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ABSTRACT Artificial intelligence (AI) is expected to be embodied in software agents, robots, and cyber-
physical systems that can understand the various contextual information of daily life in the home environment
to support human behavior and decision making in various situations. Scene graph and knowledge graph
(KG) construction technologies have attracted much attention for knowledge-based embodied question
answering meeting this expectation. However, collecting and managing real data on daily activities under
various experimental conditions in a physical space are quite costly, and developing AI that understands
the intentions and contexts is difficult. In the future, data from both virtual spaces, where conditions can be
easily modified, and physical spaces, where conditions are difficult to change, are expected to be combined to
analyze daily living activities. However, studies on the KG construction of daily activities using virtual space
and their application have yet to progress. The potential and challenges must still be clarified to facilitate AI
development for human daily life. Thus, this study proposes the VirtualHome2KG framework to generate
synthetic KGs of daily life activities in virtual space. This framework augments both the synthetic video data
of daily activities and the contextual semantic data corresponding to the video contents based on the proposed
event-centric schema and virtual space simulation results. Therefore, context-aware data can be analyzed,
and various applications that have conventionally been difficult to develop due to the insufficient availability
of relevant data and semantic information can be developed. We also demonstrate herein the utility and
potential of the proposed VirtualHome2KG framework through several use cases, including the analysis of
daily activities by querying, embedding, and clustering, and fall risk detection among older adults based on
expert knowledge. As a result, we are able to develop a support tool that detects the fall risk with 1.0 precision,
0.6 recall, and 0.75 F1-score and visualize it with an explanation of its rationale. Using the cases explored
in this work, we also clarify and classify the challenges that future research on synthetic KG generation
systems should resolve in terms of simulation, schema, and human activity. Finally, we discuss the potential
solutions for implementing advanced applications to support our daily life.

INDEX TERMS Knowledge graph construction, knowledge graph application, synthetic knowledge graphs,
ontology, human daily activity, virtual space simulation.

I. INTRODUCTION
Maintaining the safety and quality of life in home environ-
ments is becoming increasingly important in an aging society.
Our long-term goal is to embody artificial intelligence (AI) in

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaojie Su .

software agents, robots, or cyber-physical systems that can
understand the various contextual information of daily life
in the home environment to support human behavior and
decision making in various situations. Embodied question
answering (EQA) [1], which is an AI task that performs
visual question answering (VQA) [2] with navigation in a
three-dimensional (3D) environment, has recently attracted
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significant attention. In terms of the datasets used for this
task, the construction of both scene graphs [3] and knowl-
edge graphs (KG) [4] has attracted particular attention.
Knowledge-based EQA [5] has also been proposed. A KG
is ‘‘a graph of data intended to accumulate and convey
knowledge of the real world, whose nodes represent entities
of interest and whose edges represent potentially different
relations between these entities’’ [4]. So far, various domain-
specific KGs, including healthcare, education, ICT, science
and engineering, finance, society and politics, and travel,
have been used. Abu-Salih surveyed more than 140 papers
and provided the following inclusive definition of a domain-
specific KG: ‘‘Domain Knowledge Graph is an explicit con-
ceptualisation to a high-level subject-matter domain and its
specific subdomains represented in terms of semantically
interrelated entities and relations’’ [6].

To date, daily activity data are typically collected from
physical locations, such as care facilities for older adults [7],
smart homes [8], and experimental facilities [9], [10] that
imitate living homes. Although some previous studies [11],
[12] converted the collected data into KGs, these studies
required the use of physical equipment, experimental facil-
ities, and human subjects. Representing a physical environ-
ment in virtual space and executing various simulations allow
us to freely accumulate the data required for analyzing daily
life and constructing EQA/VQA prediction models.

In this study (Figure 1), we focus on cyberspace and pro-
pose a method for synthesizing KGs that represent the daily
activities in the home environment. Synthesized KGs enable
context-aware data analysis and the development of various
applications that have previously been difficult to develop due
to insufficient data and semantic information.

The primary contributions of this study are presented
here. First, we propose the VirtualHome2KG1 framework to
generate synthetic KGs based on the simulation results of
daily activities using virtual space. We specifically design
an event-centric KG schema to represent the daily activities
in a home environment. The designed schema can represent
object states and properties, affordances, time-series changes,
and spatial changes. ‘‘Affordance’’ refers to the action possi-
bilities offered to an animal by the environment in reference
to the animal’s action capabilities [13], [14]. The proposed
VirtualHome2KG framework simulates an arbitrary agent’s
activities and records the spatiotemporal changes in the vir-
tual space before and after these activities are performed.
The simulation results are converted to a KG in the Resource
Description Framework (RDF)2 format based on the designed
schema.

Our second contribution is the evaluation of several use
cases of the VirtualHome2KG framework.We present several
examples of the analysis of daily activity trends, including
querying the synthetic KGs and clustering based on a graph
embedding method. As an example of a domain-specific

1https://github.com/aistairc/VirtualHome2KG
2https://www.w3.org/RDF/

application, we focus on fall prevention in the home environ-
ment for older adults. We specifically design rules to infer
the fall risks for older adults at home and conduct experi-
ments to detect these risks from the generated synthetic KGs.
We also developed a support tool for detecting the activi-
ties associated with the high fall risk and present explana-
tions about the detected risks. We believe that, in the future,
applications detecting accident risks will be helpful tools
for residents, home designers, and safety engineering profes-
sionals. These applications include cyber-physical systems,
AI speakers, and augmented reality systems for injury pre-
vention education [15].

Our third contribution is the organization of the lessons
learned from the use cases on the domain-specific applica-
tions of synthetic KGs and the discussion of prospects to
support human safety using KGs.

Note that this paper is an extension of two previously
presented conference papers [16], [17]. The first difference
between those papers and this one is that the latter introduced
the concept of an event-centric KG to the VirtualHome2KG
framework. This schema redesign allowed the addition of
risk information to the event nodes that mediated agents,
actions, objects, and situations. This redesign also provided
a mechanism for presenting the parallel events occurring
within an overlapping time span, which was impossible in the
previous papers. Furthermore, the redesign made it possible
to divert analysis methods similar to existing event-centric
KGs [18], [19], [20] (e.g., graph querying and clustering).
Aside from adopting an event-centric schema, we refined
other components, including actions, places, object attributes,
and affordances, and collected more affordance data based on
an existing crowdsourcing method [21].

The second difference between our previous conference
papers [16], [17] and this one is that the latter presented an
experiment and an evaluation conducted to detect the fall risk
in older adults in a home environment as a specific use case
of the proposed VirtualHome2KG framework. The results
demonstrated that the framework can be combined with arbi-
trary external knowledge and applied to a specific domain.
Finally, we described the lessons learned from several use
cases and discussed the KG application to support human
safety.

The remainder of this paper is organized as follows:
Section II describes the related work; Section III explains the
synthetic KG construction; Section IV presents several use
cases for the constructed KGs; Section V discusses the study
results; and Section VI concludes this study with a summary
of the potential future work.

II. RELATED WORK
A. ACTIVITY RECOGNITION
Recognizing human activities is required to analyze daily
life. Activity recognition approaches can generally be clas-
sified into two categories [22]. The first approach employs
visual sensing devices (e.g., cameras) and recognizes activity
patterns in video data using computer vision technologies.
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FIGURE 1. Overview of the current study. Orange boxes are newly added in this paper, and blue boxes are updated from our previous
studies [16], [17].

The second approach monitors human activities using sen-
sor networks and analyzes the data using machine learning
techniques. Several data-driven approaches that use machine
learning approaches to study the activities of daily liv-
ing (ADL) include the hidden Markov model, conditional
random field [23], [24], and neural network ensemble learn-
ing [25]. Several knowledge-driven approaches are also uti-
lized, such as activity recognition based on the ADL ontol-
ogy [22], and abnormal activity detection using probabilistic
logic networks by mapping sensor data to the ontology [26].

Studies related to the construction of scene graph datasets
that represent video content (i.e., scenes) as a graph structure
have recently increased [3], [27]. A method for improving
the activity recognition accuracy by inputting scene graphs
with video data into a neural network model has also been
proposed [28]. The synthetic KGs generated by the pro-
posed method in this work are similar to the scene graph
datasets, in that they represent the video content. However,
the scene graphs are typically constructed independently for
each video frame. In contrast, our synthetic KGs enable a
more context-aware analysis because they have consistent
names for nodes and edges and describe the history of sit-
uational changes among multiple video frames.

B. KGs FOR HUMAN ACTIVITY
Several studies constructedKGs based on activity recognition
results to improve the ability to analyze daily life. Oh and
Jain [11] detected events and then constructed KGs based on
the data collected from mobile phones and wearable devices
and video data pertaining to the behavior of older adults living
in nursing care facilities. Vizcarra et al. [12] constructed KGs
based on the object recognition andmanual annotation results
of video data capturing the behavior of older adults living in
nursing homes.

C. KGs FOR RISK DETECTION
Several studies used KGs to detect risks, such as injuries
among children at home and construction site hazards.
Oono et al. [15] focused on preventing injuries among

children at home and developed an augmented reality lecture
system to educate parents on childhood injury prevention.
This system recognizes objects from home images obtained
from a web camera, refers to a KG representing danger-
ous situations, and displays information about measures that
can be taken to prevent accidents. Oono et al. also con-
structed KGs of the dangerous relative position information
between objects and types of accidents that can occur due to
such positions. In contrast, our proposed method constructs
event-centric KGs based on human activity simulation data
at home and combines the constructed KGs with rules related
to fall risk. Our KGs also contain time-series changes in addi-
tion to the relative position information. Thus, the proposed
method can potentially detect more risks by considering con-
textual information.

Fang et al. [29] constructed a KG for recognizing hazards
on construction sites similar to the fall hazards for older adults
in their home environments. They designed an ontology based
on engineering documents, accident reports, expert experi-
ence, and safety codes, and then they constructed a KG by
extracting knowledge from computer vision approaches. As a
result, it became possible to identify hazards by querying and
reasoning the graph database.

In contrast, the proposed VirtualHome2KG framework can
generate KGs containing more spatiotemporally detailed data
without being affected by the accuracy of the computer vision
method because environmental data (e.g., positions and states
of the human body and surrounding objects) are obtained
from a 3D virtual space simulator. The proposed framework
has high extensibility because it can generate synthetic KGs
without limiting the application to a specific domain.

Mao et al. [30] focused on the evolutionary patterns of
breaking news events (e.g., geological hazards, traffic acci-
dents, and personal injury) and proposed an event predic-
tion model based on evolutionary event ontology knowledge
(EEOK). An EEOK graph was constructed by extracting
news events from text data. Our proposed KG contains more
spatially detailed data because it is constructed based on the
3D virtual space simulation results.
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D. VIRTUAL SPACE SIMULATION
The aforementioned studies required cameras or sensor
devices to focus on physical space. However, various virtual
space simulators for embodied AI have since been devel-
oped [31], (e.g., VirtualHome [32] enabling the agent simula-
tion of daily household activities and SIGVerse [33], enabling
human-robot interactions using virtual reality (VR). To the
best of our knowledge, no previous studies have attempted to
provide ontology-based semantic labels to the data generated
via virtual space simulation to enable an advanced analysis of
daily life. Bates et al. [34] proposed a method for recognizing
the daily activities obtained from a VR system in real-time
and classified the recognized activities based on ontology.
Their study primarily focused on activity recognition; thus,
knowledge representation and accumulation methods for data
exploitation were not considered. Vassiliades et al. [35] con-
structed HomeOntology based on the activity dataset pro-
vided by VirtualHome [32]. This ontology defined household
activities (e.g., ‘‘relax on the sofa’’ and ‘‘make coffee’’) com-
prising multiple primitive actions (e.g., ‘‘walk’’ and ‘‘sit’’)
and corresponding target objects. It also defined the activity
hierarchy based on the activity knowledge base categories.3

However, it did not address situations or spatiotemporal
information in the home environment. In the current study,
we extended HomeOntology to represent various semantic
information in the home and daily human activities. The
proposed framework generates KGs based on the ontology
using virtual space.

Meanwhile, Noueihed et al. [36] developed a virtual out-
door weather event simulator (VOWES) for 3D visualiza-
tions. They constructed KGs that describe weather data
and 3D simulation components and connected these using
semantic sensor network ontology. In contrast, as an event-
centric KG, the proposed VirtualHome2KG generates daily
household activity simulation data, including human-object
interactions. In other words, VOWES and the proposed Vir-
tualHome2KG differ in terms of the target domain, KG struc-
ture, and spatial and temporal granularities.

Several studies also reported on the improvement of
the accuracy of several real-world tasks using data in vir-
tual space. Miyanishi et al. [37] proposed an approach for
improving the accuracy of real-world question answering
tasks using the data obtained from a life simulation game.
Hwang et al. [38] developed a simulation platform that
focused on the daily activities of older adults and used syn-
thetic data to improve the action recognition accuracy. Similar
to the proposed VirtualHome2KG framework, existing meth-
ods obtain the simulation data from a virtual space. However,
they have different objectives and do not focus on enriching
semantic information. Nonetheless, they demonstrate that the
simulation data obtained from virtual space are effective for
real-world tasks. Thus, we believe that the proposed Virtual-
Home2KG framework can also be applied to such real-world
tasks in the future.

3http://virtual-home.org/tools/explore.html

III. CONSTRUCTING SYNTHETIC KGs OF DAILY
ACTIVITIES
Figure 2 shows a schematic diagram of our proposed system’s
data flow and processing modules. This section describes the
parts of the source data and synthetic KG generation.

A. DAILY ACTIVITY SIMULATION USING VIRTUAL SPACE
We used the VirtualHome [32] platform to simulate the daily
living activities in a 3D virtual space. Here, the activity data
referred to as a Program in VirtualHome are represented as a
sequence of ‘‘steps’’, comprising an action, an object name,
and an object ID. Consider the following example:

The first line identifies the activity name. The second line
describes the corresponding activity. In this context, ‘‘activ-
ity’’ refers to a coarse-grained event, while ‘‘action’’ refers to
a fine-grained event constituing the activity. Each object has
a state. For example, a sofa (<couch>) has a state in which
nothing is placed before the ‘‘sit’’ action.

The virtual indoor environment was represented by a
JSON-formatted graph comprising objects (i.e., nodes in the
graph) and their positional relationships (i.e., edges in the
graph). Activities can be simulated by loading the object state
graph and program using the VirtualHome’s Unity simulator
API. We obtained the crowdsourced activity dataset from
VirtualHome’s website4 and used it to perform a simulation
in VirtualHome. The home situation was output in JSON
format as each action in the activity was performed. For
example, the agentcoordinates were updated when the com-
mand ‘‘[WALK] <home_office> (267)’’ was executed. The
television state changed from OFF to ONwhen the command
‘‘[SWITCHON] <television> (297)’’ was executed. This
way, we recorded the indoor situation when each action in the
activity was executed. We also recorded the execution time of
each action.

The motions of the most common atomic actions
(e.g., ‘‘grab’’ and ‘‘walk’’) were implemented in the Vir-
tualHome Unity simulator. However, the activity dataset in
VirtualHome was collected via crowdsourcing and included
unimplemented atomic actions (e.g., ‘‘wash’’ and ‘‘squeeze’’).
Note that the Unity simulator cannot render these atomic
actions; thus, VirtualHome provides a Graph Evolve Sim-
ulator that verifies the executability of the input program
and updates the object states without rendering an animation.
However, this Simulator cannot update the coordinates when

4http://virtual-home.org/tools/explore.html
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FIGURE 2. Schematic diagram of the proposed system.

FIGURE 3. Example of the execution screen of Unity simulator.

an agent or object moves and cannot record each atomic
action’s execution time. Thus, we extended VirtualHome by
combining the Unity and Graph Evolve simulators to record
the objects’ 3D coordinates and states. We also implemented
a function for recording the execution time of each atomic
action. The environment graph was acquired after executing
each action in the activity. The environment graph list5 was
output after all actions has been executed.

B. DATA COLLECTION
We used the data collected in a previous study [32] as the
source activity dataset and extracted the data from Virtual-
Home as the values for the object types and states, properties,
attributes, and spatial relationships.

5Note that the environment graph is not a KG.

We also collected affordance data by applying the
crowdsourcing methodology proposed by Chao et al. [21]
to the objects and actions used in this study. The fol-
lowing question was specifically displayed to Amazon
Mechanical Turk6 workers: ‘‘Is it possible to X (action) a
Y (home object)?’’ Here, the worker was required to select
one of the following options: ‘‘Definitely yes’’; ‘‘Normally
yes’’; ‘‘Maybe’’; ‘‘Normally no’’; ‘‘Definitely no’’; ‘‘I don’t
know’’; or ‘‘Description doesn’t make sense or is grammat-
ically incorrect.’’ We obtained answers from five different
workers for each question and converted the answers into a
score ranging from 5.0 (‘‘Definitely yes’’) to 1.0 (‘‘Definitely
no,’’ ‘‘I don’t know,’’ and ‘‘Description doesn’t make sense or
is grammatically incorrect’’). We employed affordances with
an average score of 4.0 or greater.

C. SCHEMA DESIGN
We designed a KG schema representing the human activ-
ities and the situational changes in the home environment
and generated synthetic KGs based on the designed schema.
Figure 4 summarizes the class relation diagram of the
designed ontology.

In our previous work, we defined a daily living activ-
ity as an ‘‘Activity’’ comprising a sequence of ‘‘Actions.’’
In this work, we used the ‘‘Action,’’ ‘‘Event,’’ ‘‘Activity,’’
and ‘‘Episode’’ concepts to represent everyday life in greater
detail. The most fine-grained action here is referred to as
‘‘Action,’’ an atomic action in VirtualHome. It included
‘‘walk,’’ ‘‘sit,’’ ‘‘grab,’’ and other actions. In VirtualHome’s
program, the combination of atomic action and object is
referred to as a ‘‘step.’’ Section III-A presents an example for
this. We added various information to the step (e.g., agents,
actions, places, time, and situations) by representing the

6https://www.mturk.com/
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FIGURE 4. Graffoo representation [39] of the proposed knowledge graph (KG) schema.

ADL as an event-centric KG. In this context, an ‘‘Activity’’
comprises multiple ‘‘Events,’’ while an ‘‘Episode’’ comprises
multiple ‘‘Activities,’’ such as morning routines.

We used the HomeOntology7 [35] Activity class to repre-
sent activities. However, HomeOntology does not support the
representation of spatiotemporal information; thus, we cannot
represent the time required to execute an action and the
corresponding 3D coordinates. We also cannot represent the
objects’ states, affordances, and attributes. The first prob-
lem was solved using the Time Ontology8 and X3D ontol-
ogy9 [40]. For the second problem, we defined new classes
and properties for these representations.

1) ACTIVITY, EVENT, AND ATOMIC ACTION
The following 12 subclasses were defined in HomeOn-
tology: BedTimeSleep, EatingDrinking, FoodPreparation,
GettingReady, HouseArrangement, HouseCleaning, Hygien-
eStyling, Leisure, PhysicalActivity, SocialInteraction, Work,
andOther. An additional of 591 subclasses of these 12 classes

7https://github.com/valexande/HomeOntology
8https://www.w3.org/TR/owl-time/
9https://www.web3d.org/x3d/content/semantics/semantics.html

were also defined. Note that the dataset provided by Virtual-
Home corresponded to an instance of the lowest-layer classes.

The action types were extracted from the data collected in
a previous study [32]. We also expanded the types based on
the Primitive Action Ontology [41] to consider the additional
actions that may be implemented in the simulation platform
in the future.

HomeOntology [35] represents the relationship between
Activity and Step as a list structure using rdf:List. How-
ever, the list structure based on rdf:List, clearly under-
performs in commonly used triplestores [42]. Thus, we used
the number-based list model to represent the relationship
between ho:Activity and Event. This model is the most
efficient method for representing the list in terms of search
performance. In addition, we used the Sequence Ontology
Pattern (SOP)10 model to reduce the difficulty of tracing the
time-series changes in the object states and activities.

We made the schema more event-centric by attempting to
use the Simple Event Model (SEM) [43] and Event Ontology
(EO).11 However, these vocabularies cannot be used due to

10http://ontologydesignpatterns.org/wiki/Submissions:Sequence
11http://motools.sourceforge.net/event/event.html
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domain and range restrictions. Thus, we referred only to
the ontology design pattern, in which the event classes were
directly connected to an agent, a location, and time. Our
original classes and properties, which were similar in usage
to the SEM and EO, were linked to the corresponding classes
and properties using skos:closeMatch.12

In HomeOntology, action involving multiple target objects
(e.g., ‘‘PutBack <object1> <object2>’’) cannot be repre-
sented when defining the relationship between an action and
an object. Thus, we defined the mainObject property
to represent the relationship with the first object and the
targetObject property to represent the relationship with
the remaining objects. Note that these properties are subprop-
erties of ho:object.

We also defined place, from, and to to represent the
specific location of an event. Here,place is used if the room,
where the agent is located, is the same at both the beginning
and end of the event; otherwise, from and to are used.
The relationships between an activity and an event are

described as follows in the Terse RDF Triple Language
(Turtle)13 syntax using our ontology’s schema:

Here, lines 1–16 describe triplets with the teeth brushing
activity as a subject. It primarily represents the relationships
between brushing teeth and events. Lines 17–25 describe the
triplets of event7 as an example primarily representing the
target object, previous event, and situations before and after
the event.

12https://www.w3.org/2004/02/skos/
13https://www.w3.org/TR/turtle/

2) OBJECT’s STATE, PROPERTY, ATTRIBUTE, AFFORDANCE,
AND SPATIAL RELATIONSHIP
We created the Situation class and defined relations to
the Action class to represent the spatial changes after exe-
cuting each primitive action in an activity. We also created
the Object and State classes to represent an object and
its state, respectively. Furthermore, We defined the next and
previous relationships between the object states using the
SOP model. With this structure, we can easily track the
changes in an object’s state. We also defined a State at
a specific point as part of a Situation, which allowed
us to simultaneously obtain the states of all objects at a
specific point in the virtual space. The State class was
linked to the state value (StateType) and size and the 3D
coordinates of an object (x3do:Shape). An StateType
instance specifically represents an object’s state (e.g., ON,
CLOSED, and CLEAN). We had 33 types of object states, but
it was difficult to simulate all possible states in this study.
Thus, the object state types were limited based on the Home
Object Ontology14 [41]. By contrast, the KG schema does
not limit these values, and new state types can be added.

VirtualHome also defines the Object Properties
(e.g., GRABBABLE, HAS_SWITCH, and CLOTHES).
In Object Properties, both the attributes and the affordances
of objects are mixed together. Accordingly, we defined the
Attribute and affords and classified the values of the
object properties in VirtualHome. We assumed that affor-
dance is unaffected by an object’s state and represents the
possible actions given by the object’s existence. Therefore,
we defined the affordance structure as the relation, in which
an Object affords an Action.

Thex3do:Shape class from the X3D ontologywas used.
This class has qualitative spatial relations with other objects.

D. KG CONSTRUCTION
The VirtualHome simulation results were converted to KGs
based on the schema described in Section III-C. Figure 5
shows part of a KG constructed based on the described
ontology. This part of the KG results from executing ‘‘Lis-
ten to music,’’ which is one of the activities provided by
the VirtualHome. Note that there are over 400 objects and
their corresponding states. Here, an instance of State was
created only when an object’s state, coordinate, or affordance
changed before and after an action execution. If the object
does not change, even after executing the next primitive
action, the instance of State is connected to the instances of
the current Situation and the next Situation through
the partOf property. Thus, many state instances of a fre-
quently changing object (e.g., Character) are generated.
Conversely, an instance of the state of an object, which is not
the target of the activity becomes a part of all the situation
instances because the object state is never changed.

Figure 6 shows a flowchart diagram of the KG construction
process. We developed two script types to generate the KGs.

14https://github.com/aistairc/HomeObjectOntology
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FIGURE 5. Part of a constructed knowledge graph.

The first type generated KGs containing 3D coordinates and
the duration of action (i.e., execution time) by rendering the
program using the Unity simulator. Consequently, it took
a long time to generate the KGs. The motion data of the
atomic actions implemented by the VirtualHome were lim-
ited; hence, the simulation’s executability was dependent on
the VirtualHome Unity simulator. In contrast, the second
script type generated KGs without recording the 3D coor-
dinates of objects15 and the action duration. This script can
quickly generate a large amount of data because it performed
the simulations without rendering the program using the
Unity simulator.

We simulated and rendered 43 executable activities in the
VirtualHome activity dataset as samples.We then constructed
a KG using the designed ontology. The constructed KG and
schema data were stored in Ontotext GraphDB,16 which is a
triplestore. The number of entities was 314,662. The number
of properties was 54. The number of triples (relationships)
was 1,126,740. We also simulated 451 executable activities
without rendering, and we constructed a KG based on the
designed schema. The number of entities was 1,290,252.
The number of properties was 52. The number of triples
was 8,477,485. Lastly, the activity included an average of
10.13 primitive actions.

15Note that the state changes and the qualitative positional relationships
of the objects were not removed.

16https://www.ontotext.com/products/graphdb/

IV. USE CASES OF SYNTHETIC KGs
This section describes several use cases to that demon-
strate the usefulness of the synthetic KGs generated using
the proposed VirtualHome2KG framework. These use cases
included the analyses of daily living activities and fall risk
detection in a home environment.

A. ANALYSIS OF DAILY LIVING ACTIVITIES
1) QUERYING USING SPARQL
Various daily activities can be analyzed by querying
the generated synthetic KGs using SPARQL. For exam-
ple, a SPARQL query to search for ‘‘frequently grabbed
objects17’’ can yield the results shown in Figure 7. This query
can help identify the source of indirect contact in an infectious
disease context. Figure 8 shows the results of the query for
‘‘objects with frequent state changes.18’’ These results allow
users to predict the objects’ wear and tear. The conditions of
these two queries can be combined. Figure 9 shows the results
of the query for the ‘‘leisure activities that consume a lot of
time.’’ The generated KGs contained the execution time for
each event in the activities; hence, it was possible to aggregate
using the temporal information. Combining this query with
the target object and location conditions also allows us to
more spatiotemporally analyze daily activities.

17https://github.com/aistairc/VirtualHome2KG/tree/main/sparql#
example-3

18https://github.com/aistairc/VirtualHome2KG/tree/main/sparql#
example-4

23864 VOLUME 11, 2023



S. Egami et al.: Synthesizing Event-Centric Knowledge Graphs of Daily Activities Using Virtual Space

FIGURE 6. Flowchart diagram of KG construction process.

FIGURE 7. Top 20 most frequently grabbed objects.

2) VISUAL ANALYSIS BASED ON GRAPH EMBEDDING
The potential semantics can be interpreted by embedding
each entity in the KG in a high-dimensional vector space and
obtaining a vector representation. We will describe herein
how to obtain a vector representation of the Activity
instances and visualize them to analyze the features of daily
living activities. In this case, we employed RDF2Vec [44] as
the graph embedding method because our KG is in an RDF
format. RDF2Vec generates a sequence set using a random
walk and learns the vector representation using a continuous
bag-of-words (CBOW) or a skip-gram model.

First, for a given graph G = (V ,E), for each vertex v ∈ V ,
all graph walks Pv of depth d were rooted in the vertex vr ,

FIGURE 8. Top 20 objects with frequent state changes.

FIGURE 9. Most time-consuming leisure activities.

e.g., vr → e1,1 → v1, where i ∈ E(vr ). Then, vertex
and edge labels were then attached using the graph labeling
method in the Weifeiler–Lehman (WL) graph kernels for
RDF [45]. The relabeling process continued until h iterations
were reached. Walk paths were then extracted based on the
Pv on each relabeling graph. Thus, the final set of sequences
was the union of the sequences of all vertices in each iteration⋃h

i=1
⋃

v∈V Pv. To generate the vector representation, the
final set of sequences was input to word2vec [46]. We used
the skip-gram model because it tends to achieve a high accu-
racy in RDF2Vec. It is the inverse model of the CBOW.When
a word wt is given, the skip-gram model maximizes the log
probability of words wt+j(−c ≤ j ≤ c) appearing in the
window size c.

1
T

T∑
t=1

∑
j

log(p(wt+j|wt )) (1)

where the probability p(wt+j|wt ) is calculated as follows
using the SoftMax function.

p(wo|wi) =
exp(v

′T
wovwi )∑V

w=1 exp(vTwvwi )
(2)

After embedding the KG into a 100-dimensional vec-
tor space using RDF2Vec, we applied the UMAP [47]
dimension reduction method to visualize the results as a
two-dimensional plot (Figure 10)d. We also classified the
activity instances into 10 clusters using the k-means cluster-
ing algorithm. We set the cluster size based on the hypothesis
that 10 clusters will be generated because this experiment
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FIGURE 10. Visualization of UMAP results of the vectors of the learned
Activity instances obtained using RDF2Vec (parameter settings: depth = 8,
number of walks per entity = 100, WL iterations = 6, vector size = 100,
window size = 9, model = skip-gram, skip predicates = {agent,
hasActivity, virtualHome (identifying a home), partOf,
previousEvent}).

limited the experimental data to 10 activity types, exclud-
ing the PhysicalActivity and SocialInteraction types, which
cannot be executed on the simulator. Entities distant in a
100-dimensional space may be placed close to each other in
a 2D space through the dimension reduction method. We per-
formed the k-means clustering on a 100-dimensional space
to accurately represent this phenomenon. In Figure 10, the
meaningful sets were circled for visibility (i.e., the circles
do not represent the number of clusters.) As a result, similar
activities were plotted close to each other. However, in some
cases, activities with the same name were plotted in different
positions due to the various combinations of actions and
objects comprising the corresponding activity. Conversely,
in other cases, activity instances with different names were
plotted close to each other. For example, the ‘‘go_to_sleep1’’
and ‘‘story_reading_time0’’ activities were plotted close to
each other, as depicted by the magenta circles in Figure 10.
The ‘‘go_to_sleep1’’ activity instance represents walking to a
bedroom, finding a bed, and then lying down on the bed. The
‘‘story_reading_time0’’ activity instance represents walking
to a bedroom, finding a bed, and then sitting on the bed
before reading a book. The context of a longer period of time
influenced the embedding results (i.e., similarities in their
actions, target objects, and places). In addition, the clustering
results implied that the class hierarchy of daily household
activities may be redifined.

B. DETECTING FALL RISK EVENTS AT HOME
This section describes an experiment conducted to detect the
fall risk among older adults in the home environment as an
application of the proposed VirtualHome2KG framework.

1) DEFINING THE FALL RISK CLASSES AND RULES
First, we defined two risk classes (i.e., RiskActivity and
RiskEvent) and the subclasses of RiskEvent to infer
the high risk behaviors for older adults from the synthetic
KGs generated by the proposed VirtualHome2KG frame-
work. We also defined the riskFactor property to represent
the risk factors.

Next, one safety engineering expert manually extracted the
risk behaviors and situations leading to falls at home from
the accident data provided by the Tokyo Fire Department
and the video data from the Elderly Behavior Library.19 The
accident data included reports of daily accidents that required
patients to be transported by ambulance in Tokyo. These data
comprised information about the situation of the accident,
related injuries, location, what the patient was doing, and their
age and gender. These reports were typically written as a short
natural language text. We then classified the extracted risks
into the following three categories:

(1) Dangerous action: this action is dangerous, regardless of
the target object

- - Go up or down the steps
- - Straddle an object
- - Walk backwards
- - Stand on one leg
- - Do some work using one’s foot
- - Stand up without support

(2) Dangerous interaction: the combination of an action and
the object’s characteristics is dangerous

- - Reach an object that is in a high place
- - Take an object out of low shelves
- - Carry a heavy object
- - Lean on an unstable object
- - Pick up an object on the floorwhile sitting on a chair

(3) Dangerous spatial relationship

- - An object is placed on an aisle.
- - There is a gap between the bed and the wall.
- - A cushion is laid on a chair.
- - A bed has no side rails.
- - A chair has no armrest.

In this experiment, duplicate expressions and phenomena
were excluded from the classification process. For exam-
ple, the risk list extracted by the expert included ‘‘stand-
ing in a high place.’’ However, before standing in a high
place, a person should have already climbed something. The
risk list already included ‘‘go up or down the steps’’; thus,
we excluded ‘‘standing in a high place’’ from the list because
it is semantically redundant. Although the extracted risk list
also included ‘‘losing balance,’’ it is a phenomenon caused
by various factors and not an intentional activity. We aimed
herein to detect the risk before the phenomenon occurs,
and not the resulting phenomenon. Therefore, we excluded
‘‘losing balance’’ from the risk list.

19http://www.behavior-library-meti.com/behaviorLib/
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TABLE 1. Inference rules for the fall risk among older adults at home.

TABLE 2. Confusion matrix.

We focused on the fall risks among older adults in their
home environment caused by an interaction between a behav-
ior and the environment. We detected the two following risks
from the synthetic KGs: ‘‘reach an object that is in a high
place’’ and ‘‘take an object out of low shelves.’’ We modified
the fall risks to more specific alternative expressions to map
thewords in the risk expressions to the entities in the synthetic
KGs. We then defined inference rules corresponding to the
alternative expressions (Table 1).

2) EVALUATION
We generated videos and KG experimental data using the
proposed VirtualHome2KG framework. In this evaluation,
an expert verified the videos and annotated the risk scenes
using the ELAN20 annotation tool for the video data. The
ground truth included the event nodes corresponding to the
scenes labeled to contain a fall risk. The confusion matrix
classified events into true positive (TP), false positive (FP),
true negative (TN), and false negative (FN) (Table 2).

20https://archive.mpi.nl/tla/elan

The precision, recall, and F1-score of the proposed method
were calculated as follows:

Precision =
TP

TP+ FP
(3)

Recall =
TP

TP+ FN
(4)

F1 =
2 × Recall × Precision
Precision+ Recall

(5)

We initially considered random sampling from the activ-
ity dataset of a previous study [32] and generating videos
and KGs from the extracted samples. However, with this
technique, many activities could not successfully generate
videos due to the VirtualHome data limitations. For example,
36% of the activities in the crowdsourced dataset was not
executable [32]. Although VirtualHome prepared 3D assets
for the simulator, the availability of motion data, 3D models
of manipulatable objects, and object gimmicks are not yet
sufficient for generating a wide variety of daily life activities
for random sampling. Some generated videos also include
unnatural behaviors, such as skipping required actions, float-
ing in the air, and exceeding the rotation range of joints
due to an insufficiently defined rotation limit of body parts.
We eliminated these activity data by preparing the 20 activity
scenarios listed in Table 3 to generate videos and KGs that did
not contain unnatural scenes. These scenarios were designed
as naturally occurring activities in daily life and carefully con-
sidered to cover as many activity types as possible. We gener-
ated videos and synthetic KGs based on these scenarios and
used them in our experiment.
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TABLE 3. Ground truth dataset for detecting the fall risks.

TABLE 4. Experimental results.

Table 4 shows the experimental results. All fall risks
targeted in this experiment were correctly detected, and
a 0.75 F1-score was achieved. The proposed method is

effective because recall is more important than precision
in terms of preventing life-threatening injuries among older
adults.

Table 4 also shows room for improvement in precision.
In other words, some non-risky events were detected as rep-
resenting fall risks. For example, the event representing yjr
opening of a refrigerator door was detected as a ‘‘Reach
an object that is in a high place’’ risk. However, this was
a false positive because the position, at which the agent
reached to open the refrigerator door, was not taller than
the agent’s height. We believe that these false positives can
be solved if the part-whole relations of objects are included

23868 VOLUME 11, 2023



S. Egami et al.: Synthesizing Event-Centric Knowledge Graphs of Daily Activities Using Virtual Space

FIGURE 11. Support tool to detect and explain fall risks.

(e.g., the relations between the door handle and the refrig-
erator). Alternatively, risk may be detected by obtaining
information describing the arm’s position from the skeleton
information.

3) SUPPORT TOOL
We believe that the simulation and demonstration of risky
behaviors for educational purposes, which can help develop
countermeasures to reduce accidents in living environments,
are promising future applications of explainable AI in the
safety domain. To explore the present feasibility, we devel-
oped a support tool for fall risk detection (Figure 11). The
application loads videos generated by the proposed Virtu-
alHome2KG and detects the fall risks from the synthetic
KGs corresponding to the loaded videos. Among the videos
displayed in the ‘‘Video list,’’ in Figure 11, those judged
to contain a fall risk are highlighted in yellow. When users
select the risk video, the events judged as a fall risk in the
activity are displayed as a ‘‘Risk factor.’’ The corresponding
video scene is played in a loop the moment an event name is

selected. In addition, the KG centered around the event node
is drawn; the risk description is displayed to the user; and the
graph path considering the fall risk basis is highlighted in red.
Accordingly, we can now develop an application with a high
explanatory ability that demonstrates the fall risk basis with
videos, text content, and graph paths using the data generated
by the proposed VirtualHome2KG framework. We believe
that this application can help guide the design of serviced
housing for older adults.

V. DISCUSSION
VirtualHome2KG enables the generation of a large number
of synthetic KGs by simulating daily life in a virtual space.
We believe that the proposed approach contributes to increas-
ing the knowledge captured and embodied in AI systems to
support daily life.

Table 5 compares the proposed VirtualHome2KG frame-
work with the existing methods that use VirtualHome.
VirtualHome2KG has a more efficient querying ability than
existing methods. In particular, it can capture the context
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TABLE 5. Comparison with existing studies.

of daily behavior and the environment, depicting a potential
application in both VQA and EQA systems. The proposed
VirtualHome2KG framework can also represent more knowl-
edge than HomeOntology and has particular strengths in
terms of the knowledge representation of the spatial, contex-
tual, and property relationships focusing on objects. We also
adopted herein an event-centric schema, which can be anno-
tated on an event-by-event basis and applied as described
in Section IV-B.

The use cases examined in this study allowed us identify
several problems that must be addressed to facilitate the Vir-
tualHome2KG implementation.We classified these problems
as (i) simulation platform problems, (ii) KG schema prob-
lems, and (iii) lack of human activity information (Figure 12).
The subsequent subsections will discuss the causes of these
problems, corresponding solutions, and potential extensions
of this study.

A. SIMULATION PLATFORM
Simulation platforms like VirtualHome, which have a one-
on-one relationship between the action names and the motion
data, can deterministically generate videos and simulation
results based on the input order. The advantage of this plat-
form is that a large amount of annotated data can be prepared
without using activity recognitionmethods. However, the cost
of preparing the motion data corresponding to actions can be
a disadvantage. For example, in the fall risk domain discussed
herein, several necessary actions were missing in the Virtual-
Home dataset described in Section IV-B, (e.g., ‘‘stand on one
leg,’’ ‘‘walk backwards,’’ and ‘‘lean’’). Thus, more motion
data are desirable for the daily living environment, primarily
in the safety domain. We expect that novel 2D video to 3D
motion technologies will significantly reduce this cost.

Support is also required for multiple simultaneous actions
in the daily living domain because various activities
(e.g., walking while operating a smartphone) are fre-
quently performed in real-world environments. A possible
workaround for this problem is to implement separate upper
and lower body motions.

Support for real-time physics simulations is also desir-
able because simulating uncertain events without such

FIGURE 12. Problems to be addressed to apply synthetic knowledge
graphs (KGs) to support daily life activities.

simulations (e.g., objects falling or people tripping over
objects) is difficult.

B. KG SCHEMA
In addition to increasing the amount of motion data for
actions, new vocabularies for actions in the KG are also
required. However, further investigation is needed to deter-
mine which actions should be added because actions may
have different interpretations. For example, although ‘‘stand
on one leg’’ is intuitively considered as a primitive action, the
difference between this and ‘‘lift one leg’’ is unclear. In other
words, the interpretation depends on the observer. According
to the Primitive Action Ontology [41], the definition of a
primitive action excludes ‘‘actions that include interpretations
of the observer’’ and ‘‘actions that are specialized by their
target objects.’’ According to these definitions, ‘‘stand on one
leg’’ should be represented as a primitive action of ‘‘lift,’’
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and one (left or right) leg should be represented as a target
object separated from the action. ‘‘Stand on one leg’’ can
be also interpreted as a state caused by other actions. For
example, a person always stands on one leg while walking or
climbing. Some actions can be interpreted differently; hence,
the primitive action definitions must be specialized for the
proposed framework.

Our study focused on people who live alone. However, the
schema must be extended to represent both human-human
and human-robot interactions. In the current schema, people
and home objects can become the target objects of events.
In addition, actions involving the interactions between
multiple agents can be handled by creating the Event,
Situation, and State nodes for each agent to avoid
the time-series inconsistencies in environmental informa-
tion. However, a trade-off exists because the representation
becomes redundant, and the data size significantly increases.
Thus, further research is required to efficiently extend the
schema to represent the actions and interactions of multiple
agents.

C. HUMAN ACTIVITY INFORMATION
As described in Section III-D, many of the crowdsourced
‘‘programs’’ in VirtualHome could not be executed using the
Unity simulator. A common reason for this is the missing
steps required to execute an activity. For example, if an
activity contained the ‘‘SWITCHON tv (106)’’ step, the agent
must be close to the television at that time to execute the
action. Thus, ‘‘WALK tv (106)’’ had to appear as a prior
step, and any activity lacking this step could not be executed.
Another common case is an activity that specified objects
with no corresponding 3D assets in the Unity model. This
type could not be executed. Although a method for predicting
the missing steps in an activity using a graph neural network
was previously proposed [48], it has not yet demonstrated suf-
ficient accuracy for practical application. Quality control is
also required for crowdsourcing [49] executable ‘‘programs.’’

Information regarding human-environment interactions is
required to realize more advanced applications. For example,
some of the fall risks identified by a domain specialist could
not be represented due to the lack of part-whole relationships
between the objects in a synthetic KG (e.g., chairs and arm-
rests). One strategy of handling this information is to interpret
a chair and an armrest as a single object (e.g., an ‘‘arm-
chair’’) and define ‘‘put’’ as the armchair object affordance.
We believe that the following approaches can complement
for the missing relations: (i) altering the representation to
represent the missing relation; (ii) extracting the missing
relation from external datasets; and (iii) collecting new data
through crowdsourcing. Another problem is the information
on intangible objects (e.g., a ‘‘gap’’ or a ‘‘hole’’). Whether
or not a gap or a hole is an actual entity should be treated
with philosophical consideration [50], [51], which is beyond
the scope of this study. From an engineering perspective, if a
gap or a hole is defined as an actual entity, obtaining data per-
taining to it fromVirtualHome will be difficult. Alternatively,

if ‘‘There is a gap between a bed and the wall’’ is reworded
as ‘‘The bed is away from (not close to) the wall,’’ then we
can explicitly describe an inference rule for detecting the fall
risk between the wall and the bed.

These points were the lessons learned through the use
cases presented in this study. Additional challenges may
be observed through further applications in other domains.
However, we believe that our proposed VirtualHome2KG
framework can sufficiently be applied to other indoor activity
domains, including shopping, restaurants, and manufactur-
ing. We also believe that the solution strategies described in
this section can be used when applying synthetic KGs in other
domains.

D. FUSION OF THE KGs OF THE PHYSICAL AND VIRTUAL
SPACES
We believe that the data from both physical and a virtual
spaces must be combined in the future to analyze daily living
activities. The three following approaches of combining both
datum types are possible:

(1) considering applications for the physical space based on
the KG of the simulation results on the virtual space;

(2) pre-training of machine learning models using the KG
of the simulation results in the virtual space and apply-
ing them to the prediction and recognition tasks in the
physical space; and

(3) graph matching between the KGs representing the con-
tents of real and virtual videos.

Fig. 1 depicts the first approach. For example, a 3D
model reproducing a physical space environment was created
through 3D computer graphics software. Daily life can be
simulated, and KGs can be generated by introducing the
reproduced 3D model into VirtualHome2KG. This approach
allows various analyses, including the detection of accident
risks, such as those represented in this paper. The second
approach pre-trains machine learning models for activity
recognition based on the annotation data generated by Virtu-
alHome2KG. Fine-tuning based on the dataset is expected to
improve the recognition accuracy on real data in the physical
space. The third approach generates KGs in both the physical
and virtual spaces. KGs representing the contents of daily
life can be generated from real video data using scene graph
generation [3], [52] and KG construction technologies. Thus,
in the future, dangerous situations are expected to be detected
by graph matching between real and synthesized KGs.

VI. CONCLUSION
In this work, we proposed the VirtualHome2KG framework
to generate synthetic KGs based on an event-centric schema
by simulating the daily activities in the home environment
using a 3D virtual space. The proposed framework can pro-
vide source datasets for the pre-training of machine learn-
ing tasks containing more semantic information than typical
annotation data because it can simultaneously generate video
data and a KG representing the simulation results. It also has
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the potential to improve the accuracies of activity recognition,
VQA, and EQA tasks because it can flexibly change the
environmental conditions and augment the training data in
various contexts.

We evaluated the proposed VirtualHome2KG framework
in several use cases by analyzing the daily activities by
querying, embedding, and clustering and detecting the fall
risks among older adults based on expert knowledge. These
use cases provided us with promising results that can help
maintain human safety in daily life and improve the quality
of life.

We also identified and classified the lessons learned
through this study and discussed the potential solutions for
implementing advanced applications to support daily life.
In the future, as cyber-physical systems and digital twin tech-
nologies become widely implemented in serviced housing
for older adults, we believe that the use cases we presented
here can be developed into AI system applications to warn
residents about risky behaviors and offer alternatives.

We plan to extend the proposed VirtualHome2KG frame-
work by addressing the challenges described in Section V and
providing additional data resources for practical applications
by reproducing physical environments in the virtual space.
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