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ABSTRACT In the process of orthodontic treatment, it is a very important step to accurately segment each
tooth and jaw model with computer assistance. The use of deep learning technology methods for tooth
segmentation can not only save a lot of manual interaction and time cost but also improve the treatment
effect. 3D tooth segmentation is a hot topic of interest for international related scholars, and some end-to-
end tooth segmentation methods based on dental mesh scanning models have been emerging in recent years.
Due to the limited variety of existingmodels, they are not well suited for different 3D segmentation scenarios,
and the feature extraction capability and segmentation effect of these models still need to be improved. In this
paper, we propose a novel end-to-end tooth segmentation method, MPCNet, which adds multi-scale mesh
density information to the input layer, uses position encoding and channel attention mechanism to improve
MeshSegNet, and uses graph-cut post-processing to perform 3D tooth segmentation in real scenes. The
effectiveness of MPCNet is evaluated on a real 3D scanned tooth segmentation dataset, which significantly
outperforms the current mainstream segmentation methods.

INDEX TERMS Tooth segmentation, 3D deep learning, virtual orthodontics, 3D semantic segmentation,
attention mechanism.

I. INTRODUCTION
With the continuous development of computer science, the
importance of 3D digitization and artificial intelligence
technologies in various fields is becoming more and more
prominent. In the field of dentistry, the combination of
deep learning and orthodontic treatment is also the focus
of close attention by researchers in related fields [1], [2].
Through computer-assisted orthodontic treatment, i.e. virtual
orthodontics, the orthodontist can understand the patient’s
oral condition more intuitively and give treatment plans to
improve the efficiency and effectiveness of treatment [3], [4].
Virtual orthodontics begins by acquiring information about
the patient’s tooth and gum surfaces, including 3D shape
and texture features, through an oral scanner [5]. This
3D dental scan is safer and more efficient than traditional
dental mold image acquisition [6]. The segmentation and
identification of the teeth is a crucial step in the entire virtual
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orthodontic treatment process, and is also the basis for tooth
alignment and subsequent treatment plans [7]. However,
achieving accurate end-to-end 3D dental model segmentation
is a significant and challenging task because 3D oral scan
data are unordered grid data and the variability of features
among different teeth is not obvious, making it impossible
for researchers to embed deep learning related methods into
them as they do for 2D image data [8].

Although the traditional dental image segmentation
method reduces some manual interaction operations and
saves treatment time, its efficiency and accuracy still need to
be improved [9], [10], [11]. With the rise of deep learning
in the field of computer vision, deep learning in the field
of medical image segmentation is also gradually taking a
mainstream position [12], [13], [14]. Compared to traditional
computer-assisted virtual orthodontics, the deep learning
approach is not only more efficient and accurate, but also
much less complex and less dependent on the dentist’s
expertise for the orthodontic treatment [15].
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Dental scan mesh data is a more complex form of
geometric data structure, which is difficult to combine with
traditional deep learning image segmentation techniques due
to its disordered arrangement. Therefore, researchers usually
convert point clouds to 3D voxels or 2D image collections to
make them orderly [16], [17]. However, this transformation
of the data structure is not only relatively complicated to pro-
cess, but also loses some of the 3D spatial information [18].
On the other hand, due to the continuous development of
deep learning, end-to-end recognition and segmentation of
3D data is bound to be one of the major development trends
in the future [19], [20]. With the emergence of PointNet [21],
researchers began to focus on directly processing 3D data
to realize end-to-end 3D recognition and 3D segmentation
in a real sense. Subsequently, a series of improved works
based on PointNet were born, such as PointNet++ [22],
RSNet [23], PointConv [24], etc. These networks show
excellent performance on the 3D segmentation task, however,
due to the relatively similar shape features of different teeth,
these networks cannot effectively extract the local feature
information of the teeth, resulting in poor segmentation of
the tooth edge regions. In this regard, Lian et al [25] proposed
MeshSegNet, which also adopts the network architecture of
PointNet, integrates a series of graph-constrained learning
modules, and extracts local features in a hierarchical and
multi-scale manner, which can effectively extract dental edge
information, but its accuracy in practical applications still
needs to be improved.

In this paper, we propose a new end-to-end tooth seg-
mentation method MPCNet (Improved MeshSegNet Based
on Position Encoding and Channel Attention) based on
MeshSegNet network architecture. ComparedwithMeshSeg-
Net, MPCNet can better extract the features of the dental
scan grid data, significantly improve the accuracy of dental
segmentation with little increase in training and inference
time. The structure of MPCNet is shown in Figure 2.
MPCNet is an extended version of MeshSegNet. First, the
input layer of the model adds three density features of
different scales (see 2.2 for details) to represent the local
density in addition to the original 15 input features. In the
actual tooth scanning model, the density of the mesh at
different locations varies greatly, for example, the mesh
located at the edge of the tooth tends to be more densely,
and adding local density information at different scales to
the input features is more beneficial to extract the local
features of the tooth mesh. Second, we replace symmetric
average pooling with locally symmetric positional encoding.
The symmetric mean pooling in MeshSegNet [25] extracts
only global symmetric location information when extracting
location features, while the position encoding designed in this
paper can extract local symmetric location information for
better modeling of global features. Third, a channel attention
mechanism is employed to handle the multi-level feature
aggregation part of the network. In MPCNet, features from
different stages of the network are densely linked before

the output layer, and the channel attention mechanism can
well assign weights to these features at different levels,
thus improving the sensitivity of the network to features
at different levels. Finally, the comparative experiments
verify that MPCNet can significantly improve the effect
of 3D tooth segmentation without increasing the inference
time.

II. RELATED WORK
A. 3D SEGMENTATION
Traditional 3D object segmentation methods turn disordered
point clouds or mesh data into ordered voxels, or convert
these 3D data into a set of 2D images, and then segment
them by 2D image object detection methods. For example,
Milletari et al. [13] proposed a voxel-based, fully convolu-
tional neural network for 3D image segmentation, which is
trained and optimized by Dice coefficients to deal with differ-
ent classes of data imbalance. Budzik et al. [26] scanned the
patient’s head by cone beam computed tomography (CBCT),
obtained a geometric reconstruction model of the teeth using
isotropic voxels, and performed tooth segmentation using
the regional growth method. Tian et al. [27] proposed a 3D
tooth segmentation method based on sparse voxel octrees
and 3D convolutional neural networks (CNNs) using a
three-level hierarchical method based on deep convolution
for segmentation. Although these methods have achieved
certain results, the data processing flow is complex, and
the segmentation effect may be unstable for irregular tooth
models.

PointNet [21] is the first model that truly implements
end-to-end 3D point cloud data recognition and segmen-
tation, can efficiently extract global features of point
cloud data, and has achieved relatively promising results
in both classification and semantic segmentation tasks of
point clouds. After the emergence of PointNet, a series of
studies based on PointNet for improvement were derived.
Charles et al. [22] used a simplified PointNet to extract
local features layer by layer and continuously expand from
local features to global features like CNN to better achieve
feature extraction of 3D objects. Wu et al. [24] regard the
convolution of 3D data as a nonlinear function composed
of weight function and density function, and improve the
network performance by learning weight function and kernel
density through multi-layer perceptron and density filter
respectively. Aoki et al. [28] treated PointNet as a learnable
imaging function and fused it with the LK algorithm into a
trainable recursive deep neural network. Paigwar et al. [29]
extended the theory of visual attention mechanisms to 3D
point clouds and introduced a new recurrent 3D localization
network module that significantly reduces the number of
points to be processed and the inference time. However,
tooth segmentation is different from the general point cloud
segmentation or mesh segmentation, because of its irregular
segmentation shape and the high similarity between teeth, it is
very challenging to get better results in practical applications.
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B. 3D DENTAL SEGMENTATION
3D tooth segmentation modeling focuses more on the
extraction of local features to better segment the edge areas
of the teeth. Cui et al. [30] used a tooth center-of-mass
distance-aware voting scheme to detect all teeth and designed
a cascade segmentation module with confidence perception
to segment each individual tooth. Lian et al. [25] proposed
MeshSegNet, an end-to-end deep learning method for the
tooth segmentation task. Firstly, the downsampled tooth
surface coordinate data and its derived features, totaling 15,
will be used as input, and a series of graph-constrained
learning modules combined with adjacency matrices will
extract multi-level mesh features and location features. Then
dense links will used to aggregate local features and global
features, the prediction results will be post-processed by
graph-cut and upsampled, eventually achieving better practi-
cal application results.Wu et al. [31] used edge convolution to
improveMeshSegNet, and on the basis of tooth segmentation,
used PointNet regression to automatically label tooth key
points. However, in actual tooth segmentation scenarios,
higher precision is often required. The MPCNet proposed
in this paper, improves MeshSegNet by adding local density
information, position coding and channel attention, which
greatly improves the accuracy of tooth segmentation with
almost no increase in computational load.

III. MATERIALS AND METHOD
A. DATA AND PRE-PROCESSING
The dataset used in this study is from 100 real case treatment
plans annotated by professional dentist, and the lower dental
model is used for training and testing. The original datamodel
is first calibrated in the occlusal and midline planes, the
extension direction is determined according to the occlusal
and midline planes, and then the gingival base is generated.
The processed lower jaw scan model contains approximately
40,000 mesh units.

Each lower jawmodel contains one gums and 14 to 16 teeth
(4 incisors, 4 canines, 4 premolars, 4-6molars) [32]. Since the
whole lower tooth model is symmetrical in the classification
process, the category of the teeth is set as C = 9 classes
(8 teeth and one gums) in this paper, as shown in Figure 1.

MPCNet uses 18-dimensional feature vectors to describe
each mesh cell. In addition to the 15 features including
mesh coordinates, mesh center coordinates, and normal
vectors used in MeshSegNet and other mainstream methods,
three different scales of density information are added to
the input, and the specific input features are shown in
Table 1.

MPCNet’s input not only contains global location informa-
tion, but the added density information also enriches the local
features of the mesh cells. Preprocessing is required before
the features are fed into the network. Firstly, the centroid of
the model was translated to the origin, and then the unitized
normal vector was calculated, the adjacency matrix [25] and
multi-scale density information were obtained by calculating
the distance matrix of the grid center coordinates. Finally,

FIGURE 1. Example of tooth category labeling.

TABLE 1. Table of input features.

FIGURE 2. MPCNet network structure diagram.

the position features such as grid coordinates, grid center
coordinates, and unitized normal vectors were standardized
by Z-score. The adjacency matrix and density features are
normalized.

B. MPCNET
The overall structure of MPCNet is shown in Figure 2. The
input of the network is a matrix with the number of Meshes
N multiplied by the features dimension 18, and the final
output is a matrix with the number of Meshes N multiplied
by the classes C, which represents the probability of each
mesh belonging to the classes. The main idea of the network
is to continuously extract the high-dimensional features of the
wholeMesh scanning surface through 1D convolution (MLP)
with kernel of 1.
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MPCNet is similar to MeshSegNet in its overall structure.
Compared to MeshSegNet, MPCNet has adopted the follow-
ing main improvements:

1) Multi-scale density features are added to the feature
input layer. MeshSegNet requires a lot of computing
resources to perform data augmentation and calculate
adjacency matrices (AS,AL) during training. In this paper,
we believe that an important reason why MeshSegNet can
effectively extract the neighboring grid features is that it
utilizes the location adjacency matrix, so in order to effec-
tively extract the local features, MPCNet adds the density
information of neighboring locations to the input. This has
another advantage that the distance between each point is
already calculated when calculating the adjacency matrix
(AS,AL), so there is almost no additional computation. The
specific operation is to calculate how many mesh cells are
adjacent to each mesh within a fixed radius of each mesh.
MPCNet calculated the density information at three scales
(R1 = 0.05, R2 = 0.1, R3 = 0.2) during the formal training
process and normalized to eliminate the magnitudes. The
calculation process is as follows:

First, two N × N zero matrices [S1, S2] are created and
the adjacency matrices AS, AL are derived by calculating the
normalized distance matrix DN×N between the coordinates of
the mesh centroids:

S1 [D < 0.05] = 1, S2 [D < 0.05] = 1 (1)

AS =
S1

sum (S1, axis = 1)
(2)

AL =
S2

sum (S2, axis = 1)
(3)

Second, three N × N zero matrices [M1,M2,M3] are
established as follows:

M1 [D < 0.05] = 1 (4)

M2 [D < 0.1] = 1 (5)

M3 [D < 0.2] = 1 (6)

The density information is calculated as m1,m2,m3:

m1 = sum (M1) (7)

m2 = sum (M2) (8)

m3 = sum (M3) (9)

Normalized elimination of magnitudes:

m = [m1,m2,m3] (10)

m =
m− min (m)

max (m) − min (m)
(11)

The radius selection strategy used for the multi-scale
density information is described in detail during the ablation
experiments in Section IV.

2) Positional encoding is used instead of symmetric
average pooling. The position encoding adopted in this paper
is shown in Figure 3. MeshSegNet adopts symmetric average
pooling, which only records the global symmetric position

FIGURE 3. Position encoding.

information. Compared with the symmetric average pooling
module, the advantage of position encoding is that it not only
records the global symmetric position information, but also
records the local position symmetry information, which is
more in line with the local symmetric shape characteristics of
the teeth. So that the feature extraction ability of the network
can better adapt to the symmetric geometric structure of
teeth [33].

3) The channel attention module is added to deal with
the relationship between different levels of features. One
reason for the success of MeshSegNet segmentation is
feature convergence, where low-dimensional features are
concatenated with high-dimensional features before the final
classification layer, but for practical tasks low-dimensional
features and high-dimensional features should not be equally
important, and it is critical to handle features from different
dimensions. CBAM is a very widely used attention method
in image-based deep learning [34], [35], which integrates
spatial attention and channel attention [36], [37]. However,
spatial attention is not suitable for Mesh segmentation tasks,
so our study modifies channel attention and applies it to 3D
segmentation tasks.

The input to the channel attention module taken by
MPCNet is a matrix X of N (number of mesh cells) × F
(number of features). First, calculate the global maximum
pooling Fmax and the global average pooling Favg for each
feature dimension:

Fmax = Maxpooling(X ) (12)

Favg = Averagepooling(X ) (13)

Then, Fmax and Favg are fed into the same feature learning
function Gmlp consisting of 1D convolution:

Gmax = Gmlp(Fmax) (14)

Gavg = Gmlp
(
Favg

)
(15)

Finally, the results of attention learning Gmax and Gavg
are fed into the Sigmoid activation function (so that the
distribution is between −1 and 1) to calculate the weight, and
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the output is the Hadamard product of X andM :

M = Sigmoid (Gmax + Gavg) (16)

X = X ⊙M (17)

where, ⊙ is the Hadamard product.
The use of channel attention enables better handling of

feature aggregation from different dimensions, allowing the
network to discern which features are more important to
learn.

In summary, MPCNet adds local density information to the
input layer of the network by making full use of the distance
matrix to compute multiscale density features. Feature
transformations are performed to enhance local spatial
information using locally symmetric position encoding. And
learns weights to handle feature convergence in different
dimensions through the channel attention mechanism. There-
fore, MPCNet has stronger local feature extraction ability and
global feature processing ability compared to MeshSegNet.

C. TRAINING AND DATA AUGMENTATION
The forward propagation part of the network is shown in
Fig. 2. The input of the network is a matrix of N × 18, which
first undergoes a set of 64 channels of 1D convolutions to
extract features, and then performs feature encoding through
a feature encoding matrix consisting of 1D convolution
and position encoding. Then use 1D convolution combined
with adjacency matrix to extract local features, and finally
converge the low-dimensional features and high-dimensional
features together for attention weight calculation. Finally,
a set of 1D convolutions are linked to the output layer, and
output an N × C-dimensional probability matrix by softmax.
The training data and test data consist of 100 real cases in

total, and the labeling effect is shown in Figure 1.
The ratio of the training set to the test set is 8:2,

the optimizer used for model training is AdamW (ams-
grad) [38], [39], and the loss function is Dice loss [40], which
is calculated as follows:

Ik = Pk ∩ Tk (18)

L =

c∑
k=1

wc(1 − (
2 ∗ Ik + s
Pk + Tk + s

)) (19)

where c is the number of classes, c = 9 in this paper, L is the
Dice loss,wc is the weight of each class loss,Pk is the number
of the Kth category in the predicted value, Tk is the number
of the Kth category in the true value, IK is the intersection
of the predicted and true values of the Kth category, and
s is the smoothing factor (to avoid the divisor being 0), and
s = 1 in this paper. In order to enhance the generalization
ability of the model, data augmentation was performed on the
3D dental model when extracting data in the training phase,
mainly using the following methods:

1) Random rotation, three rotation angles are taken
between [−30,30], rotation around x-axis, rotation around
y-axis, and rotation around z-axis, respectively.

2) Randomly translate by taking three translations between
[−10,10], respectively, along the x-axis, along the y-axis, and
along the z-axis.

3) Random scaling, taking three scaling ratios between
[0.8,1.2] for the x-axis, random scaling for the y-axis, and
random scaling for the z-axis, respectively [41], [42], [43].

In order to further increase the diversity of the data and
speed up the training, 10,000 grid planes are randomly
selected from the original scan of approximately 40,000 grid
planes for training. The above random sampling with data
augmentation is performed for each batch of data during
training, which greatly increases the diversity of data and
improves the generalization ability of the model. For the
hardware configuration, an RTX 3090 [44] with 24G video
memory was used for all training and testing on Pytorch [45]
in this paper.

D. APPLICATION
In this paper, the trained MPCNet is tested in a real
application scenario. After the original data is downsampled
and input to the model, the segmentation result may contain
some isolated classified mesh surfaces.

Graph-cut is a progressive mesh-cutting tool proposed by
Fan et al [46] to achieve efficient local cut optimization.
Post-processing reclassification of these isolated mesh faces
with uneven segmentation edges by Graph-cut can greatly
improve the segmentation effect. For example, Xu et al. [9]
proposed a deep convolutional neural network for 3D
tooth segmentation with labeling optimization to refine
the segmentation boundary by Graph-cut. Guo et al. [47]
performed classification labeling of 3D dental meshes by
deep convolutional neural networks, and then used Graph-
cut for optimization of label continuity. Similarly, in this
paper, the results ofMPCNet are post-processed usingGraph-
cut, and the post-processed results are upsampled using
KNN [48] or SVM [49] to obtain the segmentation results
of the whole original plane. The actual segmentation effect
is shown in Fig. 4, which proves that MPCNet has good
practical application value.

IV. EXPERIMENT
A. COMPETING METHODS
In order to verify the advantages of MPCNet, based on
the experimental configuration in Section II.C, this section
uses PointNet [21], PointNet++ [22], MeshSegNet [25] and
MPCNet for comparison experiments, and the evaluation
metrics used are DSC (the Dice similarity coefficient), SEN
(the sensitivity), and PPV (the positive prediction value),
which are calculated as follows:

Ik = Pk ∩ Tk (20)

DSC =

c∑
k=1

wk

(
2 ∗ Ik + s
Pk + Tk + s

)
(21)

SEN =

c∑
k=1

wk ((Ik + s)/(Tk + s)) (22)
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TABLE 2. Comparison results between MPCNet and other mainstream
methods.

PPV =

c∑
k=1

wk ((Ik + s)/(Pk + s)) (23)

where c is the number of categories, in this paper c = 9,
wk is the weight of each category, in this paper wk = 1/9,
Pk is the number of the Kth category in the predicted value,
Tk is the number of the Kth category in the true value, IK
is the intersection of the predicted and true values of the Kth
category, s is the smoothing coefficient (to avoid the divisor
being 0), in this paper s = 1.
Details of the comparative experimental configuration are

as follows:
1) PointNet: The PointNet used in this paper is basically

the same as that in the original literature [21], the input is
an Nx15-dimensional grid feature matrix, the learning rate
is set to 0.0001, the batch_size is 4, the training rounds
are 200 epochs, and the other parameters are set as in
Section II.C.

2) PointNet++: The PointNet++ used in this paper is
basically the same as in the original literature [22], the input
is a grid feature matrix of N × 15, the learning rate is
set to 0.0001, the batch_size is 4, the training rounds are
200 epochs, the input is a grid feature matrix of N × 15, and
other parameters are set as in Section II.C.
3) MeshSegNet: The MeshSegNet [25] used in this paper

is basically the same as in the original literature, where
the input is an Nx15-dimensional grid feature matrix, the
learning rate is set to 0.0001, the batch_size is 4, the training
rounds are 200 epochs, and other parameters are set as in
Section II.C.
4)MPCNet: The input ofMPCNet is an Nx18-dimensional

grid feature matrix, the network structure is the same as
described in this paper, the learning rate is set to 0.0001, the
batch_size is 4, the training rounds are 200 epochs, and other
parameters are set as in Section II.C.

B. EXPERIMENT RESULTS
The summary results of the comparison experiments are
shown in Table 2. The experimental results show that, firstly,
the effects of MPCNet and MeshSegNet on DSC, SEN and
PPV are far better than those of general 3D point cloud
segmentation models such as PointNet and PointNet ++,
which illustrate the superiority of MeshSegNet and MPCNet
frameworks in the task of tooth segmentation. It also
illustrates the importance of local features in 3D small object
segmentation. Second, MPCNet outperformed MeshSegNet
by 3.2 points in the DSCmetric, 2.9 points in the SENmetric,

FIGURE 4. Comparison of MPCNet and MeshSegNet training process.

FIGURE 5. The actual segmentation effect.

and 1.6 points in the PPV metric, proving that MPCNet
has surpassed MeshSegNet’s performance on the tooth
segmentation task. MPCNet, compared with MeshSegNet,
firstly strengthens its local feature advantage in the input
layer by adding multi-level density information, secondly
adds local symmetric position coding to refine local feature
extraction, and finally adds channel attention in the channel
convergence layer to handle the relationship between high-
dimensional features and low-dimensional features. These
make MPCNet have better feature extraction ability and
higher performance.

The comparison of the training process between Mesh-
SegNet and MPCNet in Fig. 4 shows that MPCNet can
significantly outperform MeshSegNet in terms of DSC, SEN
and PPV by about 50 rounds of training, i.e., the convergence
speed of MPCNet is also faster than that of MeshSegNet
during training.

In the inference process, this paper also compares the
inference speed of the two networks with a frame rate of
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FIGURE 6. MeshSegNet training process under three different scales of
density information.

0.585 fps for MeshSegNet and 0.582 fps for MPCNet [50],
i.e., the increased inference time of MPCNet is almost
negligible in practical applications.

The results after Graph-cut processing are shown in
Figure 5. The comparison shows that during the practical
application, PointNet and PointNet++ have the problems
of inaccurate classification and insignificant edge detection,
which are alleviated in MeshSegNet, indicating that Mesh-
SegNet is useful for better local feature learning ability com-
pared to PointNet and PointNet++, and MPCNet enhances
this capability. Density information, position encoding and
channel attention allow MPCNet to better learn the local
features of the tooth scanningmodel and thus have better edge
detection capability.

V. DISCUSSION
In order to verify the effectiveness and optimal parameter
configuration of the density feature, position encoding, and
channel attention approaches adopted in this paper, ablation
experiments are also conducted on the same baseline model
MeshSegNet.

Firstly, the density information at different scales is com-
paredwith the experimental configuration as in Section III-A,
and the original MeshSegNet model is adopted, and the
experimental results under different density radius settings
are shown in Figure 6.
The legends in Figure 6 are shown as density information at

different scales, such as (0.05, 0.1, 0.2) indicating the number
of normalized meshes in the range of 0.05 radius, 0.1 radius,
and 0.2 radius for each mesh. In this paper, we explored
the effects of three different scales of density information
on network effects, and obtained the highest DSC scores of
0.883, 0.896, and 0.873 for (0.01, 0.05, 0.1), (0.05, 0.1, 0.2),
and (0.1, 0.2, 0.5) groups of radius range density information,
respectively. From Table 1, it can be seen that the DSC

TABLE 3. Comparison of the effect of density information, position
encoding, and channel attention.

score of MeshSegNet without adding density information
is 0.882. Thus, it is obtained that adding (0.05, 0.1, 0.2)
radius range density information is most beneficial for the
network to learn local features. In the normalized scale, the
radius range of 0.1 is approximately the single tooth coverage
range, so it is more appropriate to select the local feature
scale around the single tooth range in the tooth segmentation
task.

In this paper, in addition to exploring the effects of
density information at different scales, we also compare
the effects of density information, location coding, and
channel attention. Baseline uses the same MeshSegNet as set
up in Section III-A, and adds density information, position
encoding, and channel attention separately on top of that. The
results of the ablation experiments are shown in Table 3.

The experimental results showed that density information
and position encoding boosted the baseline by 1.3 and
1.1 DSC scores, respectively, while channel attention boosted
the baseline by 2.7 DSC scores. It is demonstrated that in
the process of learning features in the network, not only the
learning of local features should be emphasized, but also the
aggregation and processing of features, and different weights
should be given to the features of different dimensions.
The learning of these feature weights is very critical to the
improvement of network performance.

VI. SUMMARIZE AND FUTURE WORK
For 3D tooth segmentation, this paper proposes a new end-to-
end segmentation networkMPCNet combining density infor-
mation, position coding and channel attention. Experiments
on real data show that MPCNet has better performance than
the current mainstream methods in tooth segmentation.

The next step of the research can be carried out in two
aspects. First, the training data of MPCNet contains only
100 lower jaw models, which may encounter some irregular
tooth models in actual clinical applications, resulting in
unsatisfactory segmentation results, and more training data
need to be collected continuously to further improve the
robustness of MPCNet. Secondly, the process of orthodontic
treatment includes the whole process of tooth separation,
filling and tooth arrangement. On the basis of MPCNet
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tooth separation, it can be considered to carry out end-to-end
modeling of other steps in orthodontic treatment to continue
to optimize the diagnosis and treatment process.
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