
Received 30 January 2023, accepted 1 March 2023, date of publication 8 March 2023, date of current version 14 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3253935

Correlation-Concealing Adversarial Noise
Injection for Improved Disentanglement in
Label-Based Image Translation
SEONGUK PARK , JOOKYUNG SONG , DONGHOON HAN ,
AND NOJUN KWAK , (Senior Member, IEEE)
Department of Intelligence and Information, Seoul National University, Seoul 08826, South Korea

Corresponding author: Nojun Kwak (nojunk@snu.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) through the Korean Government under Grant
2021R1A2C3006659, and in part by the Institute for Information & communication Technology Planning & evaluation (IITP)
through the Korean Government under Grant 2021-0-01343 and Grant 2021-0-00537.

ABSTRACT Deep learning models in image synthesis have proven their applicability in various image
translation areas. However, although the synthesized image may reflect the user’s intention, some of its
properties may be different from those of real images. In this study, we introduce an undesirable property that
we discovered in the multi-domain label-based image translation techniques: Once the image is translated to
one domain, the translated image cannot be adequately translated again to another domain. We refer to this
problem as the failure of recursive translation, and analyze this phenomenon from the viewpoint of attribute
disentanglement and establish a hypothesis: Unlabeled or unknown attributes that are correlated with the
direction of translation hinder the network from learning the correct direction of translation. Based on our
hypothesis, we also devise a solution that endows the generator with the power of recursive translation,
which is achieved by injecting additive perturbations during model training. Our method is simple and easy
to implement on various translation models without requiring much hyperparameter adjustment. Beyond
enabling recursive translation, it is worth noting that solving the recursive translation problem improves the
disentanglement of single translations, which eventually strengthens its practicability.

INDEX TERMS Adversarial attack, image translation, GAN, disentanglement.

I. INTRODUCTION
Among the various tasks of GAN [1], image-to-image trans-
lation task is to translate an image from a source domain to a
designated target domain. Image-to-image translation models
can be categorized by various criteria, and we divide them
into two based on how domains are defined: explicit-domain
translation which uses domain labels and implicit-domain
translation which explores latent vectors to define domains.

In this paper, we introduce an interesting phenomenon
that we discovered: explicit-domain translation commonly
suffers from one problem; once the model translates an image
into one domain, the translated image cannot be adequately
translated into another domain. We coin this problem as the
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‘failure of recursive translation’ or the ‘lack of trans-
parency’. The problem is due to the model’s deficiency
of attribute disentanglement. A target domain has unknown
correlations with other unintended attributes that result in
unexpected biases, and the model translates the input images
following the direction of the unknown correlation. As a
result, although the translated image may appear as if it
belongs to the target domain in human perception, it actually
may not lie in the distribution of real images belonging to the
target domain. Thus, when a model deals with an already-
translated image, that image is out of the input domain dis-
tribution, prohibiting the model from translating the image to
the right direction. It is worthwhile to address the recursive
translation problem from three perspectives. 1) Mitigating
this from an academic point of view would naturally lead
to a more reliable model. 2) From a practical point of view,
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FIGURE 1. Results of single image translation and double image translation using RelGAN. The ‘Ori’ rows indicate the results of the original method, and
‘Adv’ rows show the results when our method is applied. We used single translated image x1 = G(x, v ) as the input of the double translation, i.e,
x2 = G(x1, v ).

removing the bias will lead to an improved model with better
disentanglement. 3) Failure of recursive translation can be a
threat to those trying to deploy image translation methods for
data augmentation.

In order to solve this problem, we propose a method that
injects adversarial perturbations into the input during the
training. Our adversarial attack method on GAN is based on
the projected gradient descent (PGD) [2], which iteratively
injects an adversarial perturbation to the input image by max-
imizing the mean squared error (MSE) between the initially
generated image and the generated image from the perturbed
image.

Some examples of the recursive translation problem and
our solution can be found in Fig. 1. In the original model
(denoted as ‘Ori’), when the desired translation is ‘changing
to blonde hair’, the image’s overall brightness changes as
well. In this case, the unintended attribute would be ‘increas-
ing brightness’, which is correlated with an intended attribute
‘changing to blonde hair’. Since the original model (‘Ori’)
cannot disentangle these two attributes, it makes the whole
image look paler, whereas our ‘Adv’model exhibits alleviated
behavior.

Our main contributions can be summarized as:

• To the best of our knowledge, we are the first to unveil
the ‘failure of recursive translation’ problem, that
current label-based explicit image translation models
cannot properly translate images recursively.

• Examining the cause of this problem, we establish the
‘undesired correlation hypothesis’, that the model is
vulnerable to learning the undesired correlations with
unintended attributes that are inherent in the data.

• Harnessing the power of adversarial attack, we propose
a modified PGD attack, which injects randomness to

the direction of the image translation during training
phase. Our method is simple to implement, but powerful
enough to translate images into the right target distribu-
tion.

• Our method not only enables robust recursive transla-
tions, but also shows better disentanglement results on
single translation, which improves its practicability.

Our work has strength in that our method fundamentally
rectifies the model’s incorrect behavior, and also gains con-
trollability over the model by disentangling attributes. In the
discussion section and supplementary materials, we pro-
vide more in-depth analysis on additional experiments with
accompanying explanations that can suggest new directions
of future researches.

II. RELATED WORK
Image-to-image translation refers to the task of translating
an image from one domain to another. In this context, a
domain refers to a group of images with similar charac-
teristics, such as gender, hair color, and facial expressions
pre-defined by a human.

Explicit-domain translation is a subset of image transla-
tion, where the target domains are explicitly defined (e.g. by
labeling the painting styles, labeling facial attributes, seman-
tic maps, a single style image, etc). Some early works include
Pix2Pix [3] which uses supervised labels to learn themapping
from the input image to the output image. Reference [4]
proposed perceptual loss that translates an image toward a
single style image, and used a residual [5] generator. Cycle-
GAN [6] and DiscoGAN [7] enabled learning the mapping
between two domains in an unpaired manner, introducing
the cycle-consistency loss. For label-based translations,
IcGAN [8], StarGAN [9], and SingleGAN [10] use hard
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labels representing the target domain as input conditions to
the generator network. These networks use a single generator
network to translate to multiple domains. Furthermore, Rel-
GAN [11] pushed ahead by training a generator with relative
attributes based on the change between source and target
domains, enhancing the attribute interpolation performance.
Sym-parameterized GAN [12] proposes a technique of trans-
lating images into any mixed-domain, using Sym-parameter
and various mixed losses.

Adversarial attack is known as a dangerous security
threat by exploiting the vulnerability of deep models for
malicious purposes. The objective of an adversarial attack is
to create unrecognizably small distortions η to the input x
which maximize the difference between the outputs of input
x and perturbed input x + η. The optimal perturbation used
in the attack is expressed as

η∗
= argmax

η∈S
L(x, x + η), (1)

where S = {η | ∥η∥∞ ≤ ϵ} and L is the adversarial loss,
which denotes the distance between the outcomes of x and
x + η. To find a stronger adversarial example, numerous
gradient-based methods have been proposed. Reference [13]
proposed Fast Gradient Signed Method (FGSM), which adds
noise in the same direction as the gradient of the cost function.
Projected Gradient Descent (PGD) attack [2] is one of the
popular methods among first-order gradient-based attacks,
which applies the gradient descent and the projection for mul-
tiple steps so that the perturbed image lies in the constrained
region S. PGD can be expressed as

x ′

0 = x, x ′

t+1 = 5S (x ′
t + α sign(∇xJ (x ′

t , y))), (2)

where x ′
t denotes the adversarial example at the t th iteration,

J is the target loss function, y is the ground truth label for
x, 5S is the projection operation to the constrained region S,
and α is the step size. PGD also suggested that adversarial
training via solving a minimax optimization problem can
boost the model’s robustness. Some studies tried cooperating
GAN with adversarial attack [14], [15], [16], [17], and tried
attacking the image synthesis process of GANs [1].

III. PROBLEM IN RECURSIVE TRANSLATION
In this section, we first introduce the definition of the recur-
sive translation problem that we discovered in the label-based
image-to-image translation GAN models. Next, we analyze
the cause by proposing a hypothesis of undesired corre-
lation between attributes. Throughout this paper, the word
‘attribute’ of the translation refers to a vector that represents
the change of domains. For example, translating from domain

A to domain B is expressed by
⇀

Att AB.

A. DEFINITION OF RECURSIVE TRANSLATION PROBLEM
We observed the phenomenon that the existing label-based
multiple domain image translation models are not able
to translate already translated images to another domain.
We define this as the failure of recursive translation problem.

Suppose a generative network G(xd , vd ) that is trained to
conduct multiple domain image translation, 3 domains for
example, d ∈ {A,B,C}. Given an input image xA which
belongs to domain A, we can translate it into domain B using
the generatorG conditioned on the target label vB. The output
can be expressed as x1B = G(xA, vB), where its intended

attribute is
⇀

Att AB.1 If one wants to translate the output image
recursively to domain C , then x2C = G(x1B, vC ), where the
superscript denotes the number of recursive translations.With
a transparent generator, the crafted image x1B and x

2
C would lie

on the distribution of B and C respectively. However, accord-
ing to our observation, with existing methods, the resulting
x2C /∈ C for human eyes although x1B ∈ B. To the best of our
knowledge, we are the first to point out this problem. This
phenomenon can be observed in Fig. 1. Following the figure,
the double translation refers to translating a single translated
image in the second column (i.e, x1B) into other domains (i.e,
C). The outputs of the existing models (denoted as ‘ori’) look
plausible in a single translation, but the outputs of the double
translation do not.

1) UNDESIRED CORRELATION HYPOTHESIS
We hypothesize about the cause of the failure of recursive
translation stated above, and name it Undesired Correlation
Hypothesis: The direction of the image translation has a non-
zero correlation with unintended attributes that lie in the
training dataset so that the model learns these undesired cor-
relations with unintended attributes during training, resulting
in an unintended bias as a result of the translation.

Suppose there are three predefined domains d ∈ {A,B,C}

(e.g. Blond, Male in Fig. 1) and an undefined domain D (e.g.
Pale face) which does not belong to the domain label space of

the training dataset. Also, suppose a situation in which
⇀

Att AB
has a positive correlation with the attribute vector

⇀

Att AD.
Then, the sample x1B = G(xA, vB) can have been translated
toward domain D. As a result, the distribution of resulting x1B
does not match with the real distribution of domain B. This
situation is depicted in Fig. 2(A), where Fake B distribution
is biased toward the unintended domain D. Now, let us think
about the situation of recursive translation, x2C = G(x1B, vC ).
During the training, G(·) has only received real images, xA
and xB, as its inputs, but it is not aware of x1B as its inputs.
Therefore, G(·) cannot properly cope with x1B, which lies in
unseen distributions.

IV. PROPOSED METHOD
In Fig. 2(A), we want to fit the distribution of Fake B
(x1B = G(xA, vB)) to the distribution of domain B: G∗

=

argminG ||x1B−x∗
B||. For that, the model has to disentangle the

intended attribute vector
⇀

Att AB from the unintended attribute

vector
⇀

Att AD that are correlated. Ideally, under the undesired

1Informally speaking, it can be considered as
⇀
Att AB = x∗

B − xA, where
the superscript ∗ denotes the desired sample.
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FIGURE 2. (A): Illustration of our hypothesis about the cause of failure of recursive translation. The Domain B refers to an intended target domain, and
Domain D refers to an undefined domain. The purple arrow refers to expected translation direction. (B): Illustration of our proposed solution. The
expected translations of images during the training phase is depicted by dashed purple arrows. Note that the distribution of x ′

A is actually not very
different from xA, since the magnitude of an adversarial perturbation is constrained to be very small.

correlation hypothesis, the successful disentanglement would
result in the removal ofBiasAD, andwe can solve the problem.

A. MOTIVATION
Numerous solutions may exist for disentangling the unin-
tended attributes, and let us suppose that the solutions can
be largely sorted into two methodologies: Either training
a model to learn to de-correlate, or making the model
correlation-incognizable during the training. The main
reason the former disentangling is difficult is that it is
complicated to directly apply some explicit formulation
for disentanglement, because the unintended attributes are
implicit, rather than clearly defined as a form of target
label. Therefore, in the task of image-to-image translation,
we decided to focus on the latter approach that makes the
data-inherent bias imperceptible for the generator. As a way
to make the model unable to recognize the data-inherent cor-
relation, we propose to grant randomness to the direction of
image translations G(x ′, v) other than the intended attribute.
Similar approach exists in the information perturbation [18],
which shares the motivation of randomizing information to
prohibit the trainedmodel from learning unintended tendency
that lies in the data.

B. RANDOM NOISE FOR DIVERSE TRANSLATION
A straightforward way to grant randomness during the GAN
training is adding noise to the training samples, but we
found that there also exist some accompanying limitations
that cannot be resolved using random noises. Fig. 3 is the
translation result of StarGAN when Gaussian random noises
are added to the input images during the network training,
and clean images are used for the testing. Whereas the result
of original multi-domain image translation models fails to
translate recursively in Fig. 1, the model trained noisy input

FIGURE 3. The test result of StarGAN model with Gaussian noise added
during the training. Though the results are noisy, the recursive translation
problem is mitigated.

succeed in changing attributes such as hair color and facial
expressions.

Injecting Gaussian random noise seems to enable recursive
translation, which supports our conjecture that the random-
ization will make the direction of image translation diverge,
which in turn will alleviate the correlation between the
intended and unintended attributes so that it will ultimately
enable the recursive translation. However, the performance
(in terms of visual quality) of the single translation is severely
degraded. The reason behind this is the mismatch of the input
distribution between the noisy images for training and the
clean images for testing. Since the input images are added
with Gaussian noises, there are no guarantees that the clean
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and noisy data have similar distributions, so the model trained
on only noisy data cannot handle clean data properly.

Now, we are to make the direction of image translation
diverge by randomization, while not changing the input dis-
tribution during the training of the generator. Thus, the distri-
bution of the output x ′1

B should be widened while maintaining
the distribution of the input. Fortunately, there exists a way
that kills two birds with one stone: ‘Adversarial attack’, which
makes the output of the target network diverge by adding
subtle noise to the input.

C. MODIFIED PGD ATTACK FOR DIVERSE TRANSLATION
Inspired by PGD attack [2] which is prominent in adversarial
perturbation, we devised a method of diversifying translated
images. Our method maximizes the distance between x1 =

G(x, v) and x ′1
= G(x ′, v) where x is the input and x ′ is a

perturbed image. In Eq. (1), if we use theMean Squared Error
(MSE) as the adversary loss L and then replace the original
loss J in Eq. (2) with L, it becomes

x ′

0 = x, x ′

t+1 = 5S (x ′
t + α sign(∇xL(G(x ′1

t ),G(x
1)))) (3)

and finally an adversarial input x ′ is obtained by x ′
= x ′

T
for some predefined iterations T . Precisely, our method is
quite different from the PGD adversarial training, as the
PGD training is to solve the minimax optimization problem
whose outer minimization directly minimize the adversary
loss given by the outer attack problem (L = J ), whereas our
adversary loss in Eq. (1) does not aim to maximize the outer
minimization loss J (L ̸= J ). This implies that our method
does not conflict with the training of GAN.

After generating x ′, all the real input samples x and fake
output samples x1 are replaced with x ′ and x ′1 during the
model training. Specifically, in the field of image-to-image
tasks, it is common to use the adversarial loss of GAN and the
domain classification loss jointly. For example, in StarGAN,
these can be modified using our method as:

Ladv = Ex ′ [logD(x ′)] + Ex ′,v[log(1 − D(G(x ′, v)))] (4)

Lrcls = Ex ′,v[− logDcls(v | x ′)] (5)

Lfcls = Ex ′,v[− logDcls(v | G(x ′, v))] (6)

where Dcls(·) refers to the domain classifier head of the
discriminator [19].

The expected aspect of our proposed training is illustrated
in Fig. 2(B). Since we perturb the input with a norm-
constrained noises, the variance of the input domain distribu-
tion will not increase as much as the Gaussian random noises.
On the other hand, since the input perturbation maximizes the
MSE loss in Eq. (3), the variance of the output distribution
(FakeB) will increase largely. The reason behind the choice of
MSE as the adversary loss is that we do not want to interrupt
the originally intended attribute, which corresponds to our
motivation. Here, the distribution of Fake B will not vary
much toward the direction of the intended attribute, because
the generator is trained to make the classifier head of the
discriminator correctly classify x ′1

B = G(x ′
A, vB). On the other

hand, the direction of attributes other than A to B (intended
attribute) will be severely randomized, so that it is difficult for
the generator to perceive any correlations with other attributes
that inhere in the training dataset. It is important to note that
in Fig. 2(B), the mean value of Fake B distribution will not

be biased much toward the direction of
⇀

Att AD, because the
generator could not learn the correlations. We will discuss
this later in detail.
As a result, only the intended attribute vector is learned by

the generator, and the distribution of Fake B is more likely to
be close to that of the target domain, and ideally, the recursive
translation x2C = G(x1B, vC ) will be equivalent to x1C =

G(xB, vC ). With the generator trained using adversarial input
x ′, the results of single translation and double translation are
both improved impressively.

Algorithm 1 Pseudocode of the Modified PGD Attack
Require: Training samples x, perturbation bound ϵ, genera-
tor G, number of steps T , perturbed sample x ′

S = {η | ∥η∥∞ ≤ ϵ}

η is randomly initialized
for t = 0, . . . ,T do

η = η + α sign(∇xMSE(G(x + η),G(x)))
η = 5S (η) {projection to set S}

end for
x ′

= x + η

return

V. EXPERIMENTS
In this section, we apply our method to various image-to-
image translation models using diverse datasets. We first
qualitatively compare our method’s results with the origi-
nal model on the tasks of single translation and recursive
translation. Next, we provide quantitative analysis using
various methods such as principle component analysis,
PSNR, and FID score. Detailed explanations of the codes
used, datasets and experiment settings are addressed in the
supplementary.

A. BASELINE MODELS
We implemented our method on StarGAN [9] and
RelGAN [11], which are the representative models for label-
based image-to-image translation of facial attributes. In addi-
tion, we compared our model on SGN [12], which conducts
painting style transfer to mixed domains. In our experi-
ment, the loss domains of SGN are defined as the VanGogh
dataset for GAN loss, and the Udnie image for perceptual
loss.

B. FACIAL ATTRIBUTE TRANSFER
Fig. 4 illustrates the comparison on the StarGAN, and Fig. 5
illustrates the comparison on the RelGAN. ‘Adv’ and ‘Ori’
refer to the models trained with our method and the original
methods. ‘Single’ indicates the result of the single translation
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FIGURE 4. Visual comparison of the results of the original StarGAN (Right) and our proposed training method applied to StarGAN (Left).

FIGURE 5. Visual comparison of the results of the original RelGAN (Right) and our proposed training method applied to RelGAN (Left).

to the target domain denoted on the left, while ‘Double’
indicates the result of recursive translation of the single
translated image with the target domain of the double trans-
lation denoted on the top of the images. Note that ‘Gender’ in
StarGAN refers to translating images into reversed gender,
while ‘Male’ in RelGAN only masculini zes. Both of the
models show similar tendencies. First, there are unintended
changes in the original model’s single translation results.
For example, in the original RelGAN, when translating into
‘Blond Hair’, the overall brightness of the image goes up,
and the makeup is erased, whereas our model maintains
these properties properly. Furthermore, the single translation
result of our model on RelGAN shows better quality in all
domains.

Second, both original models show recursive translation
problem, and the double translation even ruins the properties
of the single translation image. Especially in StarGAN, all of

the double translation results seem as if the model tries to map
back to the original input image. We assume that the cause
is the cycle-consistency loss. During training, the generator
reconstructs the generated image back to the original image
with the original label. The only recursive translation that the
model experience during training is the reconstruction loss
which solidifies the mappings between the original image
and the reconstructed image, thus the model is overfitted.
RelGAN also shows a similar tendency in double translation.
The attribute of a single translation such as gender or age
seems to disappear in the double-translated results. In con-
trast, our double-translated image preserves the attributes of a
single translation. For example, the translation of gender from
the ‘blond hair’ image still preserves the attribute of ‘blond
hair’, only changing the facial properties regarding gender.
The result of more samples with additional explanations can
be found in the supplementary.
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FIGURE 6. Comparing our method to the original SGN.

C. PAINTING STYLE TRANSFER
Fig. 1 and Fig. 6 shows the comparison between our method
and original SGN [12]. Similar to the previous facial attribute
results, the original SGN failed at recursive translation.
The results of double translation is not very different from
the single translation. In contrast, our method is robust to
multiple translations, conserving the property of the sin-
gle translated image as well. Notice that the results of
a single translation of the original model and our model
are different. Our model seemingly preserves the content
of the input image better, while the original SGN model
focuses on translating style more rather than preserving
the content of the original image. To be more specific,
in Fig. 1-right, the ‘Ori’ model care less about the con-
tents of the input image, even strongly stylizing the empty
skies. In contrast, the ‘Adv’ model mainly stylizes the main
contents such as clouds and grounds. In Fig. 6, the single
translation toward the Udnie domain using the SGN-Adv
model successfully preserve the shape of the clouds in the
sky, while the clouds in the SGN-Ori model results are
undistinguishable.

For this phenomenon, we thought in terms of the prop-
erties of the perceptual loss. Unlike existing GANs which
roughly predicts binary labels at the very abstract level with
binary classification loss, perceptual loss requires regression
of feature maps to align the udnie picture in the feature space
of the vgg network. The former can be seen as requiring
more specific adjustment than the latter one, which makes
it especially difficult to learn the adversarial images that are
drawn using the modified PGD attack. Differently with the
conventional PGD, our modified PGD attack magnifies the
MSE loss with the original output image, so that the outer
minimization problem and inner maximization problem can
cause more conflict compared to the GAN losses. Therefore,
for the generator, it is more difficult to match the perceptual
loss using the samples that are generated with the modified
attack, requiring more specific adjustments to its outputs.
As a result, the generator does not change the entire image,
but strongly changes the styles only in the specific area where
the important contents exist and preserves the rest part of the
image.

In addition, the perceptual loss is quite sensitive to hyper-
parameter adjustment. Since our method assumes that the
rest of the losses in the existing network are not touched,
in practice, putting more weight on the style loss can make
the change in style stronger. We presume that this can be
balanced through re-scaling the hyper-parameter of the style
and content losses, but we left it untouched because the
current phenomenon is satisfying, and also we want to avoid
applying heuristic adjustments to our method.

D. QUANTITATIVE RESULTS
PCA analysis In order to concretely verify our hypothesis,
we conducted principal component analysis (PCA) using
StarGAN models, and the results are shown from (A) to (D)
in Fig. 7, which are the experimental demonstration of Fig. 2.
The ‘D-ori’ represents the real CelebA datawith ‘BlackHair’,
and the ‘D-tar’ represents the real CelebA data with ‘Blond
Hair’. The ‘adv’ represents the translated images from ‘Black
Hair’ to ‘Blond Hair’ using our model (Gadv(x, vblond )), while
‘ori’ represent the translated image from ‘Black Hair’ to
‘Blond Hair’ using the original model (Gori(x, vblond )). For
each group, the average values are displayed using square
markers. Each data group has 100 different base images
randomly selected from CelebA dataset. We train a separate
classifier that distinguishes 2 classes, ‘BlondHair’ and ‘Black
Hair’ domains, and use it as a feature extractor for PCA.
We visualized the results of five top different component
pairs, with the first component fixed at the x-axis. Obviously,
the first component represents translation from ‘Black Hair’
to ‘Blond Hair’. The ‘ori’ distribution is far apart from the
‘D-tar’ distribution, while the ‘adv’ distribution almost over-
laps with the ‘D-tar’ distribution. The average distance
between the mean values of ‘D-tar’ and the ‘ori’ is 4.8,
whereas the average distance between the mean values of
‘D-tar’ and ‘adv’ is only 0.9. This clearly visualizes the
existence of the inherent bias in the original model that keeps
the translated images away from the real data distribution and
it is much alleviated by our model.

Orthogonal regularization RelGAN [11] adopts the
orthogonal regularization loss (Lorth) of the BigGAN [20],
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FIGURE 7. (A) to (D) are visualization of 100 images for each of the original (black) and target (blond) domain using PCA. The red and blue dots are the
translated images of the original StarGAN and our Adv-StarGAN respectively. □ denotes the mean of 100 samples, which clearly shows that our method
better translates to the target domain than the original StarGAN (compare the distance between □ and □ and that between □ and □). (E) is the
comparison of orthogonal regularization loss from RelGAN.

TABLE 1. PSNR and FID score for quantitative analysis. A higher PSNR
scores and lower FID scores indicate better image quality.

which induces the weight matrix close to be orthogonal
in channel-wise. During the training of the RelGAN-Ori,
we observed the increase of Lorth, which implies that it
learns correlations. On the other hand, in RelGAN-Adv, Lorth
increases at first but gradually decreases, showing the ability
of disentangling, which reflects the disentangling behavior in
Fig. 2. The comparison is shown in Fig. 7(E).
Numerical Evaluation Table 1 represents the PSNR

scores of the double-translated image on RelGAN (top) and
the FID scores of the single-translation images (bottom). The
PSNR scores are averaged for each 5 domains. Our method
resulted in higher PSNR scores and lower FID scores, which
indicates that our method is superior in both double and single
translation.

For evaluating the PSNR scores, we set the ground truth
for the double translation as the equivalent single translation
result of attribute changes in the double translation. For exam-
ple, suppose there are 3 domains d ∈ {A,B,C}, if the target
label for first and double translation is vA = [1, 0, 0] and
vB = [0, 1, 0], then the ground truth target domain label of
double translation is vAB = [1, 1, 0]. Thus, the ground-truth
target for G(G(x, vA), vB) is G(x, vAB).
The FID scores are used for evaluating the visual quality

of single translation results to empirically show that our
adversarial-attack-based training doesn’t harm its original
performance, but rather slightly improve its performance by
improved disentanglement. We compared the FID scores of
the single translation results, which are commonly used for
evaluating image qualities.

VI. DISCUSSIONS
A. VISUAL QUALITY OF SINGLE TRANSLATION
Through experiments, we confirmed that our modified PGD
definitely succeeds in recursive translation. For single trans-
lation, we found some pros and cons of our method. For both
StarGAN and RelGAN, the single translations of our training
strategy disentangle better than the original models, but for
StarGAN, our results occasionally look a bit noisier than the
original one (a closer look at Fig. 4). This might be from
the injected noise to the input. Fortunately, in RelGAN, our
training improves both disentanglement and visual quality.

B. RECURSIVE TRANSLATION IN REFERENCE-BASED
IMAGE TRANSLATION
As we mentioned in our paper, the domain of unpaired image
translation can be largely divided into an implicit-domain and
an explicit-domain translation. Through some experiments,
we found that implicit-domain models such as Star-
GANv2 [21] and StyleGAN [23] do not suffer from the recur-
sive translation problem. However, we want to add that they
have quite different properties producing different behaviors
concerning the recursive translation. Also, its behavioral dif-
ferences result in pros and cons in terms of practicality and
applicability.

1) DIFFERENT BEHAVIOR CONCERNING THE RECURSIVE
TRANSLATION
Implicit-domain translation models have quite different prop-
erties compared to explicit-domain translation models (e.g.
StarGANs, RelGANs). First, while the behaviors of implicit-
and explicit-domain translation models are the same for the
training phase at testing phase, implicit domain models do
not conduct image translation at the training phase. They only
learn to generate random samples at the training phase, and
conduct latent space manipulation at the test phase. Espe-
cially, the image translation process has a large difference.

Explicit models usually use residual encoder-decoder-
based models that forward images with their target domain
labels paired as inputs, whose procedure is very straightfor-
ward and intuitive. Implicit models have to conduct latent
space exploration for the trained model to find a specific
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FIGURE 8. Result images of StyleGAN V2, an implicit-domain model. The
images at the ‘Younger’ column are single translated images, and the
‘Smile (Double)’ column are double-translated images.

latent vector for carrying out each domain, and add that
latent vector to translate domains for their own generated
(fake) samples. To translate real samples, they conduct
GAN-Inversion to get corresponding latent vectors, and then
manipulate the latent vectors to conduct image translation.

Figure 9 shows the behavioral differences between the
original explicit-domain models, our improved models, and
implicit-domain models. The BiasBD can still occur at the
second translation. Implicit domain models may fail to accu-
rately disentangle the output with the unintended attribute D,
but the GAN-Inversion procedure force the unaligned output
to align through latent vector Z , which becomes the input
space for the second translation. Thus, an implicit model is
able to translate images recursively regardless of the existence
of the bias. In the first three rows of Fig. 8, we can clearly find
that ‘Younger’ and ‘Smile’ attribute correlates with ‘hairy’
attribute, which shows the correlations with the undesired
attributes.

2) PROS AND CONS OF IMPLICIT-DOMAIN IMAGE
TRANSLATION
Cons Shortcomings for these procedures of implicit-domain
model are: 1) The need of latent space exploration to define
domains which is a heuristic procedure. 2) The choice of
latent space is ambiguous: The choice of latent spaces results
in different tradeoffs between editing power and reconstruc-
tion power. 3) For real samples, the generator has to invert
a real image and find its latent, which is also a heuristic
procedure. 4) The inverted samples show decent performance
in terms of an intended attribute, but perform poorly at recon-
struction [22], [23], [24] which limits the applicability of
implicit-domain models. Ignoring the bias and forcing the
output to align with latent Z in Fig. 9 may also ascribe
the poor reconstruction of GAN-Inversion. Meanwhile, the
residual encoder-decoder structure of explicit models gener-
ally does not suffer from misconducting reconstruction. For
all the images in Fig. 8, this phenomenon is very obvious:
observe the fourth shortcoming that the translated images
fail to reconstruct the details other than the areas that are
interested (e.g. backgrounds, hair).

Pros The implicit models also exhibit some superiority:
1) Though conducted in a heuristic manner, with a trained
generator, they can transfer numerous styles that are explicitly
defined during the training phase. 2) Image quality in terms
of sharpness and resolution is superior compared to conven-
tional explicit models. However, poor reconstruction power
of inverted real samples limit their practicality in conditional
image translation.

In this paper, we mainly deal with the phenomena and
solutions in the explicit-domain models, and only compare
their characteristics with the implicit-domain model. How-
ever, since our learning method not only enables recursive
translation, but also fundamentally increases disentangling
performance, we believe that if it can be properly applied to
the implicit-domain model, the reconstruction power of the
GAN-inversion in implicit-domain models can be increased
through stronger disentangling, and we leave it as our future
work.

C. N-TIMES TRANSLATION
For the translations of more than two times, we confirmed our
model still performs appropriately (we tested up to 5 times
of recursive translation). The translation results of more than
two times are shown in Fig. 10.

D. ON THE POSSIBILITY OF UTILIZING OUR METHOD FOR
DETECTING DEEP-FAKES
Deepfake is an image synthesis technique that alters a per-
son’s appearance in existing photos or videos, and it can be
exploited for malicious purposes. However, if the existing
image synthesis inherits the problem of recursive transla-
tion, checking the recursive transfer-ability can be a possi-
ble means for future researchers. Experimentally, we found
that the problem of recursive translation can occur between
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FIGURE 9. (Left) is the illustration of the first translation of image synthesis models, and (Right) is the illustration of the second translation of image
synthesis models.

different models as well. We separately trained two orig-
inal StarGAN generators G1 and G2, and as can be seen
in Figure 11, we could find that both G2(G1(x, v1), v2) and
G1(G2(x, v1), v2) fail to translate appropriately. If a model
fails to translate an image, then one can infer that the image
had already been synthesized once.

Furthermore, this behavior supports the existence of the
Bias in Fig. 9. Although G1 and G2 are trained separately,
the real xB distribution remains unchanged, so that the Bias
arises for both G1 and G2. As a result, the output of the first
translation (distribution G1(xA, vB) and G2(xA, vB)) serves as
an unseen input distribution of its opponents (G1 and G2).

E. BIAS OF OUR MODEL
In Figure 1, one may doubt whether our modified PGD attack
can really remove BiasAD, because the bias is the inherent
property that lies in the dataset. Also, one can ask whether
our adversarial noise can cause another bias to our model,

which can make unexpected side effect that harm the original
goal of training. It is worthwhile saying that Figure 1 is the
concept illustration of the network which already learned
the undesirable correlations. Using a modified PGD attack,
our model does not learn the undesired correlation from
the beginning of the GAN training, so that the resultant
bias will be alleviated much. This behavior is also observed
through the PCA analysis in Figure 7. Also, in this figure,
we can find that beyond removing the unintended bias, the
‘adv’ model also conduct the intended translation (‘D-ori’ to
‘D-tar’) better than the ‘ori’ model.

F. COMPARISON ON MODIFIED PGD ATTACK
Figure 12 shows the effect of modified PGD attack. The per-
turbed image ‘x+η’ in the second column is less distinguish-
able from the input ‘x’, while the translated image ‘Gori(x)’
and ‘Gori(x + η)’ are far different. However, the translated
image with our method ‘Gadv(x + η)’ seems reasonably

VOLUME 11, 2023 23905



S. Park et al.: Correlation-Concealing Adversarial Noise Injection for Improved Disentanglement

FIGURE 10. Left is the N-times recursive translation result of our method on StarGAN and right is the N-times recursive translation result of our method
on RelGAN.

FIGURE 11. The translated image of 2 separate StarGAN original models.
The recursive translation problem can occur between two different
models.

translated into the target domain, but there are minor changes
detected in the facial expression. It implies that our method
finds the unique direction to the target domain, while diversi-
fying other attributes to the undesired domains.

Implementing ourmethod enablesmultiple recursive trans-
lations. Figure 10 shows the result of up to 5 times recur-
sive translation. The arrows on above indicate the object
image to be translated. For example, the second column

FIGURE 12. The comparison of perturbed image in StarGAN model. ‘x+η’
denotes the perturbed image by modified PGD attack, ‘Gori ’ denotes the
original model, and ‘Gadv ’ is the model with our method.

is the translated image of the first column, and the third
column is the translated image of the second column. Our
method on StarGAN shows a decline in quality with more
translation we do, however, our method on RelGAN has
no noticeable quality difference in the multiple recursive
translations.

VII. DETAILED EXPERIMENT SETTINGS
A. DATASET
1) CelebA
The CelebFaces Attributes Dataset (CelebA) is a large-scale
dataset with 202,599 face images of celebrities, each labeled
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with 40 facial attributes. We center-cropped these images to
178 × 178. When implementing our methods on RelGAN,
we resize them into 256 × 256 and on StarGAN, we resize
them into 128 × 128.

2) Photo2Art
We used various landscape photos and paintings from Flickr
to train our model on Symparameterized-GAN. Udnie of
Francis Picabia and VanGogh painting datasets are used for
transferring styles of images.

B. ENVIRONMENTS
Our method first generates the adversarial examples and
replaces them with the original training dataset. The
adversarial examples were crafted with the l∞-bounded
attacks, with the constraint of ϵ equals to 8/255, the
step size α equals to 0.01 and the step iteration equals
to 10. We followed the settings from PGD-attack. We fol-
lowed the exact same settings from the original paper,
modifying the code from https://github.com/yunjey/stargan,
https://github.com/elvisyjlin/RelGAN-PyTorch, and https://
github.com/TimeLighter/pytorch-sym-parameter.

VIII. CONCLUSION
In this paper, for the first time we reveal that existing
label-based image translation models commonly suffer from
the problem of failure of recursive translation, that once the
image is translated to another domain, that image cannot be
translated recursively. Regarding this phenomenon, we pro-
pose an undesired correlation hypothesis, and based on our
explanation, we propose a neat solution using an adversarial
attack that is easy to implement. Our solution results in a valid
model that not only enables recursive translation, but also
enables the model to disentangle attributes better on single
translations. In this paper, we confine our contributions to
label-based translations, and expect to expand our work in
implicit-domain translations for future work. We hope our
work and interesting results can encourage researchers to
think back at conventional image translation methods for bet-
ter tradeoffs between manipulation and reconstruction, and
discuss more about our findings.
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