the findings of various studies [16], [17], [18], learning
multiple related tasks simultaneously is superior to learning
each task separately because the information learned for each
task can help improve the learning of the other tasks. Thus,
in the present study, we considered the concentrations of
multiple gases as a multi-task. In addition, we formulated
on-off detection as a classification task so that it could be
utilized as a part of multiple tasks. This is called a hybrid
task in our work. Although the multi-task learning framework
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has been successfully adopted in various fields, only a few
studies on gas detection and concentration prediction have
been reported. In particular, to the best of our knowledge,
no studies reported training of a multi-objective model
that predicts the concentrations of multiple gases in gas
mixtures using a single model. Another important factor for
performance improvement in deep learning is architecture
design. While the research community is still investigating
how the deep neural network (DNN) works, it is well known
to the practitioners that performance can be significantly
affected by choice of architecture. For time series datasets,
the common wisdom is to use RNN-based models; therefore,
RNN and its variants have been applied most preferentially
to gas identification for concentration prediction tasks
[19], [20], [21]. At the same time, recent research has
shown that CNN models learn more stably and that their
performance is higher for datasets with sequential features,
especially when a particular pattern exists in the data [10],
[11]. We compared the performance of MLP, CNN, and
RNN models to determine the most suitable architecture
for our dataset. In addition, to verify the effect of model
size and depth for our mixed-gas concentration dataset,
we compared the performance of two models, ResNet-8
and ResNet-18. Based on the results of the studies men-
tioned above, we built deep-learning models using a CNN
architecture. We showed they could significantly outperform
the previously reported models for the UCI gas mixture
dataset.
The contributions of this study are as follows:

e The effects of various pre-processing techniques (re-
sampling, regularization, moving average, and delay
correction) on the deep learning algorithm was investi-
gated in detail

e Performance-enhancing learning tasks were designed
to predict the concentrations of multiple gases in mixed
gases environments or conduct hybrid tasks (regression
and classification) in a single model, which further
improved the algorithm’s performance.

e The performance of three representative deep learning
models (MLP, CNN, RNN) for time-series gas sensor
datasets were compared, and the CNN model showed
the best performance.

e Based on a suitable pre-processing procedure, our
CNN-based algorithms with newly designed learning
tasks outperform the previous model presented in [19]
by 75.31-90.63%.

Il. BACKGROUNDS

The present study focused on two aspects: pre-processing
techniques for deep learning and deep-learning-based mod-
eling. Data cleansing, data reduction, normalization, noise
reduction, and lag time correction were chosen as major
pre-processing techniques for deep learning of mixed-gas
prediction. In this section, we summarize each pre-processing
technique in detail. Deep-learning-based modeling can be
divided into learning task design and architecture design.
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Many studies on mixed gas detection or gas concentration
prediction based on deep learning mainly focused on
developing architecture design, and few works focused on
learning task design. Therefore, we introduce the studies on
learning task design and then summarize research results
related to architecture design.

A. PRE-PROCESSING

1) DATA CLEANSING

Data cleansing consists of filling in missing values, identify-
ing or removing outliers, and resolving inconsistencies [22].
Often raw data can confuse training procedures, resulting in
unreliable modeling output. In the case of chemical gas sensor
datasets, broken sensor data and settling time regions must
be cleaned. Broken sensor data is recorded owing to sensor
defects or errors in the data acquisition process. The settling
time is the amount of time required for the chemical sensor
to stabilize its output when it is turned on (and heating).
In other words, it is a time interval during which the sensor is
not adequately executing its function. Visualization methods
(scatter plot, box plot, etc.) and statistical methods (standard
deviation analysis, interquartile range analysis, etc.) can be
used for the detection of broken sensor data and settling
time regions [23], [24]. Certain algorithms, such as Potter’s
wheel or Intelliclean [25], can be used to identify irregular
data points and precisely correct them. In the present study,
we verified the settling time region and broken sensor data
by visualizing the degree of change in the sensor values and
removing these points before modeling.

2) DATA REDUCTION

As defined in [26], data reduction is a process that obtains a
reduced representation of the dataset that is much smaller in
volume but yet produces the same (or almost the same) analyt-
ical results. Thus, data reduction is essential for the efficient
training of DNNs. Basic methods of data reduction include
clustering, data aggregation, and downsampling. Time-series
clustering is used to organize data points into groups based on
their similarity. The objective is to maximize data similarity
within clusters and minimize it across clusters [27]. Data
aggregation is a type of multidimensional aggregation in
which the original dataset is represented by aggregation
at various levels of a data cube [28]. Downsampling is
resampling a time-series dataset to a wider time frame [28],
which was used in this study.

3) NORMALIZATION

According to [29], data normalization is a method that
adjusts values measured on different scales to a notionally
common scale. In references [30] and [31], owing to the
wide range of resistance values collected by each sensor,
if the chemical sensor data are properly normalized, it can
help to make more reliable predictions of future test data,
even when they are outside the range of the training
dataset. There are many methods for data normalization,
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such as z-score normalization, min-max normalization, and
baseline normalization. Although z-score normalization is
widely used [32], this method cannot effectively handle non-
stationary time-series data. Therefore, we considered the
min-max and baseline normalizations in the present study.
The formula of the min-max normalization is shown in
Equation 1, where X is the sensor data of the time series,
max(X) is the maximum value of a sequence, and min(X)
is the minimum value of a sequence. For every feature, the
minimum value is transformed into 0, the maximum value
is transformed into 1, and every other value is transformed
into a decimal between O and 1. The baseline method is
shown in Equation 2, where Xs/ngara 1S the value obtained
after subtracting the baseline treatment from Xgegponse, Which
is the true value of the sensor during the response, and
Xpuseline 18 the baseline value of the sensor in the air or
standard gas. The *“‘standard” data can effectively eliminate
the impact on the environment and minimize environmental
errors [2].

X o X — min(X) o
normalized = max(X) — min(X)
Xstandard = XResponse — XBaseline )

4) NOISE REDUCTION

Undesirable noise and disturbances in the remotely sensed
time-series data must be minimized to preserve the original
trends. Among noise reduction methods, moving average
and binning-based clustering are particularly popular [26].
Binning methods smooth the sorted data value by consulting
the neighborhood of each value, that is, the values around
it [26]. The moving average is a method to analyze data
points by creating a series of averages of different subsets
of the full data set [23], [33]. Because the moving average
is a simple and effective technique, it is most commonly
used with time-series data to smooth out the short- and long-
term effects [34]. We also used the moving average for noise
reduction.

5) LAG TIME CORRECTION

The data from the chemical gas sensors have “lag time”,
which is the delay between the moment of gas injection
and the acquisition of the sensor value. Both the response
time of the sensor and the acquisition time are affected by
many factors, including chemisorption and physisorption,
cumulative exposure to the target gas and interfering gases,
and maintenance [35]. The lag time correction is a time
shift correction method that calculates the “true” profile
from the measured resistance and actual gas concentra-
tion profiles based on the sensor time constant [36].
Therefore, it is necessary to compensate for this delay;
moreover, drift correction has also been reported to improve
the performance of the model [37], [38]. In this study,
we set the lag time as a hyper-parameter and determined
the proper value by analyzing the validation accuracy
changes.
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FIGURE 1. Example cases of the ground-truth concentration values of (a) CO and ethylene (b) methane and ethylene of the UCI dataset
are shown together with the corresponding resistance measurements. The measurements are obtained using 16 sensors.

B. DEEP-LEARNING-BASED MODELING FOR GAS
DETECTION AND CONCENTRATION PREDICTION

1) LEARNING TASK DESIGN

When training a deep-learning-based algorithm, it is nec-
essary to define and design a task that is aligned with
the ultimate purpose of learning. Many researchers have
defined the task of predicting the gas concentration as a
basic regression, and the algorithms were trained to minimize
the corresponding loss [4], [10], [11], [39], [40], [41], [42].
Few studies have been conducted on the design of additional
tasks. However, according to the findings of studies in various
other fields, even if the target task is regression, the algo-
rithm performance is sometimes improved when multi-task
learning is performed by including an additional task, such
as classification [43], [44], [45], [46]. This occurs because
intrinsically valuable information can be obtained when
performing classification and regression tasks, resulting in
a synergistic effect on the algorithm’s performance. To the
best of our knowledge, the reference [13] is the only study
that applied multi-tasking to the gas concentration prediction
problem. Therefore, we used various learning tasks for the
algorithm and attempted to determine their impact.

2) ARCHITECTURE DESIGN
Early research using deep learning was based on RNN-like
models such as reservoir computing [19] and gated recurrent
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unit neural networks [20]. More complex RNN models with
better performance have been proposed in [14], [28], [45],
and [47]. Although RNN and its variants architectures are
regarded as suitable structures for sequence modeling [40],
CNN is also an attractive solution for time-series datasets,
and it has recently shown better performance than RNN
architectures [47], [48], [49], [50]. An empirical study
showed that CNNs could outperform RNNs across a diverse
range of time-series modeling tasks and datasets [51].
In references [10] and [11], they proposed simple CNN-
based models to classify gases in a mixed-gas environment
and demonstrated faster learning than RNN-based models
with comparable classification performance. A novel one-
dimensional CNN was also proposed to predict the concen-
tration of each gas in mixed-gas environments [52]. Although
both classification and quantification of multiple gases in
mixed-gas environments are required in an actual field, only
a few studies have investigated these processes together.

Ill. EXPERIMENTS

A. DATASET DESCRIPTION

The experimental dataset used in this study is the “Gas
sensor array under dynamic gas mixtures Data Set” from
the public UCI gas mixture dataset. This UCI gas mixture
dataset was collected using a chemical detection platform,
where 16 chemical sensors were exposed to gas mixtures
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at varying concentrations. The dataset was donated to the
UCI machine learning repository (https://archive.ics.uci.edu)
in 2014 and has since been used in several studies (e.g., [53],
[54], [55]), including the benchmark for this study [19]. The
UCIT public dataset was produced for the study in [19], and
it contains two sets of records for two different gas mix-
tures: CO-ethylene and methane-ethylene. Each sub-dataset
consists of the records of 16 chemo-resistive gas sensors
for the corresponding gas mixture and the measurement
was continued for 12 hours. Visualization examples of the
resistance measurements with the corresponding ground-
truth concentration values are shown in FIGURE 1. It can
be observed that similar patterns with randomness in release
time and gas concentration are repeated over the collection
period. The gas concentration level was randomly adjusted
within the range of 0-20 ppm for ethylene, 0-600 ppm for CO,
and 0-300 ppm for methane. Each time, the gas concentration
level was kept constant in for a randomly chosen duration
and transition time. The sensor array included 16 chemical
sensors (Figaro Inc., US') of 4 different types: TGS-2600,
TGS-2602, TGS-2610, and TGS-2620 (4 units of each
type). The sensors were integrated with customized signal
conditioning and control electronics. The operating voltage
of the sensors, which controls the operating temperature of
the sensors, was kept constant at 5V throughout the entire
experiment. The responses of the chemo-resistive gas sensors
to the gases, namely, the changes in electric resistance, were
collected at 100Hz resolution. It should be noted that the
gas concentration was measured at the exit nozzle where
the gas was released and not at the tunnel where the gas
sensors actually met the gas. Further details are available in
the original data description.”

B. METHODS

1) DATA PRE-PROCESSING

Multiple common pre-processing techniques were sequen-
tially applied to obtain a clean dataset for building a deep-
learning-based gas detection and concentration prediction
model.

Data cleansing To clean the sensor dataset, a visualization
was first used to understand the overall sensor responses
and identify abnormal patterns that needed to be cleaned.
As shown in FIGURE 2a, the sensors appear to have
an unstable initialization phase when they are turned on.
Therefore, the data points collected during this phase were
removed. We investigated every sensor’s initial responses
to determine the initialization time required to cut the
unstable data points from the experimental dataset. For
example, the shaded area in FIGURE 2a was deemed unstable
because the sensors’ responses appear to be converging to
a stable phase during the initialization. After investigating

15400 Newport Drive, Suite 19, Rolling Meadows, IL 60008 USA, Figaro
USA, Inc.

2Dataset details can be found at the following link: https:/
archive.ics.uci.edu/ml/datasets/gas+sensor+array+under+dynamic+gas
+mixtures
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FIGURE 2. Visualization of the CO-ethylene dataset. The needs for
specific pre-processing techniques can be identified. (a) Sensor response
in the first few seconds of measurement. The sensors show unstable and
abnormal responses in the shaded area. (b) Sensor response for varying
gas concentration. Sensor #2 shows an abnormal pattern when compared
to the other sensors. (c) The effect of window size (CO gas; sensor #1).
As the sliding window size is increased, the noise signal is reduced.
However, the magnitude is severely distorted when the window size is
excessively large. (d) The ground-truth of the injected CO concentration
and the response of sensor #1. There is a delay between the two
measurements, indicating that a lag time correction can be helpful.

the initial response of each sensor, initial 2000 data points
(approximately 2000 ms) were removed from all sensors.
In addition, as shown in FIGURE 2b, a faulty sensor
(sensor 2) can be easily distinguished from the other sensors
using a simple visualization method because sensor 2 shows
a significantly different pattern in resistance values compared
to the other sensors. Thus, the data from sensor 2 was
excluded from this study.

Data reduction It is infeasible to analyze a sufficient num-
ber of deep-learning-based models with a high-resolution
(100 Hz) sensor dataset because of the associated high
computational cost. For this reason, data reduction is essential
when using deep learning; however, it is also challenging
to find an appropriate level of reduction that downsizes
the dataset sufficiently but does not eliminate too much
information from the original dataset. We adopted a two-step
approach to solve this problem: visualization and grid search.
First, by visualizing each sensor’s measurements at various
downsampling rates, we determined a suitable search interval
for the grid search (0.1, 1, 10, and 100 s), which was used
in the next step. Second, a grid search was performed at the
chosen interval by considering the effect of each parameter
on model performance. Ultimately, 1 s was selected as the
optimal downsampling rate for our dataset because it did not
seriously harm the model performance.

Normalization This study considered two types of nor-
malization methods: min-max and baseline. While min-max
normalization has no hyperparameter to optimize, baseline
normalization requires a window size to set the data range
to calculate the Xpyseiine used in Equation 2. To determine
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FIGURE 3. The basic residual block of ResNet structure from the original
ResNet study (Figures were adapted from FIGURE 2 of the reference [56]).
The structure contains skip (shortcut) connections to enable the gradient
to flow directly to the bottom layers.

an appropriate window size, a grid search method was
used with intervals of 200, 400, 600, 800, and 1000 s,
yielding 1000 s for the CO-ethylene dataset and 600 s for
the methane-ethylene dataset based on the model validation
performance.

Noise reduction In this study, a moving average method
was used for noise reduction. The appropriate window
size for this method was determined using a grid search
method. As shown in FIGURE 2c, with increasing window
size, the smoothness of the output increases, and the sharp
modulations become increasingly blunt, but at the same time,
the data information can be distorted if the chosen window
size is too large. The modeling performances were compared
for the window sizes of 0, 10, 100, and 1000 ms. Window
sizes of 100 and 10 were selected for CO-ethylene and
methane-ethylene data, respectively.

Lag time correction In the experimental dataset, the gas
concentration was measured at the exit nozzle rather than
at the tunnel, where the sensors actually met the gas. This
means that the gas needs a certain amount of time to spread
sufficiently in the tunnel so that the sensor responds to the
gas. To properly match the sensor responses and the actual
ground truth of gas concentration, one of the signals needs to
be shifted by the lag time, which is called lag time correction.
For this, we first drew plots (FIGURE 2d) to determine a
reasonable range for lag time. Considering the validation
performance of our models, 47 s was selected as the optimal
lag time.

2) DESIGN OF LEARNING TASK

The CNN-based ResNet-8 was used as the base backbone
model, and based on it, four types of variations depending
on the learning task design were introduced: single-gas basic
model, mixed-gas basic model, single-gas hybrid model, and
mixed-gas hybrid model. The ResNet model is comprised
of multiple CNN modules and extends neural networks to
a deep structure by adding a shortcut connection in each
residual block to enable the gradient to flow directly through
the network to the bottom layers (FIGURE 3). As shown
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in FIGURE 4a, the single-gas model was built by adding
dense (fully connected) and regression output layers to the
backbone model (ResNet-8). We refer to this single-gas
model as the basic model in the present study. For the
mixed-gas model, as shown in FIGURE 4b, three dense
layers and a regression output layer were added at the end
of the backbone model for each gas. The mean absolute
error (MAE) loss function from Equation 3 was used for
training regression of both the basic and multiple-gas models.
We also considered a hybrid task model [13] that performs
classification and a regression task in a single model to
improve the performance of concentration estimation. Note
that the classification task is introduced only to improve
the regression task’s performance. The regression task was
used to forecast the gas concentration, and the classification
task was used to determine whether gas was present. The
ground truth of the classification task was set to be false
when the gas concentration was zero and true otherwise. This
corresponds to an on-off classification that can be a useful
task for improving the learning of deep learning models.
The regression task was performed using the MAE (Mean
Absolute Error) loss function from Equation 3, and the
classification task was performed using the cross-entropy loss
function from Equation 4. A hybrid task can be used with both
single- or multiple-gas models. As shown in FIGURE 4c,
there are two outputs in the last layer to predict the gas
concentration and presence in the single-gas model. For the
multiple-gas hybrid models, as shown in FIGURE 4d, each
branch (dense layer) has two outputs in the last layer for the
hybrid tasks.

1
MAE = NZi/i”Actuali — Predicted;| 3)

Cross Entropy = —Efi |Actual; x log(Predicted;)  (4)

3) ARCHITECTURE DESIGN

Three types of DNNs are commonly used: MLP, CNN,
and RNN. MLP is the most basic architecture of modern
DNNs, and it usually serves as the baseline architecture of
DNN algorithms. Unlike the fully connected layers in MLPs,
convolution layers in CNN models extract simple features
from the input by performing convolution operations that
are computationally cheap and allow the adoption of many
layers. CNN models can capture the high-level representation
of input data, making them the most popular choice for
computer vision tasks, such as image classification and object
detection. RNNs have recurrent connections with hidden
states. This looping constraint ensures that the sequential
information is captured in the input data. Furthermore, each
block in an RNN has an internal memory that stores the
computational information from the previous time steps.
As mentioned above, the characteristics used or extracted
features when modeling data differ for each type of DNNs,
affecting the performance of the model. A performance
comparison determined the type of deep learning model best
suited for modeling the time-series dataset with a specific
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FIGURE 4. Deep-learning-based basic models and hybrid models for this study: (a) basic DNN to predict gas concentration, (b) the multiple-gas model to
predict gas1 and gas2 concentrations simultaneously, (c) the hybrid model to predict both gas concentration and gas detection and (d) the mixed-gas
hybrid model to detect gas1 and gas2 and predict their concentrations by using a model composed of 2 branches.

pattern utilized in this study. In addition, multiple reports
have already demonstrated that, for the same model type,
the model’s performance improves with the model’s depth
[56], [57]. This tendency was verified by evaluating and
comparing the performance of two ResNet models.

C. EXPERIMENTAL DETAILS

1) PRE-PROCESSING

In this study, the UCI public dataset was split into the train
(70%), validation (10%), and test (20%). Among all the pre-
processing techniques, data cleansing, and data reduction
were applied by default, and the other pre-processing and
modeling experiments were performed with them.

2) MODELLING

We used ResNet-8 as the backbone model, with sev-
eral branch architectures stacked on top, to analyze both
pre-processing techniques and learning task design. Each
model’s tasks were classified into four categories, which
are described in FIGURE 4. For performance comparison
depending on the model architecture design, we used 5-
layer MLP (each layer was composed of 300 neurons),
ResNet-8 (all layers were CNN modules), and LSTM (the
most popular RNN model) with 330 neurons as the state
vector. For a fair comparison, each model was designed to
have a similar number of parameters. This is an essential
requirement to prevent a model with a larger size from
unfairly outperforming the others. ResNet-18, composed of
18 layers, was used as the deeper model with additional
parameters.
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3) LEARNING

A stochastic gradient descent optimizer was used for all tasks.
Three values (0.1, 0.01, 0.001) were used for the learning
rate, and the value yielding the highest model validation
accuracy was selected (0.01). Early stopping was performed
to avoid overfitting. The training was stopped when the
validation performance did not change for more than
15 epochs.

4) PERFORMANCE MEASUREMENT

MAE (Mean Absolute Error) was utilized to evaluate the
model performance because it is a standard performance
metric that is resistant to outliers because it is a linear
score that averages all individual differences with an equal
weighting [58]. The average and standard deviation of three
repeated experiments were used to evaluate the performance
of the models.

IV. RESULTS

The model performances depending on the combination
of data pre-processing methods and model structure are
summarized in Table 1-4.

A. PRE-PROCESSING TECHNIQUES

The analysis results of the effect of each pre-processing on
the performance of the model are as follows.

1) DOWNSAMPLING

For the time-series sensor data, a considerable amount of
information is redundant, and many data points are simply
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TABLE 1. Model performance on CO-ethylene data.

(a) Model performance on CO data.

Pre-processing techniques

Performance for each learning task

Normalization Moving Lag time Single-gas Multiple-gas
Min-max Baseline average correction Basic Hybrid Basic Hybrid
Benchmark [19] 45.9
Baseline (modeling with raw data) 24.60 +£8.50 31.16+491 1027+£2.15 24.68 +6.40

\% 2276 £2.32 414+£21.51 10.62+2.14 21.52+0.26

v 20.73+£094 1936+150 893+£1.32 17.69+1.44
v v 1596 £0.58 23.14+£5.76 943+£0.54 16.20+2.38
\Y% v 10.14+1.95 1542+693 536+1.86 7.12+043
A% \Y% \Y 920+044 9.48+0.68 430+049 8.69+1.18

(b) Model performances(MAE) on ethylene dataset.

Pre-processing techniques

Performance for each learning task

Normalization Moving Lag time Single-gas Multiple-gas
Min-max Baseline Average correction Basic Hybrid Basic Hybrid
Benchmark [19] 1.7
Baseline (modeling with raw data) 1.25+£020 195090 1.07+£0.34 1.39+0.97

A% 1.36 £0.24 1.45+047 0.85+£0.11 094 +0.15

v 1.02+£0.08 0.88+0.04 093+0.02 1.09+0.34
\Y% v 094+£022 0.78+0.05 0.79+£0.04 095+0.21
v \Y% 046+0.01 045+0.18 0.43+0.01 0.40+0.06
v v v 043+£0.06 0.37+0.08 043+0.02 0.40+0.34

replicated versions of the previous points with noise. Down-
sampling can reduce training time, making training more
efficient. We reduced the amount of data by downsampling
it to 1 Hz, which considerably sped up the optimization of
various hyperparameters. We saved training time of 117 min
(120 min with the original data and 2.4 minutes with the
reduced data) per epoch.

2) NORMALIZATION

Normalization always reduces the standard deviation of the
model performance, regardless of the method used. This is
the case for both the CO-ethylene and ethylene-methane
datasets (Tables 1 and 2, respectively). In addition, except
for the single-gas target modeling on the ethylene-methane
dataset, the normalization effectively improved the model
performance. In most cases, baseline normalization was more
effective than min-max normalization for improving the
prediction performance on both datasets. In addition, in three
repeated experiments, the standard deviation decreased in
most cases after the normalization. Therefore, the normaliza-
tion stabilized the training process.

3) MOVING AVERAGE

Moving average usually improved the model performance
on our dataset (in 6 out of 8 cases on the CO-ethylene
dataset and all cases on the ethylene-methane dataset,
as shown in Tables 1 and 2, respectively). The moving
average was helpful in predicting the concentration of
ethylene in both datasets. The performance of single-gas
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basic modeling for CO was improved by 23.01% in the
CO-ethylene dataset, and the performance of single-gas
basic modeling for ethylene increased by 31.80% in
the ethylene-methane dataset. Even in the case when
the performance was degraded, using both moving aver-
age and lag time correction resulted in a performance
improvement.

4) LAG TIME CORRECTION

We conducted lag correction, which resulted in significant
increases in performance (by approximately 50%) for all
datasets and all predictive modeling setups. The effect of
the lag correction is substantially larger in the ethylene-
methane dataset than in the CO-ethylene dataset, and the
performance was enhanced by up to 83.14% in the case
of ethylene and 64.09% in the case of methane in the
ethylene-methane dataset. For a more elaborate correction,
the hyperparameters may be replaced with an algorithm such
as a linear regression, which adapts the correction period as a
predicted value. This method allows for a more sophisticated
calibration of chemical sensors to drift over time, and it
should be applied to long-term gas concentration prediction.
In our study, we limited our interest to a constant correction
due to the limited size of the UCI dataset. The application of
the moving average and lag time correction together yields
the best modeling performance in most cases (13 out of 16).
As shown in Tables 1 and 2, the best performance in most
cases is obtained when the moving average and lag correction
are applied together.
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TABLE 2. Model performances(MAE) on methane-ethylene dataset.

(a) Model performance on methane data

Pre-processing techniques

Performance for each learning task

Normalization Moving Lag time Single-gas Multiple-gas
Min-max Baseline average correction Basic Hybrid Basic Hybrid
Benchmark [19] 12.5
Baseline (modeling with raw data) 11.00+£5.16 248+2333 6.72+1.86 8.63+193

\Y% 19.03 £14.48 222+£6.63 11.85+4.68 144+14.32

v 11.17£294 871139 6.60+£1.58  6.20+0.62
v A% 10.06 = 2.14 9.7+2.40 599+043 2.67+1.23
v v 442 +£0.51 3.79£0.08 237+0.62 2.63+0.23
A% v A% 341 +0.17 512+158 253+£0.10 2.53+0.63

(b) Model performance on ethylene data

Pre-processing techniques

Performance for each learning task

Normalization Moving Lag time Single-gas Multiple-gas
Min-max Baseline average correction Basic Hybrid Basic Hybrid
Benchmark [19] 1.3
Baseline (modeling with raw data) 1.92+048 2.57+035 1.61+£0.79 2.00+0.39
\" 270+0.24 2.83+0.25 221%x0.11 2.59+0.05
\' 2.61+026 1.65+043 1.11+£0.16 1.31+0.38
\" \' 1.78£0.17 144+034 1.08+0.08 1.12+0.44
\" v 044 +0.05 038+0.16 047+0.28 0.28+0.12
\" \" \" 042 +0.03 030+0.02 032+0.16 0.18 £+0.06
TABLE 3. Model performance (MAE) comparison.
(a) Model performance on CO-ethylene dataset
MAE for CO MAE for ethylene
Architecture Single-gas Multiple-gas Single-gas Multiple-gas
Basic Hybrid Basic Hybrid Basic Hybrid Basic Hybrid
MLP 10.70+£0.31 1232+1.81 9.77+1.15 798+0.57 0.66+0.18 0.57+0.05 0.69+0.21 0.57+0.13
ResNet-8 920+044 948+0.68 430+049 8.69+1.18 043+0.06 0.37+0.08 043+£0.02 040+0.34
LSTM 16.39+3.44 1631+1.04 1287172 12.34+0.57 040+£0.04 042+0.10 0.50%0.14 0.59=+0.14
ResNet-18  898+0.39 8.83+041 421+0.06 6.97+0.57 0.29+0.01 0.31+0.05 0.36+0.03 0.35+0.01
(b) Model performance on methane-ethylene dataset
MAE for methane MAE for ethylene
Architecture Single-gas Multiple-gas Single-gas Multiple-gas
Basic Hybrid Basic Hybrid Basic Hybrid Basic Hybrid
MLP 747+151 9.58+4.67 530+£136 540+£127 045+£0.04 054+£0.09 040+£0.08 0.63+0.24
ResNet-8 341+£0.17 5.12+£1.58 253+£0.10 253+0.63 042+0.03 030+£0.02 032+0.16 0.18+0.06
LSTM 7.14+£0.23 564+098 480+095 448+0.64 048+092 044+091 0.69+£0.23 0.39+0.04
ResNet-18  2.55+0.39 2.94+0.50 233+0.68 239+0.12 0.19+0.04 0.20+0.01 0.26+0.04 0.18+0.05

B. LEARNING TASK DESIGN

According to the obtained results, multiple-gas target mod-
eling performed better than single-gas modeling for all
datasets except for ethylene in Table 1b (see bold numbers
in Tables 1 and 2). For example, in the multiple-gas basic
model, the maximum modeling performance for CO gas
is 53.26% better than that in the single-gas basic model;
for methane, the difference is 30.50%, and for ethylene in
the ethylene-methane dataset, it is 23.81%. Furthermore,
except for one case, the multiple-gas modeling outperforms
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the single-gas modeling throughout all pre-processing steps
on both the CO-ethylene and ethylene-methane datasets.
We also combined the hybrid task with ours, and the
results are shown in the ‘“hybrid” column in Tables 1
and 2. In the modeling for CO and methane, the regression-
only task yielded better results, whereas the hybrid task
yielded better results for ethylene in both tables (performance
higher by 43.75% than for the basic task). The reason for
hybrid learning’s deteriorating effect on CO and methane
and the improving effect on ethylene may be attributed to
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TABLE 4. Comparison of benchmark and our best performance.

CO-ethylene dataset

Methane-ethylene dataset

Target
& CO (MAE) Ethylene (MAE) Methane (MAE) Ethylene (MAE)
Benchmark [19] 45.9 1.70 12.5 1.30
Ours 4.21 0.29 2.33 0.18
MAE reduction rate (%) 90.83% 82.94% 81.36% 86.15%
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FIGURE 5. Ground-truth values and predicted values for the test datasets.

the concentration range of each gas. Compared to CO or
methane, ethylene was injected within a narrow concentration
range. Therefore, the on-off classification was likely more
useful for learning the regression output of ethylene than
the output of CO or methane. For CO and methane with
a wider concentration range, on-off classification did not
help improve the representation learning of the regression
task.

C. ARCHITECTURE DESIGN

To elucidate the benefits of using CNN-based architecture,
we evaluated three different module-based models: ResNet-X
for CNN-based architecture, MLP for multi-layer perceptron-
based architecture, and LSTM for RNN-based architecture
(Table 3). In addition, the performance of CNN-based models
is known to improve with the number of layers; thus,
we verified whether this property holds for the considered
models (ResNet-8 vs. ResNet-18). As shown in Table 3,
the ResNet models outperform MLP and LSTM models by
a large margin. In addition, although LSTM was designed
for time-series data, MLP models in certain cases (6 out
of 16) outperform LSTM models. The ResNet-18 model,
which contains more layers and parameters than the ResNet-
8 model, consistently outperforms the ResNet-8 model in all
cases. This result suggests that even larger models might be
useful for improving performance further.
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(d) Ethylene gas results of methane-ethylene dataset

D. PERFORMANCE SUMMARIZATION AND COMPARISON
1) PERFORMANCE COMPARISON TO BENCHMARK

The main goal of this work is to investigate the essential
factors for developing a deep learning framework for gas
concentration prediction. While the MAE values themselves
are not the most important results of our work, we provide
a comparison with the benchmark provided in the UCI
dataset’s original paper [19]. As shown in Table 4, our
model outperforms the benchmark for all datasets and gases.
As shown in Table 1 (rows 1 and 2), the proposed deep
learning models outperform the benchmark even without any
pre-processing. With all the enhancements in our framework,
the resulting method shows between 81.36% and 90.83%
improved performance than the benchmark method.

2) VISUALIZATION OF THE PREDICTED VALUES

The concentration plots of the ground-truth and the predicted
values are shown in Figure 5. For each plot, the best-
performing model was used for generating the predicted
values. It can be observed that the prediction accuracy is high
in general but can deteriorate when the gas concentration
changes rapidly. The result indicates that the chosen models
are effective for predicting gas concentration, even though the
training samples and the testing samples are from different
time sequences.
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V. DISCUSSION

A. DIFFERENCE IN THE LEVEL OF MAE PERFORMANCE

In our results, the level of MAE performance is strongly
dependent on the type of gas. For instance, the MAE
performance of our model in Table 4 is 4.21 for CO but
only 0.29 or 0.18 for ethylene. The large difference can be
explained by the scale of the injected gas. While CO was
injected in the scale of 0 to 600ppm, ethylene was injected
in a much smaller scale of 0 to 20ppm. When normalized
by the maximum ppm values, the normalized MAE is 0.007
(= 4.21/600) for CO and 0.015 (= 0.29/20) or 0.009 (=
0.18/20) for ethylene. For methane, the normalized MAE is
0.008 (= 2.33/300). Therefore, it can be observed that the
normalized MAE values for the dataset are comparable for
the three gas types. This indicates that the chemo-resistive
sensors and our model are capable of handling the lower ppm
levels as well as the higher ppm levels, at least for the studied
UCI public dataset.

B. GAS COMPOSITION IN REAL WORLD

We have focused on developing and understanding general
strategies when predicting mixed-gas concentrations with
deep learning models. The UCI dataset was constructed
to cover all possible scenarios, including increasing or
decreasing transitions and biased gas compositions between
the two mixed gases, and therefore the dataset construction
was adequate for our purpose of developing general strate-
gies. In the real world, however, an adjustment according
to the specific gas compositions in each situation might
be necessary. For instance, a biased gas composition
might be the dominant situation in a real world scenario.
In such a scenario, each technique considered in our work
might exhibit different behavior, and an adjustment might
be necessary. In fact, it might be possible to achieve
even larger improvements for such a biased scenario
because the techniques can be tuned for the dominant
situation.

C. POSSIBLE DIRECTIONS FOR A FURTHER
IMPROVEMENT

In our study, we have shown that simple but adequate adjust-
ments in pre-processing can have a significant influence when
a deep learning model is used. While this insight should be
useful and applicable for many mixed-gas prediction tasks,
we were not able to specify the characteristic of the mixed-
gas task that makes a particular pre-processing technique
effective. This remains as a limitation of our work, and
studying a variety of datasets collected with diverse sensor
types and environments might reveal ways to achieve a further
improvement. From the algorithm side, we have shown that
learning task design and architecture design can have a
substantial effect. While the overall gain is large, there can
be other techniques that are impactful depending on the task
characteristics. Considering that deep learning techniques are
continuing to evolve, following the latest developments in
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advanced deep learning techniques would be a reasonable
direction for a future improvement.

VI. CONCLUSION

Detecting and predicting the concentrations of various gases
in mixed-gas environments is crucial in many fields of
industry. Several attempts have been made to apply DNNs
to gas concentration prediction problems. However, most
studies did not carefully consider data pre-processing, which
is a simple but crucial step in using deep learning algorithms.
In addition, only a few studies predicted the concentrations of
multiple gases in gas mixtures. We introduced and analyzed
various pre-processing methods for chemical sensor data
in this study. First, representative pre-processing methods,
such as data cleansing, data reduction, noise reduction,
normalization, and lag correction, were considered, and the
effects of each on model performance were analyzed. Both
normalization and delay correction was the most powerful
methods for improving the model performance on our
dataset. Second, we presented a novel mixed-gas framework
for simultaneous multiple-gas detection and concentration
estimation in a mixed-gas environment. To the best of
our knowledge, the present study is the first to exploit
the proposed framework for gas mixture classification and
regression. In addition, we compared the performance of
three different modules (MLP, RNN, and CNN) based on
DNNs. The CNN module-based model performed exception-
ally well, with the best results obtained using ResNet-18 with
additional layers (an 81.36% improvement over a previous
study). This study provides the most basic but essential
insight into the use of various pre-processing techniques and
multi-task-learning-based DNNs for mixed-gas detection and
concentration estimation.
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