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ABSTRACT In visible light communication (VLC) systems based on light emitting diodes (LEDs), the
nonlinearity of LEDs often leads to a high bit error rate (BER), which limits the system’s performance.
While artificial neural networks (ANNs) have been used as predistorters to mitigate LED nonlinearity,
their effectiveness is hampered by overfitting. This paper proposes an adaptive predistorter based on
amplitude time-delay twin support vector regression (ATD-TSVR) to address the nonlinearity of LEDs in
orthogonal frequency division multiplexing (OFDM)-based VLC systems. The authors demonstrate through
experiments that LED nonlinearity is the primary source of signal distortion in nonlinear VLC systems.
Simulation results show that the proposed ATD-TSVR predistorter achieves superior BER, Inputs/Outputs
curves, power spectral density (PSD), and constellation plots in an 80Mbit/s OFDM nonlinear VLC system.
Meanwhile, as compared to the traditional SVR approach, the CPU training time of ATD-TSVR can be
reduced by more than four times. The adaptive pre-distortion method herein is generally applicable to
broadband VLC systems and also proves the application prospect and effectiveness of TSVR in VLC system.

INDEX TERMS ATD-TSVR, adaptive predistorter, nonlinearity, VLC, indirect learning architecture.

I. INTRODUCTION

Wradio frequency (RF) spectrum resources becoming
increasingly limited, Visible Light Communication (VLC)
technology has gained attention as an alternative communi-
cation method. However, VLC systems contain many non-
linear components that can lead to signal distortion and
degrade system performance [1], [2]. The light-emitting
diode (LED), which serves as the transmitter in VLC systems,
is a major source of nonlinearity [3], [4]. To address the
issue of nonlinearity in VLC systems, there are generally
two approaches: designing waveforms that are insensitive to
nonlinearities and mitigating nonlinear distortion. As LED
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chip design continues to improve and LED devices become
more widely deployed, the research into VLC technology
is gaining extensive attention. Mitigating nonlinear distor-
tion is crucial for optimizing VLC system performance, and
PAPR reduction is a practical approach for addressing LED
nonlinearity [5], [6], [7].

Another approach is to use distortion compensation
techniques to linearize the nonlinearity, which can be
divided into pre-distortion and post-distortion compensation
techniques. [1]. Digital pre-distortion (DPD) is a popular
approach for modeling and estimating predistorters directly
from sampled data by inverting the data stream. However,
most DPD schemes rely on behavioral models of the LED,
including memoryless and memory models. The passage
also mentions specific models that have been used, such as
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a fifth-order polynomial model and a lookup table (LUT)
method. Inan et al. used a fifth-order polynomial to describe
the behavior of a LED [8], [9]. Elgala et al. proposed a
pre-distorter based on the lookup table (LUT) method to over-
come the nonlinear effects of LED in [10] and [11]. To over-
come the limitations of LUT-based predistortion, adaptive
nonlinear pre-distortion schemes have been used to mitigate
nonlinear impairments [12], [13], [14]. Additionally, equaliz-
ers based on the Volterra series have been used to compensate
for dynamic nonlinear distortion in VLC systems [15], [16],
[17], [18]. However, the computing complexity of models
from the Volterra family increases exponentially with non-
linear order. To address this issue, models from the Volterra
family have been clipped, and other modeling techniques
have been explored. For instance, W. Zhao et al. proposed
an orthogonal polynomial model to solve the problem of
instability of the coefficients of traditional polynomial mod-
eling(MP) by using a Hammerstein model [4]. Wiener model
is another subset of the Volterra model,which has the opposite
structure of the Hammerstein model [3], [19], and Qian and
Haas et al. used this to model the nonlinearity of LEDs.

Recently, researchers have proposed using nonlinear adap-
tive algorithms based on neural networks to improve the
performance of visible light communication (VLC) sys-
tems [12], [20], [21], [22]. Additionally, support vector
machine (SVM) based classification has already been uti-
lized to mitigate nonlinearity in both fiber communication
and VLC systems [23], [24], [25], [26]. Another machine
learning algorithm, the K-means algorithm, has also been
presented as a technique for mitigating memoryless nonlinear
phase noise in optical communication [27], [28]. In summary,
machine learning (ML) approaches have proven to be effec-
tive in enhancing the performance of highly nonlinear VLC
systems.

Furthermore, Support Vector Regression (SVR) is a
method that is commonly used for estimation, fitting, and
regression of data. It is based on Support Vector Machines
(SVM) and has unique advantages over traditional Artificial
Neural Network (ANN) models. According to reports in [29],
[30], and [31],SVR can be used to improve optical commu-
nication. Additionally, there are studies that have used SVR
to model power amplifiers [32], [33]. However, the computa-
tional complexity of training the SVR model can be a limiting
factor. We learn that the training computational complexity
of the SVR model is 80(n3), while that of the TSVR is
20(n%). As the number of samples increases, the learning
speed of SVR decreases significantly due to the minimization
of convex quadratic functions that are bound by a pair of
linear inequalities in all training samples [34]. To address
this issue, we propose a dynamic behavior model of Light
Emitting Diodes (LED) based on amplitude time-delay twin
support vector regression (ATD-TSVR) to accelerate the
training process and improve model precision. This model
takes into account the LED memory effects of nonlineari-
ties and provides a detailed derivation of the TSVR theory.
We perform numerical simulations to validate the feasibility
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of the proposed ATD-TSVR modeling and compensation
scheme in an 80-Mbit/s DCO-OFDM-based nonlinear VLC
system. We also provide a performance comparison between
the proposed scheme and the conventional SVR, MP, and
Generalized Memory Polynomial (GMP) schemes.

The remainder of this paper is organized as follows.
In Section II, we provide a review of the basic theory of SVR,
and introduce TSVR in detail. In Section III, we present the
ATD-TSVR model. Then, we provide simulation and experi-
mental results for the proposed model. Finally, in Section IV,
we conclude this paper.

Il. THEORETICAL DERIVATION OF MODEL

A. SUPPORT VECTOR REGRESSION THEORY

SVR is a variation of the support vector machine technique
created by Vapnik and Cortes [32]. Given a training sample
D = {x,y}_, € (R"x y)l,where x; € R'denotes input
variables with output value y; € y = R, we want to obtain a
regression model as in (1) so that the value of f(x) is as close
as possible to y. w and b are the model parameters waiting to
be determined, which can be expressed as

fx)=<w-x > +b. @))

In Fig.1a, the variable ¢ is introduced to construct an isolation
band of width 2¢ to address the regression problem, and if
the training sample falls into this interval band, it is consid-
ered to be correctly predicted. Since there are only a finite
number of training points in the training set, the isolation
band always exists when ¢ is sufficiently large. And the value
of ¢ that can make the isolation band exist is not too small; it
should be greater than the optimal value &, of the following
optimization problem:

min &

w,b,e

st.—e<yi—(<w-x>+4+b)<ei=1,...,1L 2)

Consequently, the SVR problem can be described as

B! .
I;Jl;gknwn% c_zljeg(f(xo —y»] 3)
=
where C is the regularization parameter,?.is the e-insensitive

loss function.

0, iflzl <e
|z| — &, otherwise.

[e(z) = I “4)
Introducing the slack variable £* and &;, formula (3) was
rewritten as

1 u .
5||w||2+c§(s,~+a-)
fa)—yi <e+§&,
s.L. yi—f(xi) <e+é&, ®)
Si* 20,&' 20,i= 1,2...1’1.

min
w,b,é,-*sf

i
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By introducing Lagrange multipliers «* > 0, « > 0, u* > 0,
u > 0, the Lagrangian function of formula (5) can be
obtained by the Lagrangian multiplier method

L(w, b, o, a, n*, p)
1

= lol? +C > (& +&) = D wti — > W&
i=1 i=1

i=1

+ D a(f (i) — & —yi— &)+ Do (fx) — & —yi—e).

i=1 i=1

(6)
Substituting formula (1) into (6), and making g—(f) = g—ﬁ =
g—é = % = (0, we obtain
n
w = Z (Oll>k - ai)xi
1
n
Z(ai* —a)=0 @)
1
C—oi—pi=0

C—af —puf=0.

Substituting (7) into (6), we obtain the dual form of the
original problem

1 n n
T
max — Z Z (o] — oc,-)(oc;‘ — ))X; X;

*a; 2
G ST i

n
+ z (af —ai)yi — el + )

i=1

n
e =0
st. ,-,jzzl(a‘ i) ®)

0<af,o <C.

The SVR fitting equation can be obtained once the dual
problem has been solved

fe) =D (e —ax/xi+b. ©)
i=1

Regarding the feature mapping, the matching linear function
in (8) is substituted with the kernel function for the LED
modeling application. Thus, the nonlinear SVR function can
be characterized as

F@) =" (o —ak(xi, x) +b (10)
i=1

where « (x;, x;) Gaussian kernel,described as

K ) = ) py) = e TP

B. TWIN SUPPORT VECTOR REGRESSION (TSVR) THEORY
By introducing the idea of twin support vector machines
into the regression problem [35], [36], Peng proposed stwin
support vector regression(e-TSVR) [37], and in the case of
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FIGURE 1. Geometric interpretation of SVR and TSVR. (a) SVR. (b) TSVR.

linear problems, e-TSVR considers finding a pair of linear
functions like in(12)

fix) = w1x + by
[fz(x) = wyx + bs. (12)

where w; € R",wp € R", by € R",by € R", the pair
of linear functions is reduced and increased by & as the
control lower and upper bound of the prediction function
fx) = 1/2(fi(x) + f2(x)), respectively. Therefore, e-TSVR
tries to keep the training samples between the upper and lower
bounds, and compresses the width between the upper and
lower bounds as much as possible. As shown in Fig.1b, this
width is controlled by the parameter ¢ in actual operation, and
&-TSVR solves the following two optimization problems:

I !
! 2
mmz 21 (yl- —&] — (wlTxi +b1)) + C El éi*
1= 1=

T *
W)X+ by +e1 —yi <&
. [ L (13)
! I
in ! yiter — (w3 xi + ba) 2+C2 &
2 i=1 i=1
1= 1=
yi— (@) xi+by— 1) <&
st. [ S (14)
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Here ¢; > 0,eo > 0 are insensitive parameters. él-* and &;
are relaxation variables to introduce for the purpose of mea-
surement error, given by the user, which may vary depending
on the application of the regression model. This constraint
requires that the distance from the training sample point to
the estimation function be at least £; and &;. By introducing
Lagrangian multipliers u; > 0,«; > 0,A; > 0, §; > 0, the
function (12) can be defined as

~

(vi—e1 — (ofxi + bl))2

L(onbran) = 4
i=1

L

I [
+C1 > Ei* -2 /Ligi*
; i=1 i=1
+ > oi (0l xi 4+ b1) —yi + &1 — &)
i=i

L(w25b2a ﬂa)"vgi) = % (Yi_82— (ngi+b2))2

i=1

I i
+C > & — > piki
i =1

=1

]
+> o ((ngi-l-bz) —Yyi+ e —Si).
i=1
(15)

To facilitate the implementation of the algorithm, the above
equation is rewritten in matrix form, then the pair of
Lagrangian functions can be written in the following form:

L (w1, b1, 0, 1, &%)
1
= (¥ —ee1 = (Ao + eb )T (Y — ee1 — (Awy + eby))

+ Cre’ & + o’ (Ao + eby +ee)) Y — £%) — ul &%,
(16)

L (w2, b2, B, A, £)
1
= SV +eer — (Aon + eb)T (Y + egr — (Awy + b))

+ CaeTe + BT (Y — (Awa + eby — esp) — &) — ATE.
(17)

where o = (o1, 2, ..., 0T, 0 = (1, pas oo u)’, B =
B1, B2, - - ,Bn)T, A = (A, A, ... ,An)T are Lagrangian
multiplier vectors. The training data are represented by the
matrix A. Each row of the matrix A represents a set of training
data, which is described as A; = (A;1,4i2,...,Ai ) and
the output signal is denoted as Y (y1, y2, ..., ¥,). In order to
transform a nonlinear quadratic programming problem into a
linear one, the KKT (Karush-Kuhn-Tucker) principle require-
ment needs to be satisfied, and the KKT can be described in
the following form

—AT (Y — Aw; — ebq —881)+ATOl=O

—eT (Y —Aw) —eb) —es)) +efa =0
el'Cl—ale—ule=0

Y — (Awy +eby) > ee; — &%, £ >0

al (Y — (Aw) +eby) —esi +E%) =0, « >0
pule =0, pn=>0.

(18)
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From the KKT condition (18), it follows that
AT AT
o] (wme-taalf )+ [o Ja-o
(19)

For descriptive convenience, we define the following matrix

w
H=[Ae],f=Y—eer, p1 = [bf} (20)
So equation (19) can be described as
—H'f +H"Hp, +HTa = 0. (21)

Solving equation (19), we can obtain the parameters p

Pl = (HTH)_IHT f —a). 22)

From equation (22), we can see that p; does not necessarily
have a solution because it is possible that (H TH ) cannot exist
as an inverse. To solve this problem, a very tiny parameter &
is introduced, so that equation (22) can be rewritten as

p1= (HTH + 81)_1HT f —a). (23)

by the same token

Dy = (HTH + 81)_1HT (B+h). (24)

Here h = Y + eea, pr = [‘;j] combining (15), (18) and

(22), we obtain the following dual problem of (13) and (14)
1 -1
max —zaTH(HTH + 31) H o
-1
+fTH (HTH + 51) H'a —fTa
st. 0<a < Cze, (25)
1 -1
max —E/BTH(HTH—HSI) HT B

—1
- hTH(HTH + 51) HTB+h'p
s.t. 0 < B < Cge. (26)

After obtaining the vectors pi,p> from equations (23)
and (24), the up- and down-bound functions can be deter-
mined. Following is a construction of the calculated regres-
sion functions

1
f&x) = 3 (fi ) + 12 (x))
1
= %(a)l + ) x+ 3 (b1 +by). (27)

C. KERNEL TWIN SUPPORT VECTOR REGRESSION
THEORY

Using kernel approaches, we may achieve nonlinear twin
support vector regression [34]. The entire model’s regression
function can be illustrated as

[fl(x) = «(xT, ATy + by,

H@) = kG, ATwy + by. (28)
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The kernel function uses the same Gaussian kernel in(13).
Therefore, the quadratic programming problem in (13) and
(14) can be expressed as follows:

min %(Y —ee) — (K(A, Aoy + ebl))T
* (Y —eg] — (K(A,AT)a)l +€b1)) + Crel &

s.t. Y — (K(A,AT)a)l +eb1) >eg] —E%, E* >0,

(29)
1 T T
min E(Y + egy — (K(A,A Ywr + €b2))
* (Y + egr — (K(A,AT)a)z + ebz)) + Crel'E

51, (K(A,AT)a)z + ebg) Y>es—& £>0. (30)
As before, the Lagrangian multiplier is introduced
L (w1, b1, a,pu, &)

1 T T
= E(Y —eg] — (K(A,A w1 + ebl))
* (Y —eg] — (K(A,AT)a)l +eb1)) + Crel g*

+af ((K(A,AT)w1 +eby + eal) vy - g*) —uTe,
(3D

The above process requires that the KKT condition be
satisfied

— (A, ATYT (Y — (A, ATYw; — eby — 681)
+xA,AHYTa =0
— el (Y — K(A,AT)O)1 —eby — esl) +ela=0
'y —ale— ;LTe =0
Y - (K(A,AT)a)1 n ebl) > eg) — £, £* >0,
ol (Y - (K(A,AT)a)l +eb1) — ey +g*) =0, a>0,
u'e=0, pu>0. (32)

Define the following expressions
H=[k@AAT)e], f=Y —ee1, p1 = [;’:} (33)
Thus the dual of (29) and (30) is described as follows

1 -1
max —EozTH (HTH + 81) H o
1

+fTH (HTH n 51) To — T
s.t. 0<a < Cze, (34)
]
_ T T
max 2/8 H( H+GI)
1
—WH (HTH + ol) T+ hTB
s.t. 0< B < Cye. 35)
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FIGURE 2. Behavioral model based on time-delay SVR and TSVR. (a) SVR.
(b) TSVR.

Hence, the final intended regression function can be defined
as the mean of the up- and down-bound functions using the
following functional expression:

1
f ) =50 +A@)

= —(w1 + o) k@, x) + 5 <b1 +by). (36
D. EXPERIMENT SETUP AND LED MODELING
DESCRIPTION

As mentioned in the introduction, the goal of LED modeling
is to find an explicit function that accurately describes the
nonlinear behavior of the LED.

For high-rate, wide-bandwidth transmissions, memory
effects cannot be ignored. To accurately model the behavior
of LEDs, we must consider both the current value and part of
the historical values of the input signal. Therefore, the time
delay terms used to characterize LED memory characteristics
are incorporated into the TSVR modeling method proposed
in this work. Fig.2 shows the behavioral model diagram illus-
trating the relationship between the input and output signals.

Y(n) =f@En),¥(n—1),¥(n—2),...) (37)

In VLC systems, LEDs must strike a balance between illu-
mination and communication. Typically, LEDs have a turn-on
voltage, which means that they require positive real-valued
signals to operate.3 shows a diagram of a DCO-OFDM VLC
system with an adaptive indirect learning architecture predis-
torter. As in the traditional method, the training data are two
sets of input and output data, expressed as D = {x;, y;}i_, €
(R" x y)l and we will be able to predict LED behavior using
the model after training is complete.

VOLUME 11, 2023
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hyperparameters and their kernel functions are determined,
the best model can be obtained simultaneously.

TABLE 1. Four different kernals.
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FIGURE 3. Diagram of a DCO-OFDM VLC system with an adaptive indirect
learning architec.

— / 7
S
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FIGURE 4. Experimental setup of the DCO-OFDM VLC platform.

In the following research, we implement TSVR algorithms
and compare them to traditional modeling methods such as
memory polynomials and generalized memory polynomials.
Fig.4 shows the experimental setup of the VLC system. First,
a randomly generated bit sequence is mapped to 16QAM
symbols on the transmitter side. Then, the QAM signals are
transmitted to the OFDM modulation encoder in MATLAB.
In the optical communication experiment, an arbitrary func-
tion generator (AFG, Tektronix AFG3102) is used to feed
the OFDM data. Subsequently, a 660nm wavelength LED
(Hamamatsu L.10762) is modulated via a Bias Tee to combine
the signal and DC-bias voltage. After a short transit in free
space, the optical signal is converted to an electrical signal
in an APD photodiode and recorded by an MSO (Agilent
MS09254A) for further offline signal processing.

E. MODEL EXTRACTION

The four different kernel functions considered for the TSVR
algorithm are listed below: 1) A linear function. 2) An RBEF.
3) A sigmoidal function. 4) A polynomial function. The
specific details of these kernel functions are listed in
Table 1. Once the appropriate hyperparameters, which
include the regularization parameters C1, Cp, C3, C4, and the
boundary sensitive parameters €1, £2. Once the appropriate

VOLUME 11, 2023

Kernel Formulation Parameter
Linear K(x;, ;) = vy(xs, x5) y=1
Polynomial K(zi,zj) = (v(zs, ;) + 1) v =1,d=0.9851
2
RBF K(x;,3;) = o= v = 0.9851
Sigmoid K(xi,x;) = tanh(y(zs,2;) +1) | [=1,7=0.9851

Thus, based on information in Table 1, the Sigmoid func-
tion and the RBF are good choices. However, using Sigmoid
in the model extraction process would lead to a model close
to the singular value performance. Meanwhile, because the
model is used for nonlinear behavioral prediction, the linear
function is not suitable. Thus, the RBF is used as the kernel
function in this paper. A detailed comparison of these kernels
is displayed later in Table 2, as a way of providing a quanti-
tative motivation for choosing the above kernel function.

TABLE 2. Extraction time and accuracy with different kernels.

Kernel Extraction Time(sec) | NMSE(dB)
Linear 0.0421 -19.5216
Polynomial 0.1844 -28.2892
RBF 0.1508 -38.9673
Sigmoid 0.1834 -38.9115

Furthermore, to avoid causing errors in kernel function
selection due to the number of modeled samples, the relation-
ship between the kernel function and the number of modeled
samples is further investigated, as shown in Fig.5. The figure
clearly and intuitively shows the advantages of the RBF
kernel function.

-15
ool = = = &1
—&— Linear
o5 | —&— Polynomal ||
) RBF
—%— Sigmoid
gl o
|
2
S 351 1
¥
-40 M\t\'\
3
-45

50 , , , ,
1000 2000 3000 4000 5000 6000 7000 8000
Training Samples

FIGURE 5. Comparison of modeling accuracy of different kernel functions.

C1, Ca, C3, C4 are the regularization parameters and €1, &2
are the sensitive function control parameters. TSVR wants
the found the upper €1-band of the lower bound function and
the lower &>-band of the upper bound function both contain

23879
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TABLE 3. Characteristics comparison for different regularization
parameters.

TSVR Parameters Kernel NMSE(dB)
Cq 202:1075,03: 2
K(zi,25) = w2 453030
Cy=28,e1=e2=1
Cq 102:1077,03: 5
Kz, z) =75 510632
Cy=28,e1=e2=1
C1=0Cs :10_7,03: 5
K(wi o) === 50,1438
Cy=3,e1=¢e2=1
C1=Cy =102,C3 = )
K(zs,z;) = el 213108

Cy=28,e1 =ea =1

as many sample. This causes TSVR to lose sparsity, and the
different choices of bandwidths ¢, &2 > 0, also affects the
fitting accuracy. From Table 3, it can be seen that the highest
fitting accuracy is achieved when C; = C = 1077, C3 =
Cy = 2.8,61 = ¢ = 1. However, the problem of large
parameter settings of €1, &> also tends to make the model
performance close to the singular value performance and
reduces the modeling accuracy. Thus, we use the C1 = C; =
1077, C3=C4=28,e1=¢=1.

Ill. NUMERICAL SIMULATION AND VLC EXPERIMENT
RESULT

In this section, we demonstrate the signal distortion caused
by LEDs as the primary nonlinear source. We use numerical
simulations performed in MATLAB to investigate the perfor-
mance of the proposed TD-TSVR-based LED nonlinear mod-
eling and compensation scheme in the case of DCO-OFDM.
In Fig.2, the delay term is used as the training term. Addi-
tionally, since the VLC system uses intensity modulation, the
amplitude of the input signal is also used as the training term.
The simulation results show that adding the amplitude term
for training significantly improves the modeling precision.
This means that the relationship between the final input and
output signals is better represented by the model, resulting
in improved compensation of the signal distortion caused by
LEDs. Specifically, the modeling precision is represented by
Y(n) = f(abs(x(n)), x(n), x(n — 1), x(n — 2), ...). We refer
to it as amplitude time-delay twin support vector regression
(ATD- TSVR). The main simulation parameters are listed
in Table 4.

TABLE 4. Simulation parameters.

Parameter Value
Modulation bandwidth 20 MHz
Number of data subcarriers 512
QAM constellation order 16
Raw data rate 80 Mbit/s
Short Guard Interval 128
Size of FFT/IFFT 512

Figure 6 shows the signal acquired from our experiment,
which clearly demonstrates the low-pass effect and distor-
tion caused by the LED. These nonlinear effects signifi-
cantly decrease the efficiency of the VLC system. Therefore,
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FIGURE 6. LED input and output power spectrum density.

we assume that the LED’s nonlinearity with memory effects
can be modeled using the Memory Rapps model, which
consists of a memoryless nonlinear (NL) block and a linear
time-invariant (LTT) block to increase the memory effect [38].
The NL block can be modeled using the Rapps model with
some modifications to account for the specific characteristics
of the LED [3].

(r(n) = Vrov)/(1 4 (R Yrov 2k 2k
,r(n) = Vroy (38)
0, r(n) < Vrov,

z(n) =
the LTI block be presented as:

L—-1
qim) = bizn — 1), (39)
=0

where L is the memory depth, b; is the delayed tap weight,
Vrov is the led turn-on voltage, Inax is the maximum current,
k controls the transition between non-linear and linear. The
parameters of the Memory Rapps model are shown in Table 5.
Fig.7a shows the transfer characteristics of the NL block and
Fig.7b shows the frequency response of the Wiener LED
model. The frequency response of the Wiener LED model
is not flat, which indicates that the LED exhibits memory
effects.

TABLE 5. Details of the wiener LED model.

LTI NL
bo b1 b Imax k VTOV
1 0.15 | 0.1 0.5 2 0.2

Normalized Mean Square Error is a regularly used method
to evaluate modeling efficacy, define the accuracy of behav-
ioral modeling, as well as measure the degree of distortion of
the model,which is expressed by the following equation

SN o =5 w0
SN Iy
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model.

where, n is the total number of samples, and y(n) and y(n)
represent the measured and estimated data, respectively.

A. PSD PERFORMANCE

Initially, the prediction performance of the ATD-TSVR
model on the test dataset is validated. We compare the mea-
sured spectrum with the spectrum obtained using the ATD-
SVR and ATD-TSVR models. Fig.8 gives a comparison of
the measured spectrum and the spectrum obtained using
MP,GMP,ATD-SVR, and ATD-TSVR. And we can observe
that the ATD-TSVR in-band channel and the alternating
channel achieve an excellent match.

- LED real output
0 |—— GMP model output 0

- LED real output
— tput
—— Error signal —

-10 -10
20 520
30 30

o PNt ISRt i
5 10 15 20 25 0 5 10 15 20
Frequency(MHz)

PSD(dBm/Hz)
PSD(dBm/Hz)

Frequency(MHz)

(a) (b)

PSD(dBm/Hz)
PSD(dBM/Hz)

FIGURE 8. Output PSD performance comparision of different model
schemes. (a) is Measured and GMP modeled PSD. (b) is Measured and
MP modeled PSD. (c) is Measured and ATD-TSVR modeled PSD. (d) is
Measured and ATD-SVR modeled PSD.

Fig.9 illustrates the comparison between the real sig-
nal of time-domain baseband data and the model output
data. It is evident from the figure that the ATD-SVR and
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ATD-TSVR models predict the measured data with high
accuracy. The low-pass effect in the output power spectral
density also confirms the accuracy of the LED nonlinear
model used in our study. Both Fig.8 and Fig.9 demonstrate
that the ATD-TSVR model performs well in both frequency
and time domains.

B. IMPACT OF THE NUMBER OF MEASUREMENTS

In this section, we use the ATD-TSVR approach to charac-
terize the behavior of LEDs. Additionally, we compare the
performance of three other approaches: ATD-SVR, MP [39],
and GMP [40]. The comparison results, using 10000 samples
for modeling with different Memory depth (M) and Nonlinear
order (P), are presented in Table 6. The results show that
TSVR can reduce CPU training time by more than four
times compared to the conventional SVR method. This is
because TSVR is designed to solve two small-scale quadratic
programming problems (QPPs) to learn the upper and lower
bound functions, and then obtain the fitting functions. The
computational complexity of TSVR is 20(n?), which is sig-
nificantly faster than that of SVR. Fig.10 visually demon-
strates the relationship between modeling time and samples
for different models. The figure highlights the potential for
further improvement in the modeling efficiency of machine
learning methods.

TABLE 6. The characteristics comparison for different model.

Memory depth(M) L

Model Name and Nonlinear order(P) Modeling time(s) | NMSE(dB)
M=2,P=9 0.2741 -50.21
GMP M=3,P=9 0.1709 -45.85
M=3,P=11 0.1654 -44.94
MP M=2,P=9 0.0325 -46.28
M=3,P=11 0.0424 -45.24
M=2 1106.8 -49.90
ATD-SVR M=3 1682.5 -49.48
M=2 215.0061 -50.50
ATD-TSVR M=3 283.1879 -49.56

Meanwhile, the different memory depths have an impact
on the precision of ATD-TSVR modeling. Table 6 shows
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FIGURE 10. Comparison of modeling time for different models.

that the precision of ATD-TSVR is better when M=2 than
when M=3. Fig. 11 illustrates the relationship between the
modeled sample points and NMSE, where M=3, P=9 for
MP, M=2, P=9 for GMP, M=2 for ATD-TSVR, and M=2
for ATD-SVR. The figure shows that ATD-TSVR performs
exceptionally well in terms of modeling performance. Over-
all, the precision of ATD-TSVR is higher than the other three
methods.

The NMSE of the MP model is strongly influenced by
the modeling sample, as the memory polynomial coefficients
are unstable. In contrast, GMP introduces more terms to
describe the behavioral model of LEDs and improves model
precision. Meanwhile, both ATD-TSVR and ATD-SVR show
great NMSE performance, and the variation of NMSE does
not fluctuate much, indicating good stability and general-
ization of these two methods. However, the computational
efficiency of ATD-SVR is much lower than that of ATD-
TSVR. Further analysis revealed that the limit of ATD-TSVR
was not reached at 10,000 modeled samples, indicating that
TSVR has the capability to model LED nonlinearities for
large samples.
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C. LINEARIZATION CAPABILITY AND PREDISTORTION
The goal of predistortion is to make the LED and pre-
distorter behave linearly when combined. To achieve this,
this paper proposes an adaptive indirect learning predistorter
based on the TSVR approach. Fig. 3 shows a more detailed
block diagram of the predistorter. To compensate for the
LED’s nonlinear properties, the predistorter first constructs
an inverse model using the input and output signals of the
LED to estimate the back-inverse parameters. Then, the pre-
distorter replicates the back-inverse parameters directly into
the predistorter as a pre-inverse. The figure also illustrates the
Input/Output distortion correction effect of the LED predis-
tortion system based on TSVR. in Fig.12.

The Input/Output curve of the LED without pre-distortion
clearly demonstrates nonlinear distortion and memory effect,
whereas the Input/Output curve after pre-distortion is nearly
linear, indicating that the proposed TSVR-based pre-distorter
with adaptive indirect learning architecture effectively com-
pensates the LED’s nonlinear distortion and memory effect.
To investigate whether the proposed predistorter mitigates the
low-pass effect of LEDs, the compensation performance of
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different pre-distortion schemes.

the predistortion system is evaluated, and Fig.13 depicts the
power spectral density of the output signal through various
predistorters compared to the original output signal. By com-
paring, we determined that the output power spectral density
of the model has an effective high-frequency compensation
effect. Moreover, the suppression of adjacent channel power
demonstrates that the approach efficiently suppresses the
out-of-band spectrum expansion.

In order to quantify the compensation impact, the adja-
cent channel power ratio(ACPR) measurements under each
model compensation are presented in Table 7. Compared
to the original output signal, the model has a great ability

TABLE 7. ACPR comparison of the different predistorters.

ACPR (dB)
DPD MODEL |73, [ 227MHz
WIODPD | 2242 | -19.46

MP 2593 | 1636
GMP 2963 | 2165
ATD-TSVR | 2958 | 2149
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FIGURE 14. Constellation diagrams with 40 dB SNR.(a) W/0O DPD. (b) MP
DPD. (c) GMP DPD. (d) TSVR DPD.
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FIGURE 15. BER performance of DCO-OFDM VLC system with and without
predistorter for different models.

to suppress out-of-band spectrum regeneration, suppressing
7.16dB at 2.7 MHz and 2.03 dB at 22.7 MHz, respectively.
The high-frequency compensation and out-of-band spectrum
suppression demonstrate that the proposed ATD-TSVR DPD
model also has excellent frequency domain performance.

D. BER PERFORMANCE

The constellation diagram was drawn for the 16QAM
symbols at 40dB SNR in Fig.14. In Fig.14(a),(b),(c),(d),
the constellation map with pre-distortion are clearer than
the constellation map without pre-distortion. By contrast, the
constellation diagram is very blurry because static nonlin-
earity and memory effects produce phase and amplitude dis-
tortion without pre-distortion, which is shown in Fig.12(a).
The BER performance degrades significantly due to the inter-
ference between different constellation points. The channel
is assumed to be a line-of-sight channel, and additive white
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Gaussian noise (AWGN) is introduced at the receiver. Fig.15
shows the BER performance of the VLC system with the
different pre-distorters. The SNR is defined as SNR =
E(z(n)z)/anz, where z(n) is output signal, and anz is the
variance of the measurement noise. In general, the GMP
model has higher complexity and better performance than
the MP model. However, when linear memory effects are
predominantly present in the LED, the performance of both
models is comparable. Different pre-distortion were com-
pared by design, and it was found that in-band compensation
is generally about the same. In pre-distortion design, the
accuracy of the forward model and the inverse model of
the LED is not identical. When using the same modeling
parameters as the forward model, the inverse model of the
LED obtained by ATD-TSVR is more similar to that obtained
by the polynomial model, which is the reason for the close
BER performance. However, the forward modeling accuracy
of ATD-TSVR is far superior to that of the traditional poly-
nomial model. Additionally, the complexity of ATD-TSVR
is lower than that of support vector regression, and the effi-
ciency of extracting the model is higher.

IV. CONCLUSION

Nonlinearity in VLC systems is primarily caused by the
LED, and we propose a pre-distortion technique based on
ATD-TSVR with an adaptive indirect learning architecture
to compensate for this nonlinearity. Unlike SVR, TSVR
generates two small-scale quadratic programming problems
(QPPs) to learn the regression function before attempting to
solve a larger-scale QPP. This leads to a significant reduc-
tion in CPU training time, by more than four times in
comparison to conventional SVR techniques. Additionally,
the proposed method outperforms certain current traditional
methods, as shown by the NMSE, BER, ACPR, PSD, and
Constellation Plots results.

Experiment and numerical simulation results demonstrate
that the proposed scheme efficiently compensates for non-
linear distortion, including nonlinear memory effects and
static nonlinearity of LEDs. The adaptive nature of ATD-
TSVR-based pre-distortion enables its usage with a variety
of nonlinear light sources and broadband VLC systems to
reduce nonlinear distortion in VLC systems. Furthermore,
TSVR has a variety of variant algorithms, which makes it a
versatile solution to LED nonlinearity.
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