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ABSTRACT As the scale of the power system continues to expand and the energy situation changes
dramatically, the existing automatic generation control (AGC) strategy needs to be optimized and improved.
The current grid AGC mainly adopts closed-loop PI control. By learning an excellent data set that
incorporates the characteristics of PI control and DFT control, this paper proposes a real-time AGC strategy
based on a deep forest network. The strategy selects the controller with better control performance in each
assessment period as the controller for the assessment cycle for power deviation regulation studies. The
simulation results show that the strategy can achieve real-time AGC regulation with a lower number of
actions and outperform any of the learned strategies.

INDEX TERMS Automatic generation control, deep learning, deep forest, control strategies.

I. INTRODUCTION
Power systems operate safely and stably by maintaining a
balance between power production and load demand. Due
to fluctuations in load demand, it is difficult to maintain the
relative balance between load and power generation, which
affects system frequency and operational safety. In order to
cope with the scarcity of fossil energy and the environmental
pollution crisis, countries around the world are vigorously
promoting the development of renewable energy represented
by wind power and photovoltaic, modern power systems
emphasize large-scale penetration of wind and photovoltaic,
affecting the provision of system services by conventional
power plants [1]. As intermittent new energy sources such as
wind and photovoltaic are connected to the grid on a large
scale, this leads to uncertainty in active power production,
and the volatility of their output affects the frequency stability
of the power system. Existing automatic power generation
control strategies therefore need to be studied in depth and
optimized and improved with a view of adapting to the needs
of the grid. Automatic generation control (AGC) of power
systems is used to regulate the system frequency to a set
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value, to keep the contact line power exchange value to a
planned value and to keep the overshoot and stabilization
time within acceptable limits [2]. The load frequency control
(LFC) strategy is the core function of automatic generation
control and serves to ensure the stability of the power system
and frequency [3]. Research methods for AGC systems are
divided into two major categories according to the control
method: one is the study of direct control of AGC and the
other is the optimization modelling method. In this regard,
many scholars have conducted relevant research.

In the study of direct control strategies for AGC, the
focus is on improving the classical proportional-integral (PI)
control strategy or optimizing the PI control parameters.
The literature [4] proposed a novel control design for
an LFC of a hydro-hydro interlinked system based on
joint actions of fuzzy logic with proportional-integral-
derivative (PID) effectively optimized through particle swarm
optimization (PSO) resulting in a Fuzzy-PSO-PID. The
literature [5] proposed a simultaneous coordination scheme
based on particle swarm optimization (PSO) along with real
coded genetic algorithm (RCGA) is suggested to coordinate
FLAGCs of the all areas. The literature [6] proposed a fuzzy-
assisted PID controller parameter tuning method based on a
combination of improved firefly optimization algorithm and
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pattern search technique (hIFA-PS) for frequency control of
a five-area power system. The gravity search technique was
designed in [7] to increase the reaction to a deviation in
frequency between multi-area power systems. A hybrid PID-
fuzzy controller for optimal automatic generation control
of a two-area interconnected power system was proposed
in the literature [8], and the controller parameters are
developed using the simulated annealing (SA) technique. The
literature [9] proposed the AGC with different renewable
resources and an improved cascade controller. A new hybrid
scheme based on the Improved Teaching Learning by
Optimizing Differential Evolution (hITLBO-DE) algorithm
applies to provide optimization of the controller parameters.
The literature [10] proposed a fuzzy predictive-proportional
integral derivative (FP-PID) controller approach for auto-
matic generation controller. The parameters of the FP-PID
controller were tuned using the grasshopper optimization
algorithm (GOA) with the time multiplied squared error
(ITSE) as the objective function.

In the modelling control strategy aspect, an AGC strategy
model based on modern interior point theory for intercon-
nected grids under control performance standard (CPS) was
proposed in [11]. The model takes the optimal CPS1 index as
the aim function, considers system constraints such as system
power balance constraints and unit regulation capacity, and
solves for an optimal set of AGC regulation commands,
and shows the practicality of the proposed model with
examples. In [12], the dynamic optimal scheduling model
for AGC units was proposed, and the constraints describing
the unit regulation characteristics in the model of [11] are
improved by introducing the constraint relationship between
the interconnection system frequency and the contact line
power. In [13], an optimal mileage method (OMD) based
AGC scheduling was proposed to optimize the allocation
of real-time overall AGC scheduling commands between
different AGC units, with the aim of minimizing the power
deviation between the scheduling commands and the actual
power regulation output. In [14], A novel random forest-
assisted fast distributed auction-based algorithm (FDAA)was
developed for coordinated control in large PV power plants
in response to the AGC signals. In [15], the article proposed
a novel framework based on proximal policy optimization
(PPO) reinforcement learning algorithm to optimize power
regulation among each AGC generator in advance. The
control strategy of the optimization modelling method suffers
from non-convergence of the model and poor timeliness
because of setting strict control conditions, which does not
easily enable real-time AGC and real-time response to area
control error. However, the actual load of the power system
changes at a fast rate and with large amplitude variations,
which is a typical non-stationary strongly stochastic process,
and the direct control strategy is a more suitable choice.

At the same time, domestic and international research
teams are working on the research and application of machine
learning in AGC. Machine learning can be divided into six
categories: empirical inductive learning, associative learning,

analogy learning, analytic learning, genetic learning, and
reinforcement learning, and deep learning is associative
learning. In [16], The literature proposed an integrated IoT
architecture for dealing with cyber-attacks based on devel-
oping deep neural networks (DNNs) and rectifying linear
units in order to provide reliable and secure onlinemonitoring
for automated guided vehicles (AGVs). The literature [17]
proposed a weight initialization method for neural network
with asymmetric activation function, which can improve the
performance of the network. The literature [18] proposed
an intelligent integration between a new IoT platform and
deep learning neural network (DNN) algorithms for online
monitoring of computer numerical control (CNC) machines.
The literature [19] proposed a deep reinforcement learning-
based control strategy for AGC, which mainly consists
of multiple neural networks to fit the behavioral policies
of the system for value assessment and improves the
efficiency and quality of AGC exploration and the control
performance of the system by introducing an improved
behavior-criticism method with incentive heuristics. In other
areas, the application of deep learning in power systems has
become rich. With the development of deep learning, the
transformation of active deep learning predictors to data-
driven [20], [21] has been largely completed. The rapid
development of data-driven approaches gives this paper a new
way of thinking about data-driven AGC strategy research.
In recent years, developing deep learning has showed superior
results over shallow models in tasks such as agricultural
biotechnology [22], facial recognition [23], and medical
diagnosis [24], [25]. Deep neural networks (DNNs) are the
foundation of deep learning, but they require large amounts of
data, complex model structures, excessive hyper-parameters
and strong computing equipment support. In this context,
Zhou and Feng [26] proposed a new decision tree integration
method, the deep forest algorithm. Deep forest (gcForest) is a
derivative of random forest deep learning, with faster training
speed and better parameter robustness.

For the above analysis of the twoAGC control methods, the
traditional PI control [27] and the discrete Fourier transform
(DFT)-based AGC real-time control strategy [28] in the
direct control strategy are selected as the two strategies
for deep forest network learning in this paper. When the
controlled data set is generated by offline control, PI control
is selected in scenarios with sharp deviation fluctuations in
area control error, and DFT control is selected in scenarios
with moderate deviation fluctuations, and the controller with
better performance is selected for each assessment period as
the controller for that period for power deviation regulation.
In summary, this paper proposes a deep forest algorithm-
based automatic power generation control strategy to improve
the AGC control strategy. The innovation of this paper is
reflected in the following aspects:

(1) Fusing the characteristics of different AGC strategies
to generate excellent control datasets: The deep learning
approach needs the support of sufficient data to select the
control strategy with better control performance to adjust
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the area control error in different assessment cycles, to give
full play to the performance of different control strategies
under their respective advantageous working conditions, and
to fuse the characteristics of both PI control and DFT control
strategies well to obtain excellent control datasets.

(2) A new perspective on deep learning: a deep forest
algorithm-based automatic generation control strategy is
proposed, which does not study the intrinsic mechanism
of automatic generation control, but is based on deep
learning methods, using massive area control error (ACE)
data training, directly build construct mapping relationships
between known inputs and total regulation commands, which
has better applicability in dealing with a variety of grid
operating conditions and solves the problem of complex AGC
modelling control methods and its non-convergence is solved.

(3) Deep forest strategy control process derived from
conventional AGC strategy: Simplifying the conventional
AGC process, the deep forest control strategy divides AGC
into two steps: determining whether the unit is acting and
calculating the exact total regional regulation power. A deep
learning model for AGC strategy is constructed using a triple
classification network and two regression networks, and a
deep forest-basedAGC real-time control strategy is proposed.

The paper is organized as follows. Section II introduces
the basic principles of AGC and gives the evaluation criteria
for AGC l performance. Section III presents the principles of
the deep forest algorithm. Section IV explains the generation
of the control dataset, the rationale for the selection of the
network feature covariates and clarifies the AGC process
based on deep forest. Finally, simulations are conducted in
Section V, and Section VI concludes the paper.

II. BASIC AGC CONTROL PRINCIPLES
A. AGC PRINCIPLE
Automatic generation control is a control technique used to
reduce losses and balance the total generated power with the
total load demand [29]. During conventional AGC control,
the regional grid dispatch center calculates the current power
imbalance in real time, i.e. the area control error ACE,
and reduces or eliminates the deviation by regulating the
frequency regulation units, which is calculated at certain
intervals with the following formula:

EACE = β1f + 1PT (1)

where β is the regional frequency deviation factor; 1f is the
frequency deviation; 1PT is the contact line exchange power
deviation.

AGC control is a closed-loop feedback control process, the
input variables are frequency deviation 1f and contact line
exchange power deviation 1PT and other signals generated
after ACE, according to a certain AGC control strategy to get
the Frequency regulated generator sets new power 1PG, and
then adjust the system frequency and contact line exchange
power deviation, the control process is described in Fig. 1:
A variety of factors can influence the AGC’s real-time

control process, such as power supply structure and load.

FIGURE 1. Description of AGC control process.

The volatility and intermittency of large-scale wind power
and photovoltaic connections to the grid increase the pressure
on system regulation, and loads with varying characteristics
fluctuate from time to time. Therefore, the traditional AGC
cannot meet the system requirements. Deep learning methods
apply to the field of automatic power generation control
strategies, using deep forest model learning to combine the
advantages of different control strategies, so that it can make
its own judgement to adopt the controller with better effect
for unit regulation under different operating conditions.

B. ASSESSMENT CRITERIA
For the control performance index of the AGC strategy,
since the 1960s, the North American Electric Reliability
Council (NERC) has adopted the A1/A2 standard as the
AGC performance evaluation index, and its control goal is
to ensure that the ACE crosses zero. However, this standard
has too many unnecessary adjustments and is not conducive
to inter-regional frequency support. The control performance
standard proposed by NERC overcomes the defects of the A
standard and is more scientific. The CPS standard relaxes
the requirement that ‘‘the ACE must cross zero within
10 minutes’’, which provides more space for the coordinated
control of AGC. The CPS standard includes CPS1 and CPS2
standards. CPS1 is used to count the relationship between
ACE variation and frequency deviation, and CPS2 is to count
the ACE amplitude change, which is used to evaluate the
ability of the control area to control the power flow deviation
of the tie line. The CPS standard pays more attention to
the long-term benefits of the AGC system, does not require
the area control error to cross zero frequently, reduces the
frequency of frequency regulation units, and the combination
of the regional frequency deviation coefficient and the control
limit is more scientific and reasonable.

CPS1 is a criterion for the relationship between the
amount of statistical ACE variation and frequency deviation
and should be less than a limit, focusing on assessing the
contribution of AGC to frequency control. The expression is
as follows:

KCPS1 = 2 −

∑
[EAVE−min1FAVE−min/(10Bi)] /n/ε21 (2)

where EAVE−minis the average value of the one-minute
ACE; 1FAVE−min is the average deviation of the one-
minute frequency; Biis the frequency response coefficient
(MW/0.1Hz) for control zone i; n is the total number of
minutes in the assessment period; ε1 is the root mean square
value of the one-minute average of the deviation of the actual
frequency from the standard frequency of the interconnected
grid during the one-year period.
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CPS2 is used to assess the ability of the control area to
control the tidal deviation of the contact line, i.e. the 10-
minute average of the ACE, which must be controlled to a
given limit value. Its indicator value is expressed as follows:

KCPS2 = |
1
N

∑N

t=1

(
10B1f t + 1PtT

)
|L10 (3)

L10 = 1.65ε10
√

(−10Bi) (−10Bs) (4)

where N is the assessment period, 1f t is the frequency
deviation, 1PtT is the tie-line power error, ε10 is the mean
square value of the average frequency based on 10 minutes
in a year and the standard frequency deviation, B is the
frequency coefficient of the control area, Bs is the frequency
deviation coefficient of the interconnected grid. According to
the actual situation of Guangxi grid, the CPS assessment is
qualified when 200% ≤Kcps1 or 100% ≤Kcps1 and |Kcps2| ≤

L10, where the average ACE limit L10 is taken as 100.

III. PRINCIPLE OF DEEP FOREST ALGORITHM
The rapid development of deep learning and deep neural
networks has given rise to a supervised machine integration
learning algorithm based on the random forest (RF) algo-
rithm, the deep forest algorithm. Deep forest is an integrated
method based on decision trees in depth and width. The
complete algorithm comprises two processes: multi-grained
scanning and cascade forest. The cascade forest is the core
part of the deep forest algorithm.

A. DECISION TREE
Decision Tree [30] is a common algorithm that uses a
tree structure to perform classification and regression tasks.
A decision tree comprises a hierarchy of nodes containing
sample attributes and branches containing test conditions for
the attributes, and involves three processes: feature selection,
decision tree generation and decision tree pruning. The aim
of decision tree learning is to produce a decision tree with
a high generalization capability. The decision tree algorithm
is a simple and fast non-parametric classification algorithm
with high recognition accuracy, but performance is difficult
to improve with more complex data.

B. RANDOM FOREST ALGORITHM
Breiman proposed the RF algorithm for classification and
regression [31]. Random forests include multiple decision
trees based on the integrated learning technique of Bag-
ging [32], after inputting the samples to be classified, the
final classification is decided by voting on the output of each
decision tree. The Random Forest algorithm does not require
any prior knowledge and learns the training classification
rules on a given sample to perform the classification.

C. CASCADE FOREST STRUCTURE
The model used in this paper is the latest Deep Forest
(DF21: A Practical Deep Forest for Tabular Datasets). DF21
is an implementation of DeepForest 2021.2.1 with a cascade

structure for its deep forest model. Each layer of the cascaded
forest comprises several different forest algorithms as base
learners, which are trained using the Stack strategy [33]. Each
layer in the cascade forest receives feature information from
the previous level and then generates new feature information
to the next level after learning. All layers except the first
level stitch the feature vectors output from the previous
level with the original input feature vectors to form a set
of vectors as the input of this level, so that the original
features can be maintained and new feature vectors can be
formed, which is a reinforcement of the original features
and avoids the loss of feature information. The ultimate
level is the evaluation level, where the generated category
vectors are averaged and then the category corresponding
to the maximum value is taken as the sample classification
result. To avoid the risk of over-fitting the model, k-fold
cross validation is used at each level of the training process,
where the training data is trained k-1 times, and k-1 category
vectors are generated and averaged, and the averaged values
are used as augmented feature vectors for the next level. The
Deep Forest algorithm automatically determines the number
of levels of the cascade forest and uses a validation set to test
performance whenever the number of training layers increase
and stops increasing the number of cascade layers if the
model accuracy performance no longer improves, unlike in
deep neural networks where the model complexity must be
set artificially.

Deep forest models use different forests per layer, a struc-
ture that increases the generalization and fault tolerance of the
model. Deep forest has an arbitrary number, type, and number
of forests, with the default parameters being a random forest
model and a completely random forest as the two forests
chosen for each layer. In a completely random forest, each
tree picks a random feature as a split node in the split tree and
grows until each leaf node is subdivided into only 1 category
or only 10 samples. Each tree in an ordinary random forest
selects sqrt (k) (k denotes the input feature dimension, i.e. the
number of features) candidate features by randomly selecting
them, and then filters the split nodes by the Gini index.

IV. AGC STRATEGY BASED ON DEEP FOREST MODEL
A. CONTROLLED DATASET GENERATION
The literature [27] used PI feedback regulation control
to design an AGC controller based on the area control
error in 1953. Traditional PI controller design is simple
and easy to adjust, but the dynamic performance is poor,
the change time is long, easy to cause transient frequency
oscillation, and the fixed coefficient PI control is difficult
to meet the control requirements. Under the condition
that the area control error fluctuates smoothly, because
of the influence of fixed parameters may cause a large
change value. The AGC real-time control strategy based on
discrete Fourier transform (DFT) in literature [28] converts
discrete power fluctuations from time domain to frequency
domain, classifies ACE according to different response times,
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eliminates load fluctuations belonging to the range of primary
frequency regulation and economic mobilization, only the
AGC units are called upon to regulate load fluctuations in
the medium frequency section, thus achieving refined control
with a lower number of actions to get better control effect and
qualification rate, to ensure the real-time control.

The original data came from a provincial grid after control
using the current AGC strategy. The existing ACE data was
first restored by using the PI control strategy principles and
the restored data was used as the controlled data to generate
the control data set. When generating the control dataset, the
DFT strategy can achieve fine control, order fewer times,
and regulate less, and have good economic benefits, as most
of them are normal working conditions with small power
deviation fluctuations, so the total regional regulation power
is calculated and generated by the DFT strategy in most of the
assessment cycles (10min). When the DFT strategy cannot
guarantee the CPS standard pass in this assessment period,
i.e., a small part of the harsh working conditions where the
power deviation fluctuates drastically, the PI control strategy
is used for fast regulation. When the DFT and PI control
strategies are unable to meet the control requirements in a
very small number of assessment cycles, a manual correction
method is used to calculate the total regulation power to
ensure the safe operation of the grid in the assessment
cycle. Each assessment cycle represents a different operating
environment. For each assessment cycle, a suitable controller
is selected to generate a total regulation command to form
a control data set, and a total regional regulation power
calculation is performed every 20 sampling points in the
generation of the data set.

B. SELECTION OF FEATURE PARAMETERS
In generating the data set required for network training, both
PI control and DFT control utilise four variables, frequency
deviation 1f , area control error ACE, CPS1 and CPS2, in the
step of calculating the total regulation power. The first two
variables reflect the actual operating state of the grid at the
time of sampling, while the second two variables reflect the
ACE-based calculations at the time of sampling and over the
preceding period. CPS does not require ACE to cross zero
frequently, reducing the frequency of unit adjustment, and
can be used as an indicator to determine whether the unit
is operating. These four categories of variables are therefore
chosen as the input feature quantities for the three deep forest
networks, but the output variables were different because
of the different network tasks. The output variables of the
classification network are the AGC unit state quantities,
with 1, -1 and 0 representing for increased power regulation,
decreased power regulation, no action respectively; the output
variables of the regression network are the positive and
negative regional total regulation power values.

Tree models do not require data normalisation, such
as decision trees, random forests, Boosting and Bagging
integrated learning models. The tree model is constructed
by finding the optimal splitting points to compose. The

TABLE 1. Parameter setting of deep forest.

numerical scaling of sample points does not affect the split
nodes and has no effect on the tree structure; the data does
not change before or after scaling.

C. MODEL CONSTRUCTION
The generated supervised learning dataset is divided into a
training set and a test set in the ratio of 7:3 to train the
network.

The obvious advantage of the deep forest algorithm is that
it does not require many hyper-parameters and the process
of adjusting parameters is simple, with excellent results got
for many tasks using default parameter values. The main
parameters involved in this paper are: the number of forests
in each cascade layer n_estimator, the number of trees in the
forest n_tree, the criterion, the maximum number of cascade
layers in the deep forest max_layers, the minimum number
of samples required at the leaf nodes min_samples_leaf, etc.
The above hyperparameters have been trained repeatedly to
get more reasonable values. The hyper-parameters settings
for the deep forest algorithm tested in this paper are shown
in TABLE 1.

D. AGC FLOW BASED ON DEEP FOREST MODEL
PI control and DFT control strategies are different in terms
of specific control methods, but there are commonalities in
the control process. First, the regulation power demand value
PR is calculated using the area control errorACE, and then the
regulation dead-band value is calculated.When the regulation
power demand value exceeds the upper limit of the dead-
band value, the order is made only during this control cycle,
otherwise no order is made. If an order is required during this
control cycle, the total regulation power of the area 1PGis
calculated according to the calculation rules of each control
strategy and then dispatched. The conventional AGC control
flow is shown in Fig. 3.

The idea of the DF-based AGC control strategy in this
paper is derived from the conventional AGC control process.
AGC control must first determine whether the unit performs
the commanded action in this control cycle and constructs
a three-category network in the deep forest network to
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FIGURE 2. Procedure of cascade forest.

FIGURE 3. AGC control flow.

determine whether the unit is in action. In the control strategy,
the non-action zone control threshold ε is set at 30 MW,
because the unit does not need to respond to fast random
load fluctuations, and if it responds to such load fluctuations,
the AGC unit will action more often, with frequent back-
and-forth adjustments will increase the mechanical loss of
the unit. Therefore, no command is given during this control
cycle when it is within the regulation dead-band. If it is
greater than the regulation dead-band, the command will be
given again.

If action is taken, in order to determine whether a positive
or negative unit action is to be performed, two regression
networks need to be constructed and used to calculate the
total regulation power values of the ordered AGC units in the
incremental and deceleration states. TheAGC control process
based on deep forest designed in this paper contains three
trained DF models, namely the state classification model and
the regression model of the total regulation power in the
acceleration and deceleration regions, and the control process
is shown in Fig. 4.

The specific steps are as follows:
The primary aim of region I is to determine whether the

unit acts by the state classification model. The acceleration
and deceleration time of the unit is limited to 40s, a control
calculation is performed at every 20 sampling points. The four
characteristic parameters 1f , area control error ACE, CPS1
and CPS2 at the moment of judgement are composed of raw
data according to the requirements of the input data of the
deep forest network and input to the state classification model
to judge the state of the AGC unit. The output of the state
classification network is the control state of the unit, i.e. 1
(increasing state), −1 (decreasing state) or 0 (constant state).
If the output is 0, then the AGC unit does not act and the
process ends; if the output is 1 or -1, then calculating the total
regulated power value PR in region II.

FIGURE 4. AGC control flow based on deep forest.

The major aim of region II is to calculate the total
regulated power value. Taking the output result of the state
classification network as 1 (incremental state), the original
sample input to the state classification network is input again
into the incremental regression model to get the regional total
regulation power prediction data. When |PR| < ε, no order
is made in this control cycle. When |PR| > ε, the unit is
controlled at increasing speed according to the predicted data.

V. SIMULATION ANALYSIS
In this paper, Anaconda 4.7 + PyCharm2021 is used as
the experimental platform. The deep forest model is trained
under the TensorFlow deep learning framework, and the latest
version of deep forest (DF21) released by Professor Zhou
Zhihua is used, and the machine learning tool functions in
the scikit-learn package are called to reduce the difficulty of
the experimental implementation.

A. EXPERIMENTAL DATA AND DATA ANALYSIS
In this paper, the experiment selects data from a provincial
power grid for five months from 6 to 8 and 10 to 11 of
2018, after restoration as the controlled data, with a sampling
interval of 2s per day and 43,200 sampling points per day. The
controlled data combine with the DFT control strategy and PI
control strategy, and the control strategy with the better effect
is selected as the controller to calculate the total regulation
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TABLE 2. Qualified points of each control method in december.

command in each control cycle to generate the final control
dataset, and the deep forest model is trained. The trained
model is validated with restored data from a provincial grid
in December 2018, and the control results are analyzed in
comparison with no regulation, PI control only, and DFT
control only. The proportional and integral coefficients of
PI control are set to 0.6 and 5 respectively according to
the ‘‘Guangxi Grid Automatic Generation Control (AGC)
Primary Fixing Sheet’’.

B. ANALYSIS OF EXPERIMENTAL RESULTS
Simulation experiment is conducted on the restored data of a
provincial grid for the first 30 days of December 2018, and
the results of unregulated control, PI control, DFT control,
and deep forest network control are shown in the table below.
The effect of AGC control is judged by the CPS criteria, and
the CPS1 and CPS2 criteria assess every ten minutes, with
144 assessment points set throughout the day. The number of
points passed for each control method in December is shown
below TABLE 2 and Fig. 5.

FIGURE 5. Each control method qualified points in December.

According to TABLE 2 and Fig. 5, the number of orders
for DFT control is much smaller than that for PI control, and
the deep forest network improves the average number of pass
points per day by learning to fuse the advantages of these two

TABLE 3. Simulation of each control method on december 16.

control strategies. The deep forest network control reduces
the average daily number of orders by 60.41% and 40.16%
respectively compared to PI control and DFT control, and the
regulation effect is better overall than the two strategies alone.

In order to verify the effectiveness of the strategy proposed
in this paper in more detail, select the real-time operation data
of 16 December 2018 for simulation analysis, which has a
sampling period of 2s and 43200 sampling points throughout
the day. The control effects of the three control strategies
throughout the day on 16 December are shown in TABLE 3,
Fig. 6, Fig. 7, and Fig. 8.

FIGURE 6. CPS1 comparison chart.

From TABLE 3, Fig. 6 and Fig. 7, it can be seen that the
number of qualified points of the deep forest network control
strategy on the day is 142, the qualified rate is 98.65%, the
number of actions ordered by units is 542, 20.39 MWh and
-20.39MWof positive and negative unit miles throughout the
day, with the Deep Forest Network control method having the
highest number of qualified points among these three control
method effects. Fig. 8 shows that the deep forest control
strategy orders less often than the other two control strategies
during the 144 assessment periods of the day. The number
of orders and the large regulation volume of the PI control
method confirm the large overshoot of this strategy, which
can lead to over- or under-regulation. The number of orders
and the regulation volume of theDFT strategy aremuch lower
than those of the PI control strategy because of the refinement
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FIGURE 7. CPS2 comparison chart.

FIGURE 8. Number of orders for 144 assessment periods.

TABLE 4. Control situation of 22:10-22:20.

of the total regulation power. The deep forest network control
method proposed in this paper combines the advantages of
both, which can increase the number of qualified points with
fewer orders and regulation amount and ensure the stable
operation of the system.

A typical ten-minute detail analysis is selected from
22:10-22:20 on 16 December. The 10min is the 134th
assessment point of the day, with 16 ordered points, and the
results of the ordered situations and control effects of the three
control strategies are shown in Fig. 9, Fig. 10, Fig. 11, Fig. 12,
and TABLE 4.

FIGURE 9. Ordered from 22:10-22:20.

FIGURE 10. 22:10-22:20 Change in ACE before and after control.

FIGURE 11. 22:10-22:20 CPS1 change before and after control.

From Fig. 9 and TABLE 4, the number of orders of the
deep forest network control method is smaller than that of
the PI control strategy and the DFT control strategy, and
its regulation power value is similar to that of the DFT
control strategy and much lower than that of the PI control
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FIGURE 12. 22:10-22:20 CPS2 change before and after control.

strategy, indicating that its control effect is better. Fig. 10
shows that the working conditions of this assessment cycle
are smoother and milder, and the regional control deviation
does not fluctuate much during the period. Fig. 11 shows that
the value of CPS1 is lower than 1 in the latter part of the period
when the area is not controlled, which is a failed assessment
period. The deep forest network control continuously orders
to adjust the deviation and controls the CPS indicator within
the range of the assessment pass.

VI. CONCLUSION
With the massive connection of wind power, photovoltaic and
other renewable energy sources to the grid and the increase
in the number of impact loads, the power system needs
to optimize and improve the existing automatic generation
control strategy. In this paper, based on the traditional PI
control strategy and DFT control strategy, a network control
strategy based on the Deep Forest algorithm is proposed, and
the following conclusions are obtained through simulation.

(1) The strategy can complement the dominant operating
conditions by learning from the excellent control data set that
has been modulated by both control strategies.

(2) This network control strategy can effectively control
the ACE deviation within the assessment range with a lower
number of orders, improving the regulation accuracy and
avoiding frequent actions.

(3) Compared to PI control strategies and DFT control
strategies, deep forest networks for AGC can effectively
reduce the frequency regulation capacity of the unit and
improve economic efficiency.

(4) The strategy in this paper is based on a deep forest
network algorithm for AGC scheduling. The size of the
dataset for training the deep forest model and the grid
operating states included is limited. In the future, more
control strategies can be used to correct for the unqualified
cycles of the dataset, the expansion of the dataset makes the
training of the network more mature, and further research is
conducted on the control strategy of an autonomic generation
control system containing new energy sources.
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