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ABSTRACT Officials in the field of public health are concerned about a new monkeypox outbreak, even
though the world is now experiencing an epidemic of COVID-19. Similar to variola, cowpox, and vaccinia,
an orthopoxvirus with two double-stranded strands causes monkeypox. The present pandemic has been
propagated sexually on a massive scale, particularly among individuals who identify as gay or bisexual.
In this instance, the speed with which monkeypox was diagnosed is the most important aspect. It is possible
that the technology of machine learning could be of significant assistance in accurately diagnosing the
monkeypox sickness before it can spread to more people. This study aims to determine a solution to the
problem by developing a model for the diagnosis of monkeypox through machine learning and image
processing methods. To accomplish this, data augmentation approaches have been applied to avoid the
chances of the model’s overfitting. Then, the transfer-learning strategy was utilized to apply the preprocessed
dataset to a total of six different Deep Learning (DL) models. The model with the best precision, recall,
and accuracy performance matrices was selected after those three metrics were compared to one another.
A model called ‘‘PoxNet22’’ has been proposed by performing fine-tuning the model that has performed
the best. PoxNet22 outperforms other methods in its classification of monkeypox, which it does with 100%
precision, recall, and accuracy. The outcomes of this study will prove to be extremely helpful to clinicians
in the process of classifying and diagnosing monkeypox sickness.

INDEX TERMS Monkeypox, data augmentation, transfer learning, classification, PoxNet22.

I. INTRODUCTION
Public health professionals are worried about a new mon-
keypox outbreak despite the global COVID-19 epidemic.

The associate editor coordinating the review of this manuscript and

approving it for publication was Anandakumar Haldorai .

Monkeypox is an orthopoxvirus with two double-stranded
strands like variola, cowpox, and vaccinia. Dormice, tree
squirrels, Gambian pouched rats, and rope squirrels spread
monkeypox. The more dangerous monkeypox viral lineage
is found in Central and West Africa. Numerous cases of the
present outbreak result from sexual transmission, particularly
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in gays and bisexuals. The virus can spread by bodily fluids,
scabs, infected wounds, and sharing beds or clothing. Rash,
fever, lymphadenopathy, and flu. Up till the wounds have
healed, the prodrome or rash is spreadable. Active mon-
keypox is indicated by viral DNA found in vesicle crusts
or ulcers [1]. On May 17, 2022, the Laboratory Response
Network (LRN) of the Massachusetts Department of Pub-
lic Health (MDPH) employed real-time PCR to confirm
orthopoxvirus DNA in lesion swabs from a Massachusetts
person. On May 18, CDC real-time PCR tests revealed that
the patient had monkeypox from the West African subclade.
There are no endemic hotspots in the 28 countries and ter-
ritories having laboratory-confirmed cases of monkeypox.
A phone center helped states on May 19 with monkey-
pox evaluation, clinical diagnosis, and orthopoxvirus testing.
By May 31st, this study had uncovered 17 US instances [2].
More than 48,000 instances of the monkeypox virus have
been reported in less than 4 months, with a total of 13 fatali-
ties [3]. The United States is now conducting a Randomized
Controlled Trial (RCT) to assess the effectiveness and safety
of tecovirimat as a monkeypox therapy. The Centers for Dis-
ease Control and Prevention (CDC) and the Food and Drug
Administration (FDA) have accelerated the extended access
strategy while RCTs are being prepared since the hazards of
monkeypox and the safety of tecovirimat in healthy humans
and animal models are both well-known. With the help of
healthcare professionals, researchers will use this technology
to keep these treatments up to date. The clinical features of the
pandemic need the RCTs to assess tecovirimat’s effectiveness
and safety in treating monkeypox. According to the CDC,
FDA, and NIH, tecovirimat may be used humanely until
RCTs demonstrate their safety and efficacy [4]. It is nowmore
crucial to distinguish monkeypox from other orthopoxviruses
by its categorization.

Machine learning (ML), a discipline within artificial
intelligence, is relatively new but has already demonstrated
significant potential in various applications. These include
industrial applications, medical imaging, and disease detec-
tion [38], as well as applications that help individuals
make decisions [35], [37]. Machine-learning-enabled imag-
ing systems are valuable by medical practitioners as essen-
tial tools for conducting rapid evaluations that are accurate
and secure [36]. For large-scale COVID-19 classification,
this work [5] proposes layered ensemble meta-classifiers and
feature fusion powered by deep learning. Kernel principal
component analysis reduced the dimensionality of the data
and removed features from the top layer in pre-trained mod-
els based on EfficientNet (global average pooling). Stacked
ensemble meta-classifiers categorized everything in the end.
SVM and random forest predictions were integrated before
the second stage. The COVID-19 status of CT and CXR data
is determined by second-stage logistic regression. And the
suggested model outperformed current approaches for the
diagnosis. 1345 CT scans were used to extract deep features
using ResNet-50, ResNet-101, AlexNet, Vgg-16, Vgg-19,

GoogLeNet, SqueezeNet, and Xception. With the use of test
images, these detailed properties are assessed using classi-
fication algorithms like SVM, k Nearest Neighbor, Random
Forest, Decision Trees, and Naive Bayes (NB). Applica-
tion data showed that SVM and ResNet-50 performed the
best. As an additional decision support system, the efficient
deep learning model and classification strategy employed
in this work can minimize the need for extra COVID-19
testing [6]. Ten learnable layers—nine convolutional and
one fully connected—make up the model [7]. Employing
deep learning to find COVID-19 on chest radiographs. Chest
radiographs can be classified as normal, positive, or pneu-
monia using a fine-grained COVID-19 classification experi-
ment. Moreover, a COVID-19 Radiography Database is used
to evaluate the special CovidDetNet deep learning model.
In dataset experiments, the proposed CovidDetNet model
fared better than the alternatives. They provide a cutting-
edge method for examining chest X-ray pictures in order to
detect COVID-19 and pneumonia. There are three steps in the
method [8]. The conditional generative adversarial network
(C-GAN) separates unprocessed X-ray data to produce lung
pictures. The second stage involves sending segmented lung
images to a special pipeline that extracts distinguishing traits
through keypoint extraction and training deep neural net-
works (DNN). The last step involves classifying COVID-19,
pneumonia, and normal lung pictures using ML models.
Comparisons are made between the classification perfor-
mance of DNN-ML-DNN architectures. While evaluating
classification accuracy, the VGG-19 model with the binary
robust invariant scalable key points (BRISK) technique pro-
duced the best results.

Furthermore, to identify prostate cancer in ultrasonogra-
phy and MRI images, this study [9] suggests deep learning
methods. Applying adjustable-layer pre-trained deep learn-
ing models to datasets. The best test model has 97% US
image accuracy and 80% MRI image accuracy. The best
classification model extracted fusion model characteristics.
A fusion model is developed for the MRI dataset using the
best pre-trained feature extractor and shallow machine learn-
ing techniques (e.g., SVM, Adaboost, K-NN, and Random
Forests). This approach of data fusion raises the accuracy of
MRI datasets from 80% to 88%. Using ultrasound pictures
to identify breast cancer, the proposed [10] framework has
five main steps: data augmentation, a pre-trained DarkNet-53
model, transfer learning, and feature extraction from the
global average pooling layer. The best features are selected
using reformed differential evaluation (RDE) and reformed
gray wolf (RGW). The best accuracy was 99.1% using an
enhanced Breast Ultrasound Imagery (BUSI) dataset. A deep
learning training technique is used to explicitly instruct the
network to concentrate on and accurately recognize regions
with cancerous image regions. Gradient-weighted class acti-
vation mapping by Selvaraju et al. described CNNs. Pictures
from their own mobile oral screening device and two-step
data augmentation were used to train Li et al.’s inference
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network (GAIN). GAIN categorizes, trains, and harvests
attention using bounding box networks. These attention maps
were used in conjunction with the GAIN training architecture
as reliable priors to produce attention maps with improved
segmentation [11]. The most effective genes for gene expres-
sion in diverse illnesses are identified using soft ensembling
and a novel deep neural network. The feature selection strat-
egy selects wrapper genes using three different methods and
ranks them using the k-nearest neighbor algorithm to provide
a generalizable and error-free model. A stacked deep neural
network correctly identified three datasets with accuracies of
97.51%, 99.6%, and 96.34% [12].

When this article was created, only a handful of articles
showed how image processing andmachine learningmethods
might be used to diagnose monkeypox. These articles served
as the sources for the information in this article. While this
story was being written, these papers surfaced and were
covered. Unfortunately, the absence of a publicly accessible
dataset for training and testing hampered the development of
a system for the image-based diagnosis of monkeypox. This
was a direct effect of the virus’s fairly recent dissemination
to substantial populations in a number of different countries
throughout the world.

This study aims to find a solution by developing a model
for the diagnosis of monkeypox using image processing and
machine learning techniques. That includes Related Work,
Experimentation Environment, Methodology, Data Collec-
tion, Data Preprocessing, Data Augmentation, Train Test
Split, Applied Models, Select Best Model, Proposed Model,
Result Analysis, Ablution Study, Discussion, Compare with
ExistingWorks, and Conclusion. The significant implications
of this research are:

• The dataset was preprocessed to improve image quality.
• Performing data augmentation to reduce the chance of
the model’s overfitting.

• Applying six different models on the dataset.
• Comparing the performance of those models to identify
the best model.

• Proposing a model PoxNet22 by fine-tuning the Incep-
tionV3 model to classify monkeypox among others pox
more precisely.

• Analyzing how the PoxNet22 model performed in com-
parison to earlier research.

Although there have only been a very small number of
papers published that exclusivelywork on the classification of
monkeypox using artificial intelligence, this study employed
two open-sourced monkeypox and chickenpox digitized skin
images. A two-dimensional CNN with four convolutional
layers was used. They compared the performance of their
suggested model to cutting-edge deep-learning algorithms
for the detection of skin lesions. Their CNN model out-
performed all DL models in test accuracy, scoring 99.60%.
Precision, recall, and F1 score were weighted and averaged
at 99.00%. Alex Net outperformed trained models with an
accuracy of 98.00% [39]. This study used the transfer learning
model and hyperparameters to develop a hybrid function

learning model. This is incorporated in the MobileNetV3-s,
EfficientNetV2, ResNET50, Vgg19, DenseNet121, and
Xception custom models. AUC, accuracy, recall, loss, and
F1-score were all compared in this study. With a 0.98 aver-
age F1-score, 0.99 AUC, 0.96 accuracy, and 0.97 recall,
the improved hybrid MobileNetV3-s model surpassed the
opposition [40]. However, artificial intelligence has been uti-
lized more frequently in recent years for image classification
across a variety of image formats. In light of this, further
explanation is presented in the subsequent section.

II. RELATED WORK
The research work that uses only images for experiments on
the topics such as monkeypox, COVID-19, MRI, and cancer
was discussed in this section. In which the literature that is
related to our study has been reviewed. When we reviewed
those works of literature, we took into consideration the
study methodologies and the findings of the investigations as
follows.

The suggested techniques by the authors [13] include trans-
fer learning, meta-heuristic optimization, and multi-layer
neural network parameter optimization. Meta-heuristic opti-
mization strategies include the Al-Biruni Earth radius, sine-
cosine, and particle swarm optimization approaches. Deep
learning by GoogleNet extracts features. These methods offer
a fresh binary hybrid algorithm and a hybrid method for
optimizing neural network parameters. Algorithms are eval-
uated using a public dataset. The optimization of the choice
of the monkeypox classification feature was assessed using
ten criteria. 98.8%, on average, were correct in their clas-
sifications. This study [14] is aimed at 13 deep learning
(DL) models that have been trained to identify monkeypox.
They all receive common custom layers and undergo analysis
using four well-known metrics: Precision, recall, accuracy,
and F1 score. After a majority vote on probabilistic outcomes,
they assemble the best DL models. They reach averages of
85.44%, 85.47%, 85.40%, and 87.13% for Precision, Recall,
F1-score, and Accuracy, respectively, using a public dataset
and the proposed ensemble technique. Ali et al. [15] The
‘‘Monkeypox Skin LesionDataset (MSLD)’’ contains images
of lesions caused by measles, chickenpox, and monkeypox.
The majority of images come from news sources, blogs, and
open case reports. A 3-fold cross-validation experiment’s
sample size is increased through data augmentation. Then,
diseases like monkeypox are classified using pre-trained
deep-learning models like VGG-16, ResNet50, and Incep-
tionV3. A trio of models was constructed. The accuracy of
ResNet50 is 82.96%, that of VGG16 is 81.48%, and that of
the ensemble system is 79.26%.

Additionally, the authors [16] proposed a COVID-19
classification model that has been tested on 7132 chest
x-ray (CXR) images from public sources. Gradient-weighted
Class Activation Mapping (Grad-CAM), Local Inter-
pretable Modelagnostic Explanation (LIME), and Shap-
ley Additive Explanation are used to interpret and explain
the results to make them more understandable (SHAP).
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Convolution characteristics are first extracted in order to
gather comprehensive object-based data. The black-box
method of the DL model is next examined using shapely
values from SHAP, predictability findings from LIME, and
heatmap from Grad-CAM. As a result, the 10-fold cross-
validation yields an average test accuracy of 94.31% and
a validation accuracy of 94.54%. Loey et al. [17] the
identification of chest X-rays is performed using a novel
Bayesian optimization-based convolutional neural network
(CNN) model. The model is divided into two segments. CNN
first learns and extracts deep features. A Bayesian-based
optimizer, the second component, modifies CNN hyperpa-
rameters using an objective function. 10,848 images were
included in the expansive, balanced collection. Initial ablation
research contrasted three ablation scenarios with Bayesian
optimization. The three scenarios were compared using con-
vergence charts and accuracy. Optimal architecture deter-
mined by Bayesian search was 96% accurate. The approach
in this paper is to use deep learning to distinguish between
COVID-19 infection and other diseases. EfficientNetB1,
NasNetMobile, and MobileNetV2 are three pre-trained mod-
els that categorize COVID-19. To train deep learning models,
the augmented dataset is used performance of the deep
learning model, and hyperparameters are improved by this
study [18]. The classification head’s regularization improves
performance. Methods are evaluated based on a range of per-
formancemetrics. EfficientNetB1’s regularized classification
head outperforms the competition. The method can classify
COVID-19, viral pneumonia, lung opacity, and normal with a
96.13% accuracy rate. They employed [19] the Sobel, Lapla-
cian of Gaussian (LoG), and Gabor filters to extract more
characteristics from the sparse data. Many deep transfer mod-
els were used to assess and compare the suggested tactic. The
models were trained using 360 COVID-19 CXR pictures. The
accuracy growth of the Gabor filter bank, which increased by
32% during 45 epochs, is the best in terms of assessment
criteria value growth. The proposed DenseNet-201 model
was tested against ten COVID-19 detection techniques. Our
advanced COVID-19 detection technique has a two-class
classification accuracy of 98.5%. [20] Kogilavani et al. Deep
learning techniques are used to identify COVID-19 patients
in CT scans. Deep learning methods have been developed for
COVID-19. The CNN architectures VGG16, DeseNet121,
MobileNet, NASNet, Xception, and EfficientNet are used in
this work. There have been 3873 CT scans, both ‘‘COVID’’
and ‘‘Non-COVID.’’ separate datasets were used for the test
and validation phases. Accuracy was 96.68% for VGG16,
97.53% for DenseNet121, 96.38% for MobileNet, 89.51%
for NASNet, 92.47% for Xception, and 80.19% for Effi-
cientNet. The analysis demonstrates the superior accuracy
of the VGG16 architecture. In this study [21], a multi-
image augmented convolutional neural network is used to
assess CT and X-ray images of coronavirus suspects to iden-
tify COVID-19 (CNN). Multi-image augmentation provides
beneficial CNN model training examples by using edge

information from edged images. This method generates a
model with a classification accuracy of 98.97% for X-ray
images and 95.38% for CT scan images. Multi-image
enhanced X-ray images have a specificity and sensitivity of
98.88% and 99.07%, compared to 95.78% and 94.78% for
CT scan images. Using fuzzy logic-based deep learning, the
CXR pictures of patients with interstitial pneumonia unre-
lated to Covid-19 were separated from those of patients with
Covid-19 pneumonia. The CovNNet model [22] recovers
a number of significant properties from CXR pictures and
fuzzy images using fuzzy edge detection. As compared to
benchmark deep learning techniques, experimental results
show that adding a deep network input to an MLP with
CXR and fuzzy features improves classification perfor-
mance by 81%.

Also, this study [23] classifies multi-class glioma tumors
using deep learning-based traits and the Support Vector
Machine (SVM) classifier. Deep convolution neural networks
mine data from MRI images for an SVM classifier. The
proposed technique accurately diagnosed the four glioma
classes, with a 96.19% accuracy rate for HGG in FLAIR and
95.46% for LGG in T2 (Edema, Necrosis, Enhancing, and
Non-enhancing). The recommended solution outperformed
comparable techniques in the literature when applied on
the same BraTS dataset. This study outperforms previously
trained GoogleNet and LeNet models on the same dataset.
The brain tumor is located in this study [24] by examining
hyperspectral images. Using k-nearest neighbor and k-means
clustering, the tumor is located. The firefly algorithm maxi-
mizes k for both approaches. The use of optimization tech-
niques lessens the need for human calculation of K’s ideal
value for brain partitioning. The multilayer feedforward neu-
ral network labels different parts of the brain. The proposed
method outperforms hybrid and parallel k-means clustering
in terms of accuracy due to its greater peak signal-to-noise
ratio and lower mean absolute error value. The model fared
better than earlier approaches, with accuracy, sensitivity, and
specificity of 96.47%, 96.32%, and 98.24%, respectively. The
authors [25] have categorized FLAIR, T1, T2, and T1CE
tumors using deep learning. The dataset was normalized
and sent to ResNet101. ResNet101’s classification of brain
cancers has improved. Redundancy plagues the procedure.
Redundancy raises labor expenses and lowers computational
accuracy. Particle swarm optimization and differential eval-
uation are used to identify the optimum attributes. Serially
fusing faultless feature vectors results in a single-fused fea-
ture vector. On this fused vector, PCA is used to get the best
feature vector. The ongoing evaluation of multiple cancer
classifiers makes use of this updated feature vector. The
method increased medium neural network prediction time by
25.5x while boosting accuracy by 94.4%.

The authors’ [26] generative adversarial model uses unre-
lated cancer data to identify the target to enhance classifica-
tion performance for classifying cancer. They further stabilize
model training and improve the samples’ caliber by using
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the reconstruction loss. According to experimental results,
our data are classified more accurately than data produced
by GAN because the model’s mean absolute error for the
cancer gene is 19.3% lower than DC-GAN’s. Our model’s
classification accuracy is 92.6%, which is 7.6% higher than
the model’s accuracy when no produced data is used. Mixed
ensemble learning is used in the prediction analysis to clas-
sify breast cancer. Blended ensemble model [27] base learn-
ers. Ensemble Learning performs 98.14% better than simple
learning. This work presents [28] amelanoma classifier based
on DCNN. DCNN layers extract low- to high-level skin char-
acteristics in a distinctive way. A lightweight, simpler DCNN
will more accurately classify melanoma skin cancer than it
is by present techniques. Dermoscopic carcinoma images
from the International Skin Imaging Collaboration data stores
were used in this investigation. On the ISIC 2016, 2017, and
2020 datasets, the proposed DCNN classifier outperforms
cutting-edge networks with accuracies of 81.41%, 88.23%,
and 90.42%.

Now that we have established that, let’s briefly discuss the
approach that was taken in this research. This will be covered
in more detail in the methodology section that is presented
after.

III. EXPERIMENTATION ENVIRONMENT
Weuse the libraries Keras, Tensorflow, andOpenCV 2 to sim-
ulate the image datasets. In order to conduct our experiment,
we utilized Google Colab. The language that was utilized
was Python. Where 11.4 was the version of CUDA, and
470.82.01 was the version of the Nvidia-semi driver. In addi-
tion to it, we employ a Tesla P100-PCIE GPU. Furthermore,
we used Pandas for data analysis and NumPy for numerical
calculations.

IV. METHODOLOGY
This study was completed by carrying out the nine primary
sections. The specifics of the dataset’s description are pre-
sented and discussed in part of the ‘‘Data Collection’’ section.
In addition to that, the data set’s origin has been dissected in a
detailed manner. In the section titled ‘‘Data Preprocessing,’’
the overall image quality of the dataset has been enhanced
using a variety of image preparation methods. The dataset
has been divided into a train set and a test set in the section
titled ‘‘Train Test Split’’ to run the experiment on both of
them. In addition, in the ‘Data Augmentation’ section, data
augmentation has been carried out to reduce the possibility
of the model overfitting. This resulted in a considerable rise
in the overall number of images inside the collection. Within
the ‘Applied Model’ section, there are a total of six distinct
models that have been used to analyze the dataset. The model
with the best overall performance was chosen after evaluating
all of themodels in the ‘‘Select BestModel’’ section and pick-
ing the one that performed the best overall. After that, in the
area labeled ‘‘ProposeModel,’’ a model called PoxNet22 was
proposed by fine-tuning the model that performed the best,
which was known as ‘‘InceptionV3.’’ The ‘Result Analysis’

section has then gone on to discuss the performances of the
PoxNet22 model. Here, a quick description of the model
ablution study and the impact of data augmentation on the
model is given. Finally, to classify monkeypox using artificial
intelligence, the results of PoxNet22 have been evaluated and
contrasted with those of previously published work. Figure 1
shows the procedure flow diagram for this study.

Now the working process of this study is being initiated by
the dataset section to discuss the attributes of the dataset in
the following manner.

V. DATASET
In this study, a total of 3,192 images from the Kaggle
‘‘Monkeypox Skin Lesion Dataset (MSLD)’’ [15] are evalu-
ated. MSLD image dataset has 3 folders. The ‘‘Augmented
Images’’ folder has been employed to evaluate this study.
Considering how rapidly monkeypox spreads, early detection
is essential. However, confirmatory Polymerase Chain Reac-
tion (PCR) tests and other biochemical diagnostics are not
widely available in considerable quantities. Therefore, to cre-
ate the MSLD, images from various web-scraping sources,
including news portals, websites, and publicly available case
reports, are gathered and analyzed. To differentiate monkey-
pox patients from associated non-monkeypox cases was the
major goal of the ‘‘Monkeypox Imaging Lesion Dataset.’’
In addition to the ‘‘Monkeypox’’ class, the ‘‘Others’’ class
was used to perform binary classification on photos of chick-
enpox and measles skin lesions because of their similarity to
the rash and pustules of monkeypox in their early stages. The
categories ‘‘Monkeypox’’ and ‘‘Others’’ include 1428 and
1764 photos, respectively. The description of the dataset is
presented in Table 1.
Due to the fact that the dataset is not yet in its final state

for the simulation, it is necessary to carry out a few data
preparation methods to make the dataset more compatible
with the models outlined below.

VI. DATA PREPROCESSING
During the preprocessing stage of the data, various methods
were utilized, such as low-contrast pictures, contrast stretch-
ing, histogram equalization, and adaptive equalization. The
dataset is divided into two categories, ‘‘monkeypox’’ and
‘‘others’’ as mentioned earlier. As a result, the data prepa-
ration procedure was applied to each class individually. The
contexts in which there is a low contrast between the image
and the background make it more difficult for models to
decide whether image borders are clear. In order to increase
the range of intensity values that the images can include,
contrast stretching was applied to the images. Histogram
equalization was then performed, which ultimately led to
the most frequent intensity values being distributed in a
manner that was consistent throughout the grid. In addition
to this, adaptive equalization helps to improve the contrast
in the surrounding area, and that is the benefit of using it.
Figure 2 illustrates (a) the preprocessing data result of the
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FIGURE 1. The Working flow Chart of This Study. Nine core sections completed this study. Where the component
of ‘‘Data Collection’’ discusses the dataset’s description. ‘‘Data Preprocessing’’ uses several image preprocessing
methods to increase dataset image quality. The dataset has been split into a train set and a test set under the
‘‘Train Test Split’’ section to experiment on both sets. In the ‘‘Data Augmentation’’ phase, data was augmented to
reduce model overfitting. Boosting the collection’s image count. Six dataset-analyzing models are listed in the
‘‘Applied Model’’ section. After reviewing all models in the ‘‘Select Best Model’’ section, the best overall model
was chosen. In the ‘‘Propose Model’’ section, the best model, ‘‘InceptionV3,’’ was fine-tuned to create PoxNet22.
’The ‘‘Result Analysis’’ section then discussed PoxNet22 model performance. The model’s ablution study and
data augmentation effects were briefly detailed here. Finally, PoxNet22 results were compared to prior work to
classify monkeypox using artificial intelligence.

TABLE 1. Dataset description.

‘‘Monkeypox’’ class and (b) the preprocessing data result of
the ‘‘Others’’ class.

The dataset is now ready to be placed to use in simulation
as a result of the data preprocessing operation having been

carried out and successfully finished. The dataset was origi-
nally split into a train set and a test set before the simulation
began using the method that will be covered in more detail in
the following section.

VII. TRAIN TEST SPLIT
A train set and a test set were created from the dataset through
processing, and they have split apart during the train-test split.
Eighty percent of the photographs in the training set were
chosen at random, while only twenty percent of the images in
the testing set were used. As a result, whereas the test set only
has 639 total images, the train set has a total of 2553 images.
Table 2 provides a summary of the train test split dataset’s
description.
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FIGURE 2. Illustrates (a) the preprocessing data result of the ‘‘Monkeypox’’ class; and (b) the preprocessing data result of the ‘‘Others’’ class.
The first demonstrates a low-contrast image, the second demonstrates contrast stretching, the third demonstrates histogram equalization, and
the fourth and final demonstrates adaptive equalization, each displaying the pixel intensity and number of pixels, and fraction of total
intensity that corresponds to it.

The full dataset includes a total of 3,192 images when it
is taken into consideration, which is not nearly enough to
make the model extremely precise and obtain the result that
was supposed to be accomplished. As a direct result of this,
the augmentation of the data that will be the focus of the
discussion in the following part has been carried out.

VIII. DATA AUGMENTATION
To ensure that the training dataset contained correct data
and information, throughout the whole data augmentation
procedure, the rescaled value was kept at 1./255. After that,
the rotation’s range was modified to 20, which allowed
the images to be turned between 0 and 20 degrees in
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TABLE 2. Train test split dataset description.

any direction. After this one, the zoom range was increased
to 0.2 so that it would allow for a 20% in/out zoom. It was
performed in preparation for the next one. It was then carried
out to facilitate the adjustment at a later time. Additionally,
the shear range was adjusted to 0.2 so that a total of 20%
could share the image. This was applied so that the image
would be more flexible. In addition, the image means for
the entire dataset was altered to be equal to 0 by setting
the value of the feature-wise center parameter to True. This
has been performed to conclude the transformation. After
completing this stage of the process, the value for the feature-
wise std normalization option was opted to be True. Because
of this, the inputs were able to be divided according to the
dataset’s standard deviation. After that, the width and height
shift ranges were both set to 0 to move the image along
the X and Y axes by 0% and 0%, respectively. It was also
executed to ensure that the image can be featured using the
specified dimensions. During this time, the configuration for
the vertical flip was adjusted to ‘‘False.’’ In addition to that,
the ‘‘nearest’’ setting was set as the one to utilize for the fill
mode. Last but not least, the rescaled value for the test dataset
was set to 1./255. An overview of the data augmentation
description can be seen in Table 3.

TABLE 3. Summarized data augmentation description.

Figure 3 illustrates (a) the data augmentation result of the
‘‘Monkeypox’’ class and (b) the data augmentation result of
the ‘‘Others’’ class, where some augmentation approaches are
taken into consideration.

The training dataset was expanded, increasing the number
of images from 2553 to 3071. Moreover, the test dataset’s
image count rose from 639 to 1157. Overall, there are cur-
rently 4,228 images in total. Therefore, the dataset is prepared
to be used in the simulation.

IX. APPLIED MODELS
In the process of this study, a total of six differentmodels were
used at various points. DenseNet201, InceptionResNetV2,
EfficientNetB7, InceptionV3, ResNet50, and VGG16 are the
names of thesemodels respectively. To apply all of themodels
to our dataset utilizing the method that is outlined further
down below, the following procedures need to be carried out.

A. DenseNet201
There are 201 layers in the ‘‘DenseNet-201,’’ a convolutional
neural network [29]. A modern pre-trained DenseNet201
neural network categorized the dataset into ‘‘Monkey-
pox’’ and ‘‘Others’’ in this investigation. Transfer learning
extracted features from DenseNet201 after adding two lay-
ers. GlobalAveragePooling2D and Dense were optimized for
performance. Two loss matrices corrected dataset inconsis-
tencies. The binary focal loss and the binary cross entropy
are the two matrices exhibiting these. Table 4 and Table 5
give brief explanations of the fine-tuning of the parameters
for binary cross entropy and binary focal loss, respectively.
These explanations are presented in the tables.

In the beginning, as can be seen in Table 4, For the
DenseNet201 model, binary cross-entropy was chosen as the
loss function. The learning rate was set to 0.001, and Adam
chose to act as the optimizer. Epochs were set to ten. The
loss function for the DenseNet201 model was then once
more changed in accordance with Table 5 to BinaryFocalLoss
with gamma 2.0, the optimizer Adam, and the learning rate
0.001. Epochs had a value of 10. Figures 4(a) and (b) show,
respectively, the model’s performance using the binary cross
entropy loss function and the binaryFocalLoss loss function.

Figure 4 illustrates the model’s performance, with the color
red showing the model’s losses. The extent to which a line in
the graph is colored green can also indicate how accurate the
model is. In addition to that, the color blue is shown to be able
to represent the degree of precision that the model possesses.
In addition, the recall of the model is represented by the color
cyan. It is obvious that the performance of the binary focal
loss function is superior to that of the binary cross entropy
loss functionwhen compared to the performance of the binary
cross entropy loss function. This is demonstrated by the fact
that. This is due to the inherently imbalanced character of the
dataset.

B. InceptionResNetV2
A convolutional neural network known as InceptionRes-
NetV2 was trained using more than a million photos from
the ImageNet collection, and it was then used to classify
images [30]. The network, which consists of 164 layers,
can categorize photos into 1000 different types of things.
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FIGURE 3. Illustrates (a) the data augmentation result of the ‘‘Monkeypox’’ class; and (b) the data augmentation result of the ‘‘Others’’ class.

TABLE 4. Summarized fine-tuned parameters description of
DenseNet201’s binary cross entropy.

In Tables 6 and Table 7, respectively, the settings for binary
cross entropy and binary focal loss are adjusted. The tables
that follow offer further information and specifics about these
adjustments.

Table 6’s information demonstrates that the loss function
for the InceptionResNetV2 model was binary cross-entropy.

TABLE 5. Summarized fine-tuned parameters description of
DenseNet201’s binary focal loss.

Adam was given the optimizer role, and the learning rate
was changed to 0.001. The epochs were represented by the
number 10. After that, the InceptionResNetV2 model’s loss
function was changed to BinaryFocalLoss with gamma 2.0,

VOLUME 11, 2023 24061



F. Yasmin et al.: PoxNet22: A Fine-Tuned Model for the Classification of Monkeypox Disease

FIGURE 4. The performance of the model DenseNet201 makes use of (a) the binary_crossentropy loss function and (b) the BinaryFocalLoss loss
function.

TABLE 6. Summarized fine-tuned parameters description of
InceptionResNetV2’s binary cross entropy.

With Adam serving as the optimizer and a 0.001 learning
rate. According to Table 7, this was carried out. The epoch
was determined to be 10. Figures 5(a) and (b) show how well
themodel performswhen employing the binary cross-entropy
loss function and the binary focal loss. Both of these loss
functions were considered by the model.

TABLE 7. Summarized fine-tuned parameters description of
InceptionResNetV2’s binary focal loss.

The performance of the model is shown in Figure 5, and
the red color denotes the losses the model endured. It also
uses the extent of a line’s green coloring as a measure of
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FIGURE 5. The performance of the model InceptionResNetV2 makes use of (a) the binary_crossentropy loss function and (b) the BinaryFocalLoss loss
function.

the model’s accuracy. Also demonstrated is the ability of the
color blue to convey the level of precision that the model
provides. Aside from that, the blue color represents the recall.
The binary focal loss function’s performance is greater than
the binary cross entropy loss function when compared to each
other. Given that, this is shown to be true. This results from
the dataset’s characteristic imbalance.

C. EfficientNetB7
EfficientNet is a technique for the building and scaling
of convolutional neural networks [31]. This study’s dataset
was split into two categories, ‘‘Monkeypox’’ and ‘‘Others,’’
using a modern pre-trained version of the EfficientNetB7

TABLE 8. Summarized fine-tuned parameters description of
EfficientNetB7’s binary cross entropy.

neural network. In Tables 8 and Table 9, respectively, the
settings for binary cross entropy and binary focal loss are
adjusted. The tables that follow include further information
and specifics about these adjustments.

VOLUME 11, 2023 24063



F. Yasmin et al.: PoxNet22: A Fine-Tuned Model for the Classification of Monkeypox Disease

FIGURE 6. The performance of the model EfficientNetB7 makes use of (a) the binary_crossentropy loss function and (b) the BinaryFocalLoss loss
function.

TABLE 9. Summarized fine-tuned parameters description of
EfficientNetB7’s binary focal loss.

Table 8’s information demonstrates that the loss func-
tion for the EfficientNetB7 model was binary cross-entropy.
The learning rate was lowered to 0.001 and Adam was

given the optimizer job. The epochs were represented by the
number 10. The EfficientNetB7 model was then modified to
include the BinaryFocalLoss loss function with gamma 2.0,
Adam as the optimizer, and a learning rate of 0.001. Table 9
indicates that this was done. It was found that 10 was the
epoch. Themodel performs well when using the binary cross-
entropy loss function and the binary focal loss, as shown in
Figures 6(a) and (b).
The model’s performance is shown in Figure 6, and the

red color indicates the losses of the model. The level of a
line’s green coloring is used to indicate the model’s accuracy.
The color blue expresses the precision level produced by the
model is also illustrated. In addition, the recall is represented
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FIGURE 7. The performance of the model InceptionV3 makes use of (a) the binary_crossentropy loss function and (b) the
BinaryFocalLoss loss function.

by the color cyan. The comparisons show that the binary
cross entropy loss function outperforms the binary focal loss
function. This is a result of the dataset’s typical imbalance.

D. InceptionV3
Convolutional neural networks serve as the basic building
block for the deep learning model InceptionV3, which is
used to classify images. This model relies significantly on
deep learning [32]. This study’s dataset was divided into two
categories: ‘‘Monkeypox’’ and ‘‘Others,’’ using a contempo-
rary pre-trained version of the InceptionV3 neural network.
The transfer learning technique was used to turn it into a
feature extractor, and after that, two additional layers were
added to InceptionV3 to improve it. To achieve the best
level of performance feasible, changes have been made to
the GlobalAveragePooling2D layer and the Dense layer’s
parameters. Two different loss matrices were used in the

analytical procedure to account for the inconsistency that was
found in the dataset. The two matrices that display these
two matrices are the binary focal loss and the binary cross
entropy. Brief explanations of the parameters’ fine-tuning for
binary cross entropy and binary focal loss are provided in
Tables 10 and 11, respectively.

TABLE 10. Summarized fine-tuned parameters description of
InceptionV3’s binary cross entropy.

The loss function for the InceptionV3 model was initially
set to binary cross-entropy, as can be shown in Table 10.
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TABLE 11. Summarized fine-tuned parameters description of
InceptionV3’s binary focal loss.

Adam was chosen to take on the role of the optimizer with a
learning rate of 0.001. Epochs were configured to 10. There-
after, in accordance with Table 11, the loss function for the
InceptionV3 model was once more adjusted to BinaryFocal-
Loss with gamma 2.0, the optimizer Adam, and the learning
rate 0.001. The value of an epoch was 10. The performance
of the model while applying the binary cross-entropy loss
function and the binaryFocalLoss loss function is shown in
Figures 7(a) and (b), respectively.
Figure 7 shows the model’s performance, with the color

red representing the losses of the model. The accuracy of the
model is determined by the degree to which a line in the graph
is tinted green. The level of precision of the model is also
shown to be represented by the color blue. Also, the model’s
recall, which cyan stands for. If the performance of the binary
cross entropy loss function is compared to the performance
of the binary focal loss function, the binary cross entropy
loss function performs worse. This occurs as a result of the
dataset’s intrinsic imbalance.

E. ResNet50
The Resnet50 model, which makes use of deep learning, has
already undergone training. There are a total of 50 layers in
this convolutional neural network. The pre-trained network
can classify images into a thousand different object cate-
gories [33]. Brief descriptions of the parameters for binary
cross entropy and binary focal loss are given in Tables 12 and
Table 13. The tables that follow provide further details and
other information about these changes.

TABLE 12. Summarized fine-tuned parameters description of Resnet50’s
binary cross entropy.

Table 12’s data reveals that the loss function for the
ResNet50 model was binary cross-entropy. The optimizer job
was given to Adam, and the learning rate was set to 0.001.
The number 10 remained there throughout the ages. After
that, Adam was used as the optimizer with a learning rate
of 0.001 and BinaryFocalLoss with gamma 2.0 as the loss
function for the ResNet50 model. Table 13 demonstrates that

TABLE 13. Summarized fine-tuned parameters description of Resnet50’s
binary focal loss.

TABLE 14. Summarized fine-tuned parameters description of VGG16’s
binary cross entropy.

TABLE 15. Summarized fine-tuned parameters description of VGG16’s
binary focal loss.

10 was selected as the epoch. Figures 8(a) and (b) show,
respectively, how well the model performs when applied to
the binary cross-entropy loss function and the binary focal
loss. Themodel took both of these loss functions into account.

Figure 8 displays themodel’s performance, and red denotes
the model’s losses. The level of a line’s green coloring is an
indicator of the model’s accuracy. Blue is used to show the
level of precision that the model has achieved. In addition, the
color cyan stands in for the recall. The binary cross entropy
loss function works better than the binary focal loss function,
as comparisons show. This is due to the usual imbalance in
the dataset.

F. VGG16
A convolutional neural network with 16 layers is called
VGG16. Transfer learning makes this straightforward to
implement this technique [34]. The settings for binary cross
entropy and binary focal loss are changed in Tables 14 and
Table 15, respectively. The tables that follow provide further
details and additional information about these revisions.

Table 14’s data reveals that the VGG16 model’s initial loss
function was binary cross-entropy. Adam was designated as
the optimizer, and the learning rate was set to 0.001. The
epochs were set by the number 10. The BinaryFocalLoss
loss function with gamma 2.0, Adam as the optimizer, and a
learning rate of 0.001 were then added to the VGG16 model.
The epoch was determined to be 10 as shown in Table 15.
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FIGURE 8. The performance of the model ResNet50 makes use of (a) the binary_crossentropy loss function and (b) the BinaryFocalLoss loss
function.

According to Figures 9 (a) and (b), the model works well
when the binary cross-entropy loss function and binary focal
loss are used.

Figure 9 displays themodel’s performance, and red denotes
the model’s losses. The degree of a line’s green coloring
serves as a measure of the model’s precision. Additionally,
an illustration using the color blue to represent the model’s
level of precision is provided. In addition, the color cyan
appears in the recall. The binary cross entropy loss function
works better than the binary focal loss function, as shown by
comparisons.

The effectiveness of those six models is going to be eval-
uated at this point to determine which one is the best. The
four different matrices used to evaluate the effectiveness
of those models are accuracy, precision, recall, and loss.

Additionally, the model’s execution time will be taken into
account.

X. PERFORMANCE MATRICES
This study uses three widely used performance metrics: Pre-
cision, Recall, and Accuracy (1-3).

P =
TP

TP+ FP
(1)

R =
TP

TP+ FN
(2)

A =
TP+ TN

TP+ TN + FP+ FN
(3)

where, respectively, TP, TN, FP, FN, and FPFN stand for
true positive, true negative, false positive, and false negative.
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FIGURE 9. The performance of the model VGG16 makes use of (a) the binary_crossentropy loss function and (b) the BinaryFocalLoss loss function.

Similar to P, R, and A, P, R, and A, respectively, stand for
Precision, Recall, and Accuracy [41].

XI. MODEL SELECTION

With the loss matrix set to the binary cross entropy, the
DenseNet201 model’s performance matrices achieved 92%
accuracy, 92% precision, 93% recall, and 19% loss. And the
model’s execution took 7 minutes and 14 seconds. Addi-
tionally, 96% accuracy, 95% precision, 98% recall, and 9%
loss were attained by the InceptionResNetV2 model. Also,
it took 8 minutes and 49 seconds to execute the model.

The EfficientNetB7 model achieved 94% accuracy, 94% pre-
cision, 96% recall, and 15% loss. The model’s execution
took 9 minutes and 45 seconds. The InceptionV3 model also
achieved 99% accuracy, 99% precision, 98% recall, and 7%
loss. The model’s execution also took 6 minutes and 41 sec-
onds. The ResNet50 model additionally achieved 83% accu-
racy, 81% precision, 89% recall, and 40% loss. The execution
of the model took 8 minutes and 23 seconds. Lastly, The
VGG16 model obtained 55% accuracy, 55% precision, 100%
recall, and 68% loss. The model’s execution took 6 minutes
and 50 seconds. The summarized performance description of
all six models is shown in Table 16.
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TABLE 16. Summarized performance description of all models with loss
matrix ‘binary cross entropy’.

With the loss matrix set to the binary-focused loss, the
performance matrices of the DenseNet201 model once more
yielded 96% accuracy, 96% precision, 97% recall, and 4%
loss. It took 7 minutes and 17 seconds to run the model. Also
achieving 96% accuracy, 95% precision, 97% recall, and 2%
loss was the InceptionResNetV2 model. Also, the execution
of the model took 8 minutes and 13 seconds. The Efficient-
NetB7 model obtained 95% accuracy, 96% precision, 97%
recall, and 5% loss. Themodel’s execution took 9minutes and
44 seconds. Additionally, the InceptionV3 model obtained
99% accuracy, 99% precision, 99% recall, and 0.3% loss. The
model’s execution also took 6 minutes and 40 seconds. The
ResNet50 model also achieved 91% accuracy, 90% precision,
93% recall, and 7% loss. The model execution took 7 min-
utes and 2 seconds. Lastly, 55% accuracy, 55% precision,
100% recall, and 17% loss were attained with the VGG16
model. It took 6 minutes and 48 seconds to run the model.
Table 17 displays a summary of each model’s performance
description.

TABLE 17. Summarized performance description of all models with loss
matrix ‘binary focal loss’.

According to Table 16 and Table 17, the InceptionV3
model outperforms the other six models, according to the
comparison of the loss matrix’s Binary Cross Entropy and
Binary Focal Loss metrics. And when compared to these two
loss matrices, Binary Cross Entropy and Binary Focal Loss,
the performance of Binary Focal Loss are far superior. As a
result, this work aims to develop a model by improving the
InceptionV3 model’s parameters.

XII. PROPOSED MODEL
The model that is being proposed in this research PoxNet22
is a fine-tuned version of the InceptionV3 model. Where The
strategy of transfer learning was applied to turn it into a
feature extractor, and after that, two additional layers were
added to the model to improve it. Ultimately, the model was
successful in performing its new function. Both the Global-
AveragePooling2D layer and the Dense layer’s settings have
been modified to achieve the maximum level of technically
attainable performance. This has been done to accomplish the
goal of achieving the highest level of performance. Figure 10
presents the model’s underlying architectural framework.

As can be seen in figure 10, there are a total of six blocks,
each of which is represented by a dotted rectangle. The first
block comes after the input layer and includes a conv2D layer,
a batch normalization layer, and an activation layer. The other
block, which comes before the maxpooling2D layer, consists
of one additional conv2D layer, batch normalization layer,
and activation layer. This block comes before the maxpool-
ing2D layer. In general, the max operation is used to pool sets
of features in Max pooling, which results in fewer of those
features remaining after the process. As a result, the model
employs a max-pooling layer to reduce overfit. The line with
dots indicates that there are three more blocks consisting of
the same layers in between these two blocks. These blocks
can be found between these two blocks.

Following that, a total of four further blocks are produced
by the maxpooling2D layer. One layer for converting 2D to
1D, one for batch normalization, and one for activation make
up a single block. Three levels of batch normalization, three
layers of conv2D, and three layers of activation make up
another block. Two conv2D layers, two batch normalization
layers, and two activation layers are part of another block.
Another one has a batch normalization layer, an average
pooling 2D layer, a conv2D layer, and an activation layer. The
average value for various feature map portions was calculated
using the average pooling 2D layer to create a down-sampled
feature map. The mixed0 layer is created by concatenating
the output of these four blocks. Between the mixed0 layer
and the mixed10 layer, nine additional blocks are identical to
the previously mentioned ones. The dot-filled line serves as a
visual cue to this.

Last but not least, to reduce the overall number of param-
eters in the model and avoid overfitting, one global average
pooling layer has been inserted between the mixed10 layer
and the output layer itself. There are 21,804,833 parameters in
themodel as a whole. In this case, the trainable parameters are
21,770,401, whereas the non-trainable parameters are 34,432.

The model is now in a state where it can effectively run the
experiment. The following is a description of the next stage,
which can be found in the result analysis section.

XIII. RESULT ANALYSIS
To extract the best possible performance level from the
PoxNet22model, the essential ablution study has been carried
out on the dataset collected in the manner detailed below.
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FIGURE 10. The architecture of the proposed model PoxNet22. Where the input layer is denoted by orange color, the convolution 2D layer is
denoted by bottle green color, batch normalization is denoted by ash color, activation is denoted by purple color, max pooling 2D layer is
denoted by green color, concatenate layer is denoted by blue color, global average pooling 2D layer is denoted by magenta color and dense
layer the output layer is denoted red color.

A. ABLUTION STUDY
Both an SGD optimizer (also known as stochastic gradient
descent) and an ADAMoptimizer were utilized in the process
of this study. There have been numerous shifts in the learning
rate for both the values of 0.001 and 0.0001. In addition to
that, the values 2.0 and 0.22 have been utilized for the gamma
parameter. The number of epochs has been concurrently set
to the values of 10 and 20 and 30. As a result, the model
was executed twenty-four times using a variety of parameter

combinations. In table 18, there can find a summary of the
ablution study that was done with the PoxNet22 model.

According to the information presented in Table 18, the
optimizer SGD epochs were 20 when the learning rate was
0.001, and the gamma value was 0.22. The SGD optimizer
was able to get the best performance by these parameter
attributes. On the other hand, when the learning rate was
0.0001, the gamma value was 0.22, and the number of epochs
was 30 for the optimizer ADAM. And the ADAM optimizer
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TABLE 18. The summarized description of ablution study of the Poxnet22 model.

attained the best performance by these parameter attributes.
Figures 11 and 12 depict the ideal results that the PoxNet22
model produced for the SGD optimizer and the ADAM opti-
mizer, respectively.

As shown in figure 11 and figure 12, the performance
of the PoxNet22 model achieved a recall rate of 99%, 99%
accuracy, and 0.01% loss. It also achieved 99% precision.
Which requires a total of 13 minutes and 4 seconds to carry
out. Besides that, the performance of the model achieved a
recall rate of 100 %, an accuracy of 100 %, a precision of
100 %, and a loss of 0%. This requires a total of 19 minutes

and 40 seconds to carry out. The PoxNet22 has performed
outstandingly with the ADAM optimizer compared to the
SGD optimizer. Therefore, ADAM has been selected as the
final optimizer for the PoxNet22 model. And learning rate
is determined to be 0.0001. In addition to that, the gamma
value determines 0.22. And it is determined that 30 epochs
are necessary for the model to operate at its best.

The dataset has now been subjected to the PoxNet22
model, both with and without augmentation, in order to com-
pare the outcomes. This can justify the significance of data
augmentation by stating the following.

VOLUME 11, 2023 24071



F. Yasmin et al.: PoxNet22: A Fine-Tuned Model for the Classification of Monkeypox Disease

FIGURE 11. The optimal performance of the PoxNet22 with SGD optimizer.

FIGURE 12. The optimal performance of the PoxNet22 with ADAM optimizer.

TABLE 19. The summarized description of the PoxNet22 model’s performance with and without data augmentation.

B. THE BENEFIT OF DATA AUGMENTATION
The data set does not have sufficient images, as was men-
tioned before in the section on data augmentation. As a result,
data augmentation was carried out to reduce the possibility of
the model overfitting issue occurring.

The PoxNet22 model without any data augmentation,
using the optimizer ADAM, learning rate 0.0001, gamma
value 0.22, and number of epochs 30. The accuracy of the
model was 97%, its precision was also 97%, its recall was
98%, and its loss was 4%. Which must be carried out in a
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FIGURE 13. The optimal performance of the PoxNet22 with fine-tuned parameters.

TABLE 20. The summarized comparison of the PoxNet22 model’s performance with the state of the arts.

total of 20 minutes and 50 seconds. Since, after having its
data enhanced, the model was able to achieve 100% accuracy,
100% precision, 100% recall, and 0% loss. The parameter
settings in this instance were unchanged from the previous
ones. An overview of the PoxNet22 model’s performance
with and without the data augmentation described in table 19
is provided below.

Compared to the performance of the model without data
augmentation, it is abundantly clear that the performance of
the PoxNet22 model is much improved when provided with
augmented data.

XIV. DISCUSSION
The optimizer for the PoxNet22 model used 20 SGD epochs,
0.001 learning rate, and 0.22 gamma as its parameters. This
parameter contributes to the optimal performance of the
SGD optimizer. The optimizer ADAM had 30 epochs under
its belt with a gamma value of 0.22 at a learning rate of

0.0001. The ADAM optimizer functioned more effectively
because of these parameter properties. PoxNet22 has a 99%
recall rate, a 99% accuracy rating, and a 0.01% loss rate.
It was correct 99% of the time. All told, there are 13 min-
utes and 4 seconds. In addition, the model exhibits perfect
recall, accuracy, precision, and loss. It takes 19 minutes and
40 seconds for this. Performance-wise, the ADAM optimizer
in PoxNet22 outperformed the SGD optimizer. As a result,
ADAM serves as PoxNet22’s ultimate optimizer. The learn-
ing rate is 0.0001 percent. With a value of 0.22 for gamma
when run with 30 epochs, the model functions most effec-
tively. The optimal performance of the PoxNet22 with fine-
tuned parameters have shown in figure 13.

Figure 13 provides a detailed illustration of how the
parameters have been adjusted to get the greatest possible
performance. Where the color blue stands for a particular
parameter such as the learning rate. The color orange is
used to symbolize gamma. Epochs are denoted by shades of
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ash. In addition, the color navy blue is used in performance
matrices to denote accuracy. The color light blue denotes
preciseness. The color neon blue denotes recall.

XV. COMPARING WITH EXITING WORK
Combining the Al-Biruni Earth radius optimization and sine
cosine methods, Abdelhamid et al. [13] devised the SCBER
optimization algorithm. The algorithms are evaluated using a
public dataset. where categorization accuracy was on aver-
age 98.8%. To identify monkeypox using a public dataset,
Sitaula et al. [14] suggested an ensemble technique (Xcep-
tion & DenseNet-169). They were 87.13 percent accurate.
Ali et al. [15] used pictures of measles, chickenpox, and mon-
keypox lesions from the ‘‘Monkeypox Skin Lesion Dataset
(MSLD)’’. Then, the monkeypox is categorized using trained
deep learning models like VGG-16, ResNet50, and Incep-
tionV3. Three different models were built. Where the accu-
racy of the trio ensemble system is 79.26%, that of VGG16
is 81.48%, and that of ResNet50 is 82.96%. In contrast, the
PoxNet22 has been used to identify monkey pox illnesses
using the Monkeypox Skin Lesion Dataset (MSLD) [15]
data set. And outperform all of these state-of-the-art works
with 100 percent accuracy. The performance of the PoxNet22
model in comparison to the state of the art is reported in
Table 20.

XVI. CONCLUSION
In this study, the dataset comprising monkeypox skin lesions
was preprocessed, enhancing the photos’ quality. And also
executed the data augmentation procedure to lessen the prob-
ability of the model overfitting. Following that, we utilized
a total of six distinct models on the dataset. We compared
the results of those models to find the one that gave us the
greatest results. According to the performance matrices, the
PoxNet22 achieved the best possible performance, an accu-
racy value of 100%, a recall value of 100%, and a precision
value of 100%. We can speak to the astonishing accuracy
level employed in classifying monkeypox skin lesions. The
paradigm that is outlined in this study offers both something
new and something beneficial to clinical physicians. The lack
of availability of high-quality images of monkeypox skin
lesions as well as databases of greater sizes was the most
significant constraint of our work. However, to optimize a
model to its best potential, one must first have access to a
dataset of high quality. In the future, we are going to carry on
with our investigation into the existing issues.
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