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ABSTRACT When training for hazardous operations, real-time stress detection is an asset for optimizing task
performance and reducing stress. Stress detection systems train amachine-learningmodel with physiological
signals to classify stress levels of unseen data. Unfortunately, individual differences and the time-series
nature of physiological signals limit the effectiveness of generalized models and hinder both post-hoc
stress detection and real-time monitoring. This study evaluated a personalized stress detection system that
selects a personalized subset of features for model training. The system was evaluated post-hoc for real-time
deployment. Further, traditional classifiers were assessed for error caused by indirect approximations against
a benchmark, optimal probability classifier (Approximate Bayes; ABayes). Healthy participants completed
a task with three levels of stressors (low, medium, high), either a complex task in virtual reality (responding
to spaceflight emergency fires, n =27) or a simple laboratory-based task (N-back, n =14). Heart rate, blood
pressure, electrodermal activity, and respiration were assessed. Personalized features and window sizes were
compared. Classification performance was compared for ABayes, support vector machine, decision tree,
and random forest. The results demonstrate that a personalized model with time series intervals can classify
three stress levels with higher accuracy than a generalized model. However, cross-validation and holdout
performance varied for traditional classifiers vs. ABayes, suggesting error from indirect approximations.
The selected features changed with window size and tasks, but found blood pressure was most prominent.
The capability to account for individual difference is an advantage of personalized models and will likely
have a growing presence in future detection systems.

INDEX TERMS Stress detection, machine learning, physiological sensors, virtual reality, spaceflight
training.

I. INTRODUCTION
Despite extensive training in responding to an emergency,
a person’s response to an actual emergency can be nega-
tively affected by the stressfulness of the situation. Stress can
result in a cascade of physiological changes that may alter
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behavioral patterns, situational awareness, decision making,
and cognitive resources [1]. An inability to cope with the
stress of a high-stress condition can decrease task perfor-
mance and thereby risk mission failure, injury, or death [2].
Consequently, developing resiliency to this situational stress
through improved training may lead to better outcomes.
To that end, using real-time monitoring of a person’s stress
responses to customize the stressfulness of training scenarios
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may, in turn, lead to more appropriate handling of actual
hazardous operation [3], [4].

Stress detection using machine learning has been chal-
lenging for several reasons. First, there are individual dif-
ferences in the appraisal of, and physiological responses to,
stressful situations. Numerous stress detection approaches
have attempted to reduce technical complexity by general-
izing their models to a broad population, or the ‘‘average’’
response [3]. However, the stress response to a unique situ-
ation is largely subjective, and personalized stress detection
models may be more robust to individual differences [5], [6].

The second challenge is that the time series nature of
physiological signals can be problematic. The physiological
stress response has temporal and feature correlations. These
correlations may violate the machine learning assumption
that the data are independently and identically distributed,
thereby leading to biased results [7].

An additional challenge is interpreting how well model
estimations match the true conditional probabilities of a sub-
ject’s stress levels. Stress detection models rely on traditional
machine learning algorithms that make data-driven approxi-
mations to estimate the chance that the individual is experi-
encing a state of stress given their physiological responses.
However, these estimations are often indirect and without a
benchmark for comparison. From classical statistics research,
the Bayes theorem is theoretically the optimal solution and a
classifier given the same parameters as Bayes theorem will
have the lowest probability of error [8]. The Bayes theorem
uses an empirical density distribution as a true prior probabil-
ity, which can be used to calculate the conditional probability
of each class. The classifier selects the class with the greatest
posterior probability of occurrence, also known as maximum
a posteriori. Machine-learning algorithms attempt to approx-
imate the density distributions. If the density estimates of the
classifier converge to the true densities, then the estimated
probability represents the true probability of occurrence and
a classifier that approximates Bayes becomes an Optimal
Bayes classifier. However, these approximations can have
varying accuracy due to assumptions made by the algorithm,
such as independence of predictors [9]. Thus, it can be diffi-
cult to interpret the model’s logic. Physiological systems are
known to have a high degree of dependence with regard to a
stress response, because they are often initiated by the same
neuroendocrine axis [10]. Some researchers have shown that
classifiers may account for dependencies using multivariate
kernel density estimators [11]. Therefore, it may be beneficial
to evaluate supervised machine learning classifiers against a
benchmark optimal classifier that approximates Bayes using
a density distribution estimated through multivariate kernel
density estimation for stress detection.

To achieve real-time and continuous monitoring of stress
levels, new approaches are needed to analyze time series for
physiologically-based stress detection [12]. Real-time stress
detection can enable closed-loop automation to either mod-
ify the training environments to better match the trainee’s
responses or better assess individual stress during staged or

real operations [13]. In datasets with repeated measurements
at multiple times that present uncertainty from randomness or
incompleteness, such as multiple measures of physiological
data, multivariate kernel density estimators may help increase
detection accuracy [11].

To address these challenges, the goal of this research is
to assess the objectivity, reliability, and validity of a per-
sonalized model methodology. The first research question
focuses on objectivity, and whether the stressor levels can
show distinct levels in personalized features used for the clas-
sification model while accounting for individual differences
in physiology. This will provide confidence that the model
is designed for the appropriate context and that the training
data reflect distinct ground truth levels. The second research
question focuses on the system’s reliability by evaluating
the performance of the time-series interval approach using
a post-hoc model comparing between a standard laboratory
cognitive task and a complex job-specific task, window sizes,
classifier validation techniques, and features selected for each
individual. The third research question focuses on the valid-
ity of the system by seeking to understand whether indi-
rect approximations influence traditional supervised machine
learning classifiers compared to a Bayes classifier, known
as Approximate Bayes (ABayes), which uses direct approxi-
mations of optimal stress classes through multivariate kernel
density estimation.

This research is part of a larger development effort
to design VR training scenarios that can dynamically
adapt a virtual environment using real-time stress detec-
tion [14], [15], [16]. To answer these research questions
within the constraints of the larger system, the experiment
will assess a time-series interval approach to stress detection
for a post-hoc model of physiological response data, its accu-
racy in detecting participant stress using a collected during
stressful tasks, and provide the architecture for a real-time
stress detection system that uses this classification methodol-
ogy. Validating a machine learning pipeline post-hoc allows
for translation to real-time stress detection and applications
for stress monitoring.

II. BACKGROUND
Stress detection systems rely on classifying physiological
signals into multiple stress classes using machine learning.
However, stress detection is challenging due to the individual
differences in the response to stress and the time-series nature
of the physiological stress response. This section describes
the physiological responses, stress detection research and
physiological sensors, approaches to classifying time series
data, a deeper look at the challenges facing stress detection,
and the current research approach.

A. TIME COURSE OF THE STRESS RESPONSE
The physiological stress response involves the interaction
between the nervous system and the endocrine system that
aims to maintain physiological integrity under changing envi-
ronmental demands. The time course of the physiologic
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responses to stress varies by system and by the intensity and
duration of the stressor; they are neither physiologically inde-
pendent nor statistically orthogonal. After the psychological
appraisal of a stressor, neural ganglia pathways are activated
almost instantaneously to evoke very rapid responses via
local neurotransmitters. For example, disinhibition of heart
rate via vagal withdrawal occurs within milliseconds while a
sympathetically-mediated increase in heart occurs after a few
seconds (5-10 s) [10]. Sympathetic and sudomotor activity
results in the opening of eccrine sweat glands on hands
and feet, which occur about 1-5 seconds after stimuli [17].
On the other hand, the physiologic responses due to circulat-
ing chemicals take longer tomanifest. Epinephrine is secreted
from the adrenal medulla and range frommilliseconds tomin-
utes to exert their cardiovascular effects. Whereas, cortisol is
initiated by the adrenal cortex 5–10 min after stressor onset
and peak between 20 and 30 min [18]. These processes can
act exclusively or in conjunction on target organs to potentiate
(e.g., memory, muscle activation) or attenuate organ function
(e.g., digestion, reproduction).

There is increasing support that the physiological systems
activated are those best suited to cope with the type of
stressor, rather than the prior theories that certain systems
are activated if the stressor magnitude surpasses a thresh-
old [19], [20]. For example, stress caused by a traffic jam
may cause one individual to show an increase in epinephrine
while another individual may show an increase in the stress
hormone cortisol with little to no increase of epinephrine.
Therefore, the same stressor can differentially affect individ-
uals via leading to the activation of varying physiological
systems, with each system having personalized, and differing,
times-scales to respond and recovery. The different individual
stress response and system time-scales present challenges in
detecting and classifying levels of stress.

B. STRESS DETECTION
Stress detection, by means of classifying these physiological
responses into levels of stress via machine learning, con-
tinues to evolve and is motivated by the potential utility of
continuously monitoring stress levels in real-time [12], [21].
Stress detection systems have been developed for drivers
in semi-urban scenarios [22], [23], patients undergoing vir-
tual reality therapy [24], individuals in working environ-
ments [25], and people that need help managing daily
stress [21], [26], [27], [28], [29], [30]. Stress detection can
also be applied to a variety of human-machine interfaces
(HMIs) which may monitor stress, but also infer the cog-
nitive state of the user to adapt system functionality [31].
Examples of HMIs that may use stress detection include
wearable devices, voice recognition systems, eye tracking
systems, facial expression analysis, and brain/body computer
interfaces [12], [32]. However, these HMIs may not be able
to accurately detect stress in all individuals, and the accuracy
of stress detection may vary depending on the specific tech-
nology and approach used [33].

These detection systems collect information about stress
responses from either objective physiological sensors or sub-
jective psychological metrics, in the form of independent
variables called features, which are then used to classify the
stress level. Commonly used sensors include electrodermal
activity (EDA), electrocardiogram (ECG), respiration (RSP),
electroencephalogram (EEG), skin temperature (ST), and
blood volume pulse (BVP) [33]. For an ECG signal, stress
indices have been primarily inferred from changes in the
time intervals between heartbeats, which measure Heart Rate
Variability (HRV) using time-domain, frequency-domain,
or nonlinear analysis. HRV metrics have been associated
with sympathetic and parasympathetic activation. However,
attempting to detect stress levels from signal amplitude alone
neglects the time series nature of physiological data. Phys-
iological systems may be simultaneous and coupled (e.g.,
breathing can modulate heart rate), contain both determinis-
tic and stochastic components, and may be correlated when
measured over long periods of time [34]. Stress sensor signals
are continuous ordered attributes; therefore, they are best
characterized by features that quantify the distribution of data
points, variation, correlation properties, stationarity, entropy,
and nonlinear properties [35].

C. APPROACHES TO TIME SERIES CLASSIFICATION
To address the time series nature of physiological signals,
common time series classification methods include a) com-
paring whole series data by employing distance-based algo-
rithms like Dynamic Time Warping (DTW), b) performing
high-level feature extraction from successive, sequential time
intervals and classifying intervals with a model, c) judging
the presence or absence of short patterns (i.e., shapelets) in
the whole series, d) frequency counts of recurring patterns
to form a ‘‘dictionary’’ that defines the classes, e) combi-
nations of the aforementioned methods, or f) model-based
learningmethods like those relying on auto-regressivemodels
or hidden Markov models [36]. Each of these methods has
advantages and disadvantages with respect to physiological
stress detection.

DTW is highly effective with a nearest-neighbor classifier
for time series data, such as repeated patterns in ECG due
to heart arrhythmias and sleep apnea. However, there are
few examples of its application to stress detection [37]. This
is likely due to acute stress having temporal and pattern
variation, which make it difficult for whole series, shapelets,
or dictionary methods to be effective. Model-based learning
methods, like hidden Markov models, fit multiple models
to the data in order to determine the best model to use.
This type of framework has been seldom studied for phys-
iological stress detection unless paired with stress speech
analysis [30]. Interval characteristics is the most common
classification method for stress detection. It is implemented
by extracting features for windows/epochs, which is a highly
reliable analytical method for quantifying stress through fea-
tures like HRV [38], [39]. Typically, the time window size is
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predetermined. However, some features may behave differ-
ently depending on the window size. For example, HRV
frequency features are recommended to have windows in the
order of minutes and smaller time intervals may increase
error [39]. An evaluation of window sizes can help identify
which features work best for interval methods.

Neural networks have become a popular classifier choice
for interval methods, due to highly accurate frameworks
such as convolutional or recurrent neural networks [40]. The
success of a neural net is partly due to its ability to handle
unequal time series lengths and optimize model parameters
over time [41]. However, neural networks simultaneously
extract features, and many of the classification rules are cre-
ated by themodel rather than by programmers. These classifi-
cation rules can be hidden within interconnected layers [12].
The net effect is that the logic used in the classifications is
often implicit and uninterpretable. For this reason, traditional
machine learning models that classify interval features from
a time-series are more informative and interpretable as to
how data points are assigned to classes. Interval classification
often uses supervised learning, where classification models
are trained using interval features separated into classes/states
(e.g., low, medium, high stress levels) and the model is
subsequently used to detect class labels based on class/state
probability of a test dataset. Traditional supervised machine
learning algorithms include support vector machine (SVM),
decision tree, and random forest.

D. CHALLENGES OF PHYSIOLOGICAL STRESS
CLASSIFICATION
Amajor challenge in using physiological signals for detection
is the rigidness of generalized models in accounting for phys-
iological differences between people. Stress varies among
individuals due to differences in appraisals of the stressor and
the perceived threat, but also the body’s capability to enact
the physiological responses. For example, an EDA-based
generalized classifier that is deployed and tested on multiple
people may have higher classification error among a subset of
this group, since as much as 25% of the population are EDA
non-responders or hypo-responders [42]. By not accounting
for differences in physiology, inherent errors are createdwhen
using generalized models for physiological detection. This
challenge has led some researchers to believe that person-
alized models may be more accurate [3], [12]. Revising the
example, higher accuracymay be achieved by the EDA-based
classifier if the model accounts for the individual’s respective
EDA level and reactivity, or instead rely on other sensors
when EDA is not a reliable predictor for that individual.
While EDA is one of many physiological systems, some may
bemore susceptible to individual differences than others (e.g.,
cortisol [43]). Supervised classifiers can be personalized by
having the stress detection system create a model using train-
ing data from the individual and by selecting discriminate and
relevant features for the individual [44].

Another challenge is that supervised classifiers have a
degree of uncertainty depending on how they estimate

probability distributions in order to label stress levels. Super-
visedmodels produce a probability distribution for each stress
level (class) for a set of physiological signal data points
(vectors); this distribution determines which class is most
probable at a given time. However, rather than creating a
distribution directly from the dataset, the probability distri-
bution is created indirectly (and often ad hoc) based on the
technical specifics of a classification method. For example,
decision tree classifiers produce rectangles that partition the
input space and calculate the approximate class probabilities
based on the number of vectors located within each rectangle.
Thus, the class probability is constant for each rectangle and
always discontinuous at the rectangle boundaries, leading
to a probability that is more defined by how the rectangles
are positioned within the input-space rather than the vector
distribution across the entire input-space. Similarly, SVMs
create a hyper-planes intended to produce maximum sep-
aration between class vectors in the input space. Ad hoc
‘‘approximate class probabilities’’ are often created using
softmax functions of distances from vectors to hyperplanes—
a practice that may not match empirical probability esti-
mates [45]. The process by which these ad hoc methods
approximate class probabilities does not easily translate to
meaningful cause/effect insights related to either changes in
the environment or the measured changes in physiological
measurements.

The translation of a post-hoc system (i.e., offline) to real-
time (i.e., online) brings another set of challenges commonly
associated with data collection in ambulatory settings that are
less controlled. One major challenge is the need to process
and analyze data in real-time, which requires a system with
high computational power and efficient algorithms that have
minimal loss of data and error propagation during data anal-
ysis. Another challenge is the need to transmit data from the
sensors to the system in real-time, which requires a reliable
and high-speed wireless network [12]. Ensuring the privacy
and security of the data is another important consideration,
as the data may contain sensitive personal information and
could be vulnerable to cyber-attacks. Additionally, there may
be challenges in accounting for environmental context, as the
physiological indicators of stress may be affected by other
factors such as physical activity, medication, and ambient
temperature.

Any classifier can be used with a personalized detection
approach, but the classifier selected should maximize the
confidence that the approximate class probabilities match
empirical probability estimates. Since Bayes theorem pro-
vides more direct estimations of conditional probabilities, its
effects are more interpretable and may provide insight into
whether the aforementioned traditional classifiers have error
resulting from indirect approximation. This can be achieved
by implementing the Bayes theorem in a new approximately
Bayes classifier (ABayes). To that end, along with a real-time
personalized stress detection system, the secondary goal of
this research is to assess the extent to which traditional
supervised machine learning methods (decision tree, support

25434 VOLUME 11, 2023



T. T. Finseth et al.: Real-Time Personalized Physiologically Based Stress Detection for Hazardous Operations

vector machine, and random forest classifiers) are limited
compared to an optimal probability; a classifier based on
Bayes theorem using multivariate kernel density estimates.

E. APPROACH
This paper describes the development of a personalized
physiological-based stress detection system to classify acute
stress using feature selection on intervals of the time-series
data. To train the machine learning model, participant physi-
ological signals were collected for three stressor levels during
either a spaceflight emergency fire procedure on a VR Inter-
national Space Station (VR-ISS) [46], [47] or a well-validated
and less-complex N-back mental workload task [48]. Several
previous studies have detected stress induced by N-back tasks
via machine learning methods, both alone [48], [50] and with
another job-specific task [51]. Therefore, comparing a job-
specific VR-ISS task to the N-back using the same person-
alized approach is a way to assess the system’s reliability
can work for multiple stress detection tasks. Each participant
had features selected at different interval window sizes, then
those personalized features trained the classifier model, and
subsequently tested the classifier’s predictive accuracy. Since
the stress response is complex and often unique, the analysis
will explore which features are selected most for individuals
depending on window size, and how this changes classifica-
tion performance. Classifier performance was assessed using
both holdout and cross-validation validation techniques to
simulate how the model may perform on unseen data as an
analog for deployment in real-time.

The novelty and contribution of this research is to show that
stress detection may benefit from using personalized time-
series approaches to quantify temporal patterns in physio-
logical signals, to assess whether traditional classifiers are
limited in approximating the optimal Bayes solution, that
certain features may be better at different windows sizes, and
that this approach has a suitable performance for detecting
stress for a VR spaceflight emergency training procedure.

III. METHODS
A. PARTICIPANTS
Forty-one healthy participants (34 male, 7 female) performed
a complex task in virtual reality (spaceflight emergency fire,
N = 27) or a laboratory-based task (N-back, N = 14). The
mean age was 20.9±6.5 years, all adults in the age range
of 18-41 years. The demographic distribution included 76%
European American/White, 12% Asian or Asian American,
and 7% Hispanic or Latino. All study procedures were
approved by the Institutional Review Board of Iowa State
University.

B. EXPERIMENTAL DESIGN
The evaluation had two types of tasks and three stressor
levels for each task. Task was a between-subjects variable:
participants conducted either a fire response task aboard a VR
International Space Station (VR-ISS) or a computer-based

FIGURE 1. VR-ISS emergency fire (low, medium, high stressor scenarios).

N-back task. These tasks were selected since it is possible to
facilitate varying degrees of task complexity. Stressor level
was a within-subjects variable: each task consisted of three
stressor levels (low, medium, and high). Trials were counter-
balanced via Latin Squares, which uses a grid of numbers or
letters representing different conditions in the study to assign
participants equally and prevent trial order effects [52].

One task, VR-ISS, is the virtual reality environment of
the ISS specifically designed for participants to implement
an emergency fire response procedure by locating and extin-
guishing a fire source [46]. The VR-ISS task is highly
dynamic and in a complex environment with many stimuli
and task steps. The task is based on existing NASA Emer-
gency Procedures [53] but simplified to reduce the amount of
needed training. Several dynamic interactions were included
in the VR-ISS to aid detection and location of the fire source.
To locate the fire, participants evaluated atmospheric contam-
inant levels, which changed as a function of time and distance
from the fire source. The highest contaminant value indicates
the approximate location of the fire source. Thus, participants
would have to monitor and recall local contaminant levels.
When needed, participants used virtual oxygenmasks and fire
extinguishers.

Stressor levels in the VR-ISS were created using a
combination of environmental stressor intensities that were
independent of the task procedure: smoke, alarm noise, and
flickering module lights [47]. The low stressor level did not
contain any stressors; therefore, a voice recording announced
a fire situation at the beginning of the simulation. The
medium stressor level included a continuous caution alarm,
low smoke density (visibility limit of 6 ft.) and flashing
lights in one of the three ISS modules. The high stressor
level involved a continuous caution alarm, a continuous fire
alarm, flickering lights in all modules, and dense smoke
(visibility limit of 1 ft.). Fig. 1 presents the smoke density in
the VR-ISS for each stressor level. Prior research verified that
the three stressor levels produced different levels of subjective
stress [47].

The other task, N-back, is presented with a sequence of
colored squares on a computer screen; participants need to
recall the location of the square that was shown n steps
earlier in the sequence. The N-back task is a well-validated
stressor [48] where low-complexity can be induced through
manipulating the one primary stressor of working memory
demand. Stress is manipulated by asking participants to recall
1-back (low-demand), 2-back (medium-demand), and 4-back
(high-demand). The N-back task is a measure of working
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FIGURE 2. Design and procedure of the study.

memory capacity that is associated with executive function-
ing which can affect physiological stress indices [53].

C. STRESS MANIPULATION MEASURE
To verify that the three stressor levels produced variable levels
of stress, the participants completed the Free Stress scale after
the third trial. This scale was used to rate the subjective stress
level on a scale of 0 to 100 (least to most stressful) [23], [54],
[55]. The stress appraisal process is continuous and relative,
with reappraisals of the experience happening long after the
stressful exposure [56]. The Free Stress scale was intended
to relatively measure the subjective stress by comparing all
three trials at the same time.

D. PROCEDURE
The experiment was completed in a single laboratory visit,
lasting approximately 120minutes (Fig. 2). After participants
provided written consent, they completed a demographic
questionnaire. To acclimate to VR before the data collection
tasks, participants were placed in the VIVE Virtual Reality
Home simulation [57] to train them to navigate, operate, and
control the VR simulation. Participants were asked about
their cybersickness. Participants were equipped with physi-
ological sensors and a baseline recording was taken to verify
that the sensors were working properly.

For the task simulation (Fig. 2), participants were then
assigned to either the VR-ISS or N-back tasks. For the
VR-ISS, participants completed a 20-30 minute VR tutorial
that included information about the VR-ISS layout, how to
navigate, fire equipment, and the emergency fire response.
ForN-back, participants completed a 3minute tutorial on how
to indicate whether the current stimulus was the same as the
one presented N trials ago. Participants then completed three
trials: low, medium, and high stressor levels. Participants
were given 5 minutes between trials to recover to physiologi-
cal baseline. The Free Stress scale was administered after the
last trial.

E. OVERVIEW OF THE STRESS DETECTION SYSTEM
To aid in the development of the stress detection system,
a machine learning pipeline was developed to detect and
classify the three stress levels from the physiological mea-
sures and to evaluate ABayes as a classifier against other
supervised classifiers. The pipeline consisted of several steps
including data collection, preprocessing, feature extraction,
feature selection, and classification as presented in Fig. 3.

Data were collected through multiple sensors that mea-
sure physiological responses. A time-series classification
approach was implemented by segmenting the data into
multiple intervals and using summary measures as features.
A feature extraction process was then used to find a high-
level subset of features that may have class discrimination
with respect to a single individual, which was reduced into a
low-dimensional feature subset (feature selection) by means
of classification of a random holdout. A supervised approach
was then taken to train the classifiers with the selected feature
subset comprised of physiological data from three stress trials
for each participant, investigated only as a subject-specific
personalized model. Lastly, the classifiers were evaluated on
their ability to detect participant stress levels.

The modification of an offline detection system to an
online system may have a simple goal of outputting stress
predictions in real-time. However, stress predictions may also
inform adaptive systems about adjust automation to optimize
human-computer performance, such as to enhance the user
knowledge retention during task training or lessen a pilot’s
cognitive workload while flying a plane [16]. As an applied
example, the machine learning pipeline used for offline val-
idation was modified to collect and classify stress level in
real-time (Fig. 4). Post-hoc classification was modified to
be real-time continuous classification. The individual’s train-
ing model (i.e., data from selected features during post-hoc
validation; Fig. 3) is imported. This dataset includes the
participant’s physiological signals in each of the three stress
classes, all collected prior to using the real-time system to
predict stress. The signal preprocessing for the online real-
time system used the exact same algorithms as the signal
preprocessing of the offline system for a 30-second window,
thereby ensuring the validity of the feature calculations. The
real-time stress system uses a parallel processing architec-
ture to first configure equipment sequentially, then to exe-
cute processes simultaneously. To configure the equipment,
worker 1 configured the Biopac MP150 system (Biopac Sys-
tems Inc., Santa Barbara, CA) parameters for each sensor,
worker 3 configured the TCP connections between clients
and server and imported the selected features and trained
model, thenworker 2 configured theAcqKnowledge software
(Version 5.0.1, Biopac Systems Inc.) to receive these signals
and commanded the Biopac to begin streaming data. Once
the command was sent to stream data from the Biopac, the
data were continuously buffered and classified into real-time
windows. Thewindow classification labels were then used for
post-classification logic (e.g., automation adaptations) and
output (i.e., human-computer interface). Since this system
was intended for acute stress detection (i.e., < a few hours),
the stream data were only classified using an initial model,
and retraining was not incorporated into the system design.

The online real-time system was run with a separate par-
ticipant sample within a larger adaptive VR stress training
system (study results are reported in [15]). The adaptive
system was designed to detect stress and then provide imme-
diate adaptive feedback during training to increase/decrease
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FIGURE 3. The Post-hoc machine learning pipeline of stress detection and classification.

FIGURE 4. Stress detection implemented as a real-time pipeline [14], [15]. Blue arrows
represent processes running in parallel that the continuous data streams. All other
processes within the workers are sequential. Colored boxes represent inputs from other
components.

the stressors in virtual reality to help build competency and
inoculate stress. Since the ground truth of the adaptive system
constantly changed due to training effects, the offline evalua-
tion of holdout and cross-validation was used to better assess
the reliability and validity of the stress detection described in
this paper.

To test the validity and reliability of the online system, the
feature selection and classification accuracy were compared
to those of the offline system, and a latency test was per-
formed. Using an offline model and predetermined individ-
uals’ stress data, both offline and online systems produced
the same selected features and accuracy. This result was
to be expected as the only programmatic difference for the
online system is how the computation is distributed across
parallel workers. A second test was performed to determine
the computational latency of online system workers. The
classification time for all classifier algorithms was less than
the signal buffering timeframe (e.g., 30-seconds), ensuring

that the online system did not propagate latency errors when
retrieving a consecutive buffer window for classification.

F. DATA COLLECTION & PREPROCESSING
Data were collected for the machine-learning pipeline using
four physiological signals that were acquired simultaneously:
electrocardiogram (ECG), Electrodermal Activity (EDA),
Respiration (RSP), and Noninvasive Blood Pressure (NIBP).
Biopac MP150 system (Biopac Systems Inc., Santa Barbara,
CA) was used to measure ECG, and was equipped with an
ECG100C module [58]. ECG and RSP were sampled using
Biopac MP150 (125 Hz) and Bionomadix Bioshirt that uses
Bluetooth signal thereby increasing mobility of the partici-
pant. Beat-to-beat blood pressure data were collected using an
oscillometric noninvasive blood pressure (NIBP) fingercuff
placed on the participants’ nondominant hand over themiddle
phalanx of the long and ring finger (CNAP Monitor 500,
CNSystems Medizintechnik AG). The nondominant arm was
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placed in an arm sling to standardize the position of the hand
relative to the heart between all participants. To calibrate
the finger cuff, an NIBP cuff (CNAP Monitor 500, CNSys-
tems Medizintechnik AG) was placed on the participant’s
dominant upper arm and measured periodically to minimize
potential hydrostatic pressure differences between the fingers
and heart level. NIBP was sampled with the Biopac MP150
at 125 Hz. Electrodermal activity (EDA) measures changes
in electrical conductivity in the skin due to production of
sweat by activation of the autonomic nervous system (ANS).
Increased arousal during stress will elicit higher EDA. Elec-
trodes were placed on the intermediate phalanges on the
index and middle fingers of the nondominant hand. EDA was
sampled with the Biopac MP150 (125 Hz).

As expected, the data contained different types of noise and
artifacts associated with subject movement, power line, and
electromagnetic interference. NIBP was corrected for motion
artifacts using an IIR band pass filter with cut-off frequencies
at 1 Hz and 10 Hz. The ECG signal was filtered for electrical
noise by an internal 50-60 Hz notch filter. The EDA signal
was corrected with an IIR low pass 2nd order Butterworth
filter fixed at 5 Hz [59], [60], [61].

G. FEATURE EXTRACTION
The feature extraction process was intended to improve infor-
mation density by extracting a variety of features that char-
acterize the time-series data. The feature extraction used
by this study involved two steps: (1) derive feature sig-
nals that are physiologically relevant to the stress response
and then (2) extract generalized features chosen with the
intent to characterize distribution of data points, variation,
correlation properties, stationarity, entropy, and nonlinear
properties [35].

First, the raw signals were used to extract feature signals
with AcqKnowledge software (Version 5.0.1, Biopac Sys-
tems Inc.). The ECG signal was used to calculate Heart Rate
and two time-domain Heart Rate Variability (HRV) signals of
root mean squared of successive differences (RMSSD) and
percent of peak-to-peak intervals exceeding 50 milliseconds
(pNN50). Increasing values of RMSSD and pNN50 indicate
relaxation (vagal activation) and decreasing values indicate
arousal (vagal inhibition). RMSSD and pNN50 features were
extracted from the ECG signal. Respiration was also mea-
sured as an indicator of ANS activity. Systolic blood pressure
(SBP) and diastolic blood pressure (DBP) were extracted
from NIBP as another measure of cardiovascular reactivity.
DBP and SBP can reflect changes in the total peripheral
resistance of blood vessels. Increases in local sympathetic
activity cause constriction of blood vessels, while reductions
in sympathetic activity lead to dilation. In the absence of
changes in cardiac output, decreases in blood vessel con-
striction are usually reflected by decreases in DBP. EDA
can be parsed into slower tonic-level and faster changing
phasic-level components. Skin Conductance Level (SCL) is
a measure of tonic EDA and reflects the general changes

in autonomic activity. Skin Conductance Response (SCR)
is discrete, short, phasic fluctuations that reflect higher fre-
quency variability of the signal as a response to immediate
stimuli [62]. The tonic component was extracted by low pass
filtering with a cut-off frequency of 0.16 Hz, while the phasic
component was extracted with a band-pass filter of 0.16 Hz
and 2.1 Hz [53]. A smoothing window of 5-second averages
was used on all derived feature signals (e.g., HR, RMSSD,
SBP, DBP) to reduce the potential adverse impact of possible
outliers from momentary sensor disconnecting from the skin,
electromagnetic interference, and algorithm detection error.

The raw sensor signals and feature signals were saved at
125Hz and binned into epoch windows from which other sig-
nals were extracted. Since the goal of this study was to build
an automatic stress classification model with the potential to
be applied to real-time applications, small window sizes were
selected for evaluation: 10 sec, 20 sec, 30 sec, and 40 sec.

The second step of the features extraction process is to
extract features from the time series. Two toolset packages
were used: Tsfresh [63] and Catch22 [64] for automatic
feature extraction of time series characteristics, including
absolute energy, absolute sum of changes, autocorrelation,
entropy, and number of values above and below the average.
Since ABayes is designed for probability density estimation
in a real-time system, Tsfresh features were excluded if they
were Boolean data types or were previously reported to take
longer than 10-2 second to compute (see [63]). The Catch22
toolset is a set of 22 time series features from the much larger
MATLAB toolbox, called hctsa, which has high accuracy
in detecting different types of time series data [64]. The
features extracted by Catch22 and Tsfresh do not overlap.
From the ECG signal, the inter-beat interval (RR) signal
was extracted via Pans-Tompkins peak detection [65]. Time-
series and spectral HRV features were then extracted from the
RR signal via HRVTool [66]. The Pans-Tompkins MATLAB
code and HRVTool outputs were checked and found to be
reliable compared to the peak-detection and HRV calculation
in AcqKnowledge and Kubios HRVMATLAB toolbox (Ver-
sion 2.2) [67]. The final extracted features are listed in the
Appendix.

H. FEATURE SELECTION
Feature selection is the process of reducing the dimensional-
ity of the classification problem by finding an optimal subset
of available features that provide class discrimination. The
best subset contains the fewest number of dimensions that
most contribute to the classifier performance; the remaining,
less contributing features are discarded [68].

A hybrid method of feature selection was conducted with
a two-step process involving a univariate feature selection
(UFS) filter method and sequential feature selection (SFS)
wrapper method together in series [44]. Feature selection
was only implemented on a training dataset (as opposed to
testing dataset) to mitigate data leakage where the model may
be over-fit and overestimate the model performance when
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deployed [69] (see Data Analysis). To improve the robustness
of the feature selection, a portion of the training dataset was
held out for validating the selection process.

For the wrapper holdout, 20% of epochs were randomly
selected and stratified from each class. These were set aside
to ensure that a test set of equal class sizes remained unseen
while the other 80% was used to select features. Feature
selection was conducted on the remaining 80% using the
combination of UFS and SFS. First, UFS was used to find the
best features for classification by quantifying their discrimi-
native power using a univariate statistical test. The features
were then ranked according to their mean one-way ANOVA
F-value to prioritize features that explain large amounts of
variance. In the second step, the SFS method starts by iter-
atively adding features from the UFS in a forward search
to measure performance gain. SFS starts with the most dis-
criminate feature identified by UFS and then adds features,
one-by-one, according to their F-value rank and stopped after
12 iterations. When a feature is added to the subset, 10-fold
cross-validation was performed, where misclassification rate
was used as a criterion to opt for the best subset of features.
The classifier used in the SFS was the same as the respective
classifier used in the final validation techniques.

Since the wrapper holdout was selected randomly, running
the feature selection multiple times would produce different
optimal feature subsets. Therefore, this entire process of UFS
and SFS was repeated six times and the final features were
those that appeared in the six optimal features subsets more
than twice. Upon conclusion of the feature selection, the
wrapper holdout was again included in the dataset to prepare
for classification training and testing.

I. CLASSIFICATION
The ABayes classifier was formulated to assess the indirect
ways that standard machine learning algorithms typically
estimate probability distributions across classes for given
input vectors. When considering traditional machine learning
classifiers, all standard classifier development and perfor-
mance evaluation is implicitly or explicitly done using a prob-
ability model that generates class-conditional probabilities.
To create a distribution of probability densities, the probabil-
ity model states that for classes k = 1, 2, . . . ,K , observable
data vectors x are generated for each random choice of a
class y = k by using probability distributions. The class
probability distribution is specified by a priori class proba-
bilities π1, π2, . . . , πK . Then, data vectors x are generated
for a given class via a class-conditional probability density
gikk (xi). For a classifier f (x) that maps observations to classes
(f (x) ∈ {1, 2, . . .K } ∀x), the conditional probabilities can be
calculated as in (1).

P [f (x) = y] =

∑K

k=1
πk

∫
f (x)=y

gk (x) dx (1)

In an optimal situation, the densities gk (x) and probabili-
tiesπk are perfectly known to the classifier. Therefore, state k
is classified with maximum πkgk (x) (2), which is equivalent

to the maximum conditional probability (i.e., maximum a
posteriori) of state/class k given the observation x (4), which
is also equivalent to the maximum a posteriori of the optimal
classifier (4). An optimal classifier with perfectly known
a priori probabilities and density distributions is also known
as Bayes Optimal Classifier, in which the accuracy would be
higher than all other approximations [9].

argmax
k

πkgk (x) (2)

argmax
k

(
πkgk (x)∑K
l=1 πlgl(x)

)
(3)

f opt (x) = argmax
k

P[k|x]

= argmax
k

(
πkgk (x)∑K
l=1 πlgl (x)

)
= argmax

k
πkgk (x) (4)

However, standard machine learning classifiers are not
optimal and are limited because the densities gk (x) are
not known. Subsequently, some classifiers attempt to make
approximations of the post-data weights πk and densities
gk (x) for each state/class, while other classifiers refrain from
estimating the distributions entirely and attempt to approx-
imate f opt (x). For example, in tree algorithms, the relative
frequencies of the training set class/state in rectangles serve as
weight estimates of conditional probabilities of classes given
that the input vector falls in given rectangles, whereas SVM
directly learns a decision boundary without estimating data
generating distributions. Even in Naive Bayes, the classifier
estimates all marginal distributions and uses the product as
a density, while making a generally poor assumption that
the input vectors for each class have independent compo-
nents [9]. In these cases, machine learning classifiers use
data-derived functions of x to approximate density distribu-
tions as a substitute for the optimal classifier. Incidentally,
vague density distributions can occur when the class relative
proportions in training datasets are not same proportions as
the πk that exist in the optimal classifier. Probability densities
can be adjusted so that training set class relative frequen-
cies match desired weights (πk ) but parametrizing to class
frequencies is typically unrealizable in practice. Therefore,
no classifier can improve on this optimal classifier if the
posterior weights and distribution (i.e., densities) are known.

The optimal classifier is derived from Bayes theorem,
which provides a direct approximation of conditional class
probabilities. Hence, the Approximate Bayes (ABayes) clas-
sifier is a statistical approach that attempts to optimally
discriminate states/classes based on estimated conditional
probabilities determined through a direct approximation for
the multivariate kernel density estimates (Fig. 5). That is,
training sets of multivariate observations from classes (k) had
bandwidth (h) calculated and have been processed through
a (Gaussian) kernel (K) density estimation routine with
features DV = 1, 2, . . . ,m, representing the multivariate
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kernel to produce functions approximating the class con-
ditional densities. A priori class probabilities approximated
the optimal probabilities using class relative proportions in
training datasets for experimental comparison to traditional
machine learning algorithms. These are used to produce the
Approximate Bayes classifier (Eq. 5), whereby an observa-
tion is classified to the class that gives it the largest estimated
conditional class probability. Recognizing the limitations of
other standard machine learning classifiers, Bayes should
result in the most accurate probability estimate, all things
being equal.

f opt (x) = argmax
k

π̂k ĝk (x) (5)

ABayes has fundamental differences with regard to
well-known classifiers like Naïve Bayes. Naïve Bayes uses
multivariate densities derived as products of marginal uni-
variate density estimates (so that the multivariate densities
are ones of independence for coordinates of their multivari-
ate arguments), even when Naïve Bayes is based on kernel
density estimation [70]. In comparison, ABayes creates mul-
tivariate density estimates (using product kernels) that will
essentially never be of product form, because the product
forms for the kernels do not force estimated densities to have
product forms. This relies on the assumption that for training
sets of n >1, the multivariate densities are not ones of inde-
pendence for the coordinates of their multivariate arguments.
Thus, the form of densities used in ABayes is discrete from
Naïve Bayes classification.

The input variables of the classifier are the extracted fea-
tures from physiological sensors, standardized in the range
of {0, 1}. An estimate is made for the probability density
per class by applying multivariate (Gaussian) kernel density
estimates. The training phase initializes weights based on
assumed frequency of occurrence. The test phase is used to
automatically classify an unknown input vector.

J. GENERALIZED APPROACH
A generalized approach was also created to compare the
performance of the personalized approach. To maximize the
model performance, a subset of VR-ISS participants with
similar data was selected (N = 7) using a participant-error
curve. Features were predetermined by iteratively remov-
ing low accuracy features until an optimal feature subset
remained (listed in the Appendix). Leave-one-subject-out
validation was conducted on all participants and the results
were averaged. The held-out test data were standardized
using the mean and standard deviation of the training dataset.

K. DATA ANALYSIS
The stress detection capabilities of the novel classifier
ABayes and three common supervised machine learning
classifiers were compared: support vector machine (SVM),
decision tree (DT), and random forest (RF). The classifiers
were implemented with theMATLAB Statistics andMachine
Learning Toolbox. The performance of the classifiers was

evaluated using two different validation techniques: Cross-
Validation and Holdout (Fig. 6). Cross-validation was per-
formed by 10-Folds, with folds stratified and randomized.
The holdout consisted of 20% of data from the end of
each class being used as ‘‘unseen’’ testing data, which sim-
ulates how the system may perform when deployed. The
cross-validation and holdout use only the participant’s train-
ing dataset (i.e., training folds) for the feature selection.
For example, only 90% of the data would be used for fea-
ture selection during 10Fold and then repeat with a new
90% partition for each fold, whereas the holdout technique
selects features from the first 80% of each trial’s dataset.
The 10-fold cross-validation and holdout were implemented
independently and use the hybrid combination of SFS and
UFS on their respective training datasets and folds. Therefore,
the feature selection was implemented after the data was
partitioned for the chosen validation technique within the
proposed machine learning pipeline (see Fig. 3). Further,
the classifier chosen to be evaluated by cross-validation and
holdout was the same classifier used for the feature selection,
thereby mitigating wrapper bias [69]. All data was stan-
dardized prior to classification per the physiological signal
per individual, with the testing data being standardized with
respect to the means and standard deviations of the training
data.

The evaluation process of classifiers involves calculating
the number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) [30]. Classifier per-
formance was measured using accuracy, precision, recall,
F1-score, and specificity. The metrics use multi-class clas-
sification with macro-averaging techniques [22].

Accuracy is one of the main performance indicators and is
defined as the number of correctly classified labels divided
by the total number of labels. The Precision, Sensitivity, and
F1-score reflect the importance of the retrieval of positive
labels, while the Specificity reflects the correct classification
of negative labels. F1-score is regarded as a more reliable
classifier performance metric in comparison to accuracy in
some circumstances because the accuracy metric does not
account for imbalanced class datasets [71].

The class size balance for each participant was evaluated
with the imbalance ratio [72] and likelihood ratio imbal-
ance degree (LRID) [73]. Imbalanced data can have harmful
effects on classification and interpretation of results. The
imbalance ratio (IR) is the most commonly adopted metric
for class-imbalance extent, but it only for binomial datasets
because it considers the ratio of the distribution of observa-
tions in the largest (p̂max) and smallest (p̂min) classes while
ignoring information of other minority classes [72]. The
frequency is estimated as the fraction of observations in a
given class (nk ) divided by total number of observations (N ).
An IR of one suggests and equal dataset. LRID offers more
resolution intomultiple class distributionswhere the datamay
be overlapped or where there is ambiguity about the level
of data separation. However, the score can vary by many
magnitudes depending on the number of minority classes.
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FIGURE 5. The approximate Bayes for stress level classification.

FIGURE 6. Examples of the feature extraction and selection for
cross-validation and holdout. L, M, and H refer to the low, medium, and
high stressor scenarios, respectively.

Likelihood ratios can range from zero to infinity, with a score
of zero for balanced data, while imbalanced data will result
in a score larger than zero. Likelihoods were converted to
probabilities [74].

Data analysis on the subjective stress measure was per-
formed using SPSS software (Version 23.0; IBM Corp.).
Repeated measure analysis of variance (RM-ANOVA) was
used to calculate the fixed effect of stressor level and pair wise
comparisons that were adjusted to control for type I errors
(Bonferroni adjustment). Results were considered significant
for p ≤ 0.05. Cohen’s d was used for assessing effect size,
where 0.2 < |d| < 0.5 was considered a small effect size,
medium effect size when 0.5 < |d | < 0.8, and large effect
size for |d | > 0.8 [75].

IV. RESULTS
A. SUBJECTIVE STRESS MANIPULATION
The main effect of stressor level on subjective stress was
significant for the VR-ISS, F(2,90) = 102, p <.001,
d = 3.02. All pairwise comparisons indicated the subjective
stress was significantly different (p < .001) between the

stressor levels. Similarly, the main effect of stressor level on
subjective stress was significant for the N-back, F(2,24) =

47.5, p <.001, d = 3.98. Pairwise comparisons indicated
subjective stress was significantly higher for participants
in 4-Back compared to 1-Back (p <.001) and the 2-Back
(p <.001). Subjective stress was significantly higher for
2-Back compared to 1-Back (p =.018).

B. MACHINE LEARNING RESULTS
The physiological data obtained from the VR-ISS andN-back
were analyzed to provide insight into the features chosen
by SFS, comparing the performance of ABayes between
different tasks (VR-ISS, N-back), between different evalua-
tion strategies (10-Fold, holdout), and compared to the three
standard machine learning classifiers. The characteristics for
each task dataset are listed in Table 1, including the number of
10-second windows averaged across participants. For the 20,
30, and 40-second windows, the windows were one half, one
third, and one fourth of the number of 10-second windows.

When considering multiple classes, the LRID shows the
VR-ISS is eleven times more likely to be imbalanced which
is equivalent to 46% probability of being imbalanced. The
N-back was only 1.65 times more likely to be imbalanced,
which is 9.5% probability. Due to the probability of imbal-
ance, the F1-score is prioritized over the accuracy metric in
the subsequent analyses [71]. The LRID and imbalance ratio
remained constant for the 20, 30, and 40 second windows.

C. ANALYSIS OF FEATURES SELECTED OVER DIFFERENT
WINDOW SIZES
Before evaluating the performance with the validation tech-
niques, the SFS output was evaluated based on different
epoch window sizes: 10, 20, 30, 40 seconds. Table 2 lists
the average amount of features selected by SFS for varying
windows sizes and tasks, which shows the SFS had optimal
performance when 4-5 features were selected on average.
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TABLE 1. Details of the multiclass datasets, M (±SD).

TABLE 2. Number of features selected by SFS for each task.

The frequency for VR-ISS and N-back features selected by
SFS for varying epoch window sizes with an ABayes wrap-
per for 10-folds is illustrated in Fig. 7. Within the VR-ISS
window sizes (10, 20, 30, 40 seconds), SBP mean (24%,
8%, 8%, 10%), SBP median (16%, 16%, 14%, 12%), DBP
mean (25%, 11%, 10%, 5%), DBP median (8%, 18%, 19%,
12%) were selected for the most participants. The 30-seond
window deviated from the other windows with different fea-
tures being selected, such as DBP median becoming more
prominent whereas the DBP and SBP means became less
prominent for larger windows. The most frequent feature in
any window was DBP mean (25%) followed by SBP mean
(24%), which were in the 10-second window. Comparing the
N-back window sizes, DBP mean (23%, 20%, 27%, 20%),
SBP mean (28%, 19%, 9%, 6%), and followed by the DBP
spectral density second coefficient (20%, 16%, 12%, 14%)
and third coefficient (14%, 16%, 9%, 15%) were selected
for the most participants. The most frequent feature in any
window was SBP mean (28%) in the 10-second window and
DBP mean (27%) in the 30-second window.

D. TASK AND WINDOW COMPARISON FOR ABAYES
VALIDATION TECHNIQUES
The validation techniques were compared for the VR-ISS and
N-back (Fig. 8). The window with the highest F1-score for
the VR-ISS was 30-seconds (94%) for 10-Fold and 40 sec-
onds (79%) for holdout. For the N-back task, the window
with highest F1-score was 40-seconds (96%) for 10-Fold and
40-seconds (81%) for holdout.

E. CLASSIFIER COMPARISON FOR THE TASKS
The cross-validation and holdout results for the VR-ISS task
with the various classifiers trained with physiological sig-
nal segments of different window sizes are summarized in
Table 3. The highest F1-score for 10-Fold cross-validation

was achieved with the ABayes classifier and highest F1-score
for the holdout was with the SVM classifier. For 10-Fold, the
best F1-score was for the ABayes model at 94% for a window
size of 30-seconds. For the holdout, the F1-score was for the
SVMmodel at 84% for a window size of 40 seconds. In com-
parison, ABayes was 5% lower than the SVM for 40-seconds
holdout. The Decision Tree performed the worst out of the
classifiers, with the lowest F1-score in every window for both
10-fold cross-validation and holdout.

The validation technique results for the N-back task
are summarized in Table 4. The highest F1-score for the
10-Fold cross-validation was achieved with the Random For-
est classifier and the highest for the holdout was achieved
with the Decision Tree classifier. For 10-Fold, the highest
F1-score was 98% with Random Forest for a window size
of 30-seconds, which in contrast ABayes scored 10% lower.
The second highest F1-score was a split between ABayes,
Decision Tree, and Random Forest which all showed compa-
rable performance of 96% for the 40-scecond window. SVM
performed the worst for all cross-validation windows. For the
holdout, the best F1-score was 84% for Decision Tree with
a window size of 40-seconds, with ABayes being only 3%
lower.

F. PERSONALIZED COMPARED TO A GENERALIZED
APPROACH
The LOSO validation were compared between classifiers
and window sizes for a subset of VR-ISS participants
(Table 5). The classifier and window with the highest accu-
racy (62%) was the 30-second window using the Random
Forest classifier.

V. DISCUSSION
The detection system was designed to select personalized
time-series features that best describe the stress response for
a given person, train the system with a post-hoc model and
assess its effectiveness in classifying multiple levels of stress
for real-time deployment. Like empirical studies, statistical
techniques used for stress detection were judged in terms of
objectivity, reliability, and validity [76].

Using a stress questionnaire, this experiment addressed
the objectivity of its stress manipulation (i.e., ground truth
reference of the stressor levels). The stress questionnaire
showed that both the VR-ISS and N-back successfully sepa-
rated participants’ stress into three distinct levels. These same
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FIGURE 7. Frequency of SFS selection for each window size for VR-ISS and N-back during 10-fold cross-validation of the ABayes
classifier. Features with less than 10% in every column were excluded from this figure for brevity. See appendix for the feature
description and software package.

stressor levels were previously reported to show significantly
different physiological measures of stress (see [77]). This
provides assurance that the machine learning classification
is classified on distinct groups of data. The reliability of the
system was assessed by comparing the classification method-
ology on two different tasks involving a standard laboratory

cognitive task (N-back) compared to a complex job-specific
task (VR-ISS), window size of the interval method, classifier
validation techniques, and features selected by the wrap-
per. When comparing both tasks, the classifier performance
was slightly better for the less-complex laboratory task of
N-back. The features selected for each window varied, with

VOLUME 11, 2023 25443



T. T. Finseth et al.: Real-Time Personalized Physiologically Based Stress Detection for Hazardous Operations

FIGURE 8. Validation technique comparison for ABayes during (A) VR-ISS, and (B) N-back tasks. Error bars in standard error.

TABLE 3. Results of the VR-ISS stress classification for different window sizes, classifiers, and validation techniques. Highest window F1-scores are
highlighted.

the 10-20 sec windows having selected SBP mean and DBP
mean more than the 30-40 second windows, suggesting that
physiological timescale may influence feature classification
performance. Since the training model was based on only
one subject’s data, using multiple individuals for each of
those tasks increases the reliability that the findings can be
repeated on future individuals. The results showed a pos-
sible data imbalance; therefore, the F1-score was used for
classifier comparison. Results of cross-validation and holdout
show optimal F1-scores ranging from 82-94% and 73-79%,
respectively for the VR-ISS and 79-96% and 74-81%, respec-
tively for the N-back. For validity, the ABayes algorithm
was tested against other machine learning classifiers; the

personalized model was compared to a generalized model’s
performance and compared to the results of other multi-class
stress detection studies. Results show that the performance of
traditional supervised machine learning classifiers are minor-
to-moderately affected by indirect approximations through
comparison to a benchmark optimal classifier (ABayes).
Comparison of accuracy metrics between other studies had
large caveats due to limited statistical reporting, despite the
F1-score being a more accurate assessment of the classifier
performance. The personalized model was found to perform
better than a generalized model used on an optimized dataset.
Overall, a personalized stress detection system had slightly
lower accuracy atmulti-class detection in comparison to other
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TABLE 4. Results of the N-Back stress classification for different window sizes, classifiers, and validation techniques. Highest window F1-scores are
highlighted.

TABLE 5. Accuracy of the VR-ISS generalized approach using LOSO validation.

studies, albeit this the VR-ISS accuracy is likely affected by
the imbalanced data. The results from the F1-score perfor-
mance suggest the personalized models can be beneficial and
are suitable for deployment in a real-time stress detection
system.

The advantage of comparing traditional classifiers to
ABayes is the direct and transparent connection to probability
modeling. This allows for conditional probability that may
better represent the dataset as a whole since ABayes approx-
imates the optimal Bayes solution by directly estimating the
probability density with multivariate kernel density estima-
tions rather than indirect approximations like softmax func-
tions. This may benefit those seeking a benchmark classifier
that wish to have strict density estimates while minimizing
feature dependencies. Results show that the highest 10-fold
cross validation performance for the VR-ISS across all win-
dows and classifiers was 94% using an ABayes classifier
with a window size of 30-seconds, suggesting the person-
alized approach performed well. The traditional classifiers
underperformed or outperformed ABayes for specific win-
dow sizes, but generally were in a F1-score range of −11 to
+14 of ABayes. This suggests that traditional classifiers were
minor-to-moderately affected by indirect approximations.

When comparing ABayes with the traditional classifiers,
a nuanced approach may be required to achieve the highest
performing stress detection depending on the features, task,
window size, and interpretability of the classifier’s logic.

ABayes, Random Forest, and SVM generally resulted in
higher F1-score for the cross-validation and holdout with a
VR-ISS task. For cross-validation with a VR-ISS task, the
ABayes had the highest performance with an F1-score of
94% whereas the SVM had the highest holdout performance
of 84%. In contrast, the N-back task results for Random
Forest had the highest performance with an F1-score of 98%
whereas the Decision Tree had the highest holdout perfor-
mance of 84%. This suggests that both tasks had good stress
detection performance; however, the data differed such that
the best classifier varied between the tasks. TheDecision Tree
had the lowest performance compared to the other classifiers
for the VR-ISS, but consistently was better for both validation
techniques during the N-back.

Since individuals can respond differently between
tasks/stressors, the detection was assessed between the
N-back and VR-ISS. Results show the F1-score was slightly
higher for the N-back than the VR-ISS. This is expected since
the N-back is a more controlled laboratory task. The VR-ISS
task is more complex and more closely matches the dynamic
task demands faced in training of a real-world task. The high-
est N-back F1-score was for Random Forest with a 30-second
window during 10-fold validation, resulting in 98% compared
to 90% for VR-ISS with same parameters. The range of
Random Forest between VR-ISS and N-Back is 82-94%
and 79-96%, respectively. Similarly, the range of ABayes
between VR-ISS and N-Back is 84-93% and 86-98%,
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TABLE 6. Details of the multiclass datasets, M (±SD).

respectively. Slightly higher accuracy was expected because
the N-back is a more sustained and controlled stressor. Fur-
ther, the N-back task is well validated at eliciting different
levels of mental workload, specifically different levels of
working memory, and physiological stress indices [48], [78].
In contrast, the VR-ISS was a more complex task involving a
variety of stressors including, noise, task load, decreased visi-
bility, and simulated physical threat. This trend also is present
for holdout, which ABayes between VR-ISS and N-Back is
73-79% and 74-81%, respectively. The accuracy for both
tasks was relatively close, suggesting this stress detection
system may be robust in translation to other complex training
tasks.

Directly comparing stress detection approaches is difficult
due to varying factors in the pipeline development or differ-
ences in datasets. The generalized model was found to have
lower accuracy (62%) than the personalized model (82%) on
VR-ISS data (Table 6). While the approaches used different
validation and features (because of the personalized used
SFS), the comparison gives insight into how the models may
perform on unseen data. Furthermore, the generalized had
difficulty with high degree of individual variation in features.
In contrast, the personalized approach was able to account for
them by selecting features unique to that individual. Collect-
ing homogenous data with more participants in the training
dataset may improve the generalized model results.

In comparison to other research on multiclass stress
detection, the 10-fold accuracy of ABayes for VR-ISS and
N-back was 77% and 86%, while the Random Forest for
VR-ISS and N-back was 82% and 98% (Table 6). The N-back
accuracy values are some of the highest recorded values for
multi-class stress detection. Meanwhile the ABayes values
were lower. However, many of these studies used generalized
classifiers, built models with predetermined features, and did

not report an F1-score. As mentioned previously, the LRID
metric suggested a high probability that the VR-ISS dataset
was imbalanced which can affect the accuracy metric. There-
fore, F1-score is favored for imbalanced datasets (reported
as 94% for VR-ISS and 88% for N-back for ABayes with a
30-second window during 10-fold evaluation), yet most other
researchers did not report a F1-score for comparison. Thus,
Table 6 shows a biased accuracy VR-ISS and more compa-
rable accuracy for N-back. Further, since physiological stress
activation can vary between individuals, some studies found
that individual stress detection models had higher classifica-
tion accuracies than general models [81]. Individual models
reported in Table 6 generally show higher 10-fold accuracy
when comparing between studies. Lastly, the SFS wrapper
used within this study’s pipeline gives an added advantage
as supported by a similar wrapper feature selection process
that resulted in high accuracy [38]. Together, this suggests
that model and evaluation parameters should be carefully
considered when comparing machine learning metrics.

Analysis of the window size for feature selection offers
insight into prominent time-series patterns. Both feature
extraction packages used by the pipeline contain measures of
mean, variance, linearity, stationarity, frequency, and entropy.
The features selected were similar for the VR-ISS window
sizes. The most prominent features were the mean, median,
and power spectral density coefficients for the SBP and DBP
signals. EDA mean and power spectral density coefficients
were also prominent, but only for certain window sizes.
These selected features fit the physiological narrative. SBP
and EDA mean and median have been shown to be elevated
during acute stressors [10], [85]. The power spectral density
coefficients overlap the very-low and low frequency range
(0.01-0.05 Hz). For SBP, this frequency range is associated
with sympathetic activation of vascular tone [86]. Similarly,

25446 VOLUME 11, 2023



T. T. Finseth et al.: Real-Time Personalized Physiologically Based Stress Detection for Hazardous Operations

the EDA low frequency range is associated with sympathetic
activation from stress [87]. The selection of SBP and DBP
features suggest that blood pressure may be an overlooked
and underutilized stress biomarker and may be beneficial for
stress detection. It is surprising that HRV frequency-domain
features were not selected, considering that the HRV sym-
pathetic measures are correlated to EDA [88]. Since these
HRV calculations were verified against other HRV software,
the most likely reason HRV features are not selected is due
to significance testing criteria. The stress detection’s feature
selection used a one-wayANOVA to select features, however,
a single-persons HRV metrics rarely rose to the level of
significance between stressor levels. Longer durations for
training data collection may increase the frequency that HRV
metrics are selected.

TheHRVfinding reflects a common issue withmost gener-
alized detection systems, the omission of relevant individual
data in favor of group averages [88]. There is a common
understanding that the psychosocial stress response has a
high degree of heterogeneity [89]. The average subjective
stress of the manipulations showed distinct stressor levels
(as do the HRV physiological response [77]), however, the
variety of individual features selected by the personalized
model indicate that there is meaningful variance in types of
physiological systems activated that are not captured at the
group level. Although HRV is a very common analysis in
stress studies, it would not have been a reliable personalized
feature in this case. Predetermining features for a model risks
dataset bias (i.e., omission of relevant data used to train
the model). These issues need to be addressed in the near
term as the applied value of stress detection systems will be
determined at the level of single participants.

As physiological systems act at different time-scales,
the reliance on features changed as the analysis timeframe
increased. The 30-40 second window had decreased selection
of SBP, EDA, and RESP compared to the 10-20 second
window. For the VR-ISS, the 30-40 second window showed
reliance on DBP median, SBP mean absolute change, and
SBP median. The N-back showed reliance in the 30-40 sec-
ond windows on DBP median, DBP power spectral density
coefficients and RESP median. This is somewhat expected
as high frequency signals like EDA may be indicative of
stress in shorter time intervals but become diluted over larger
windows. These results show that the features selected are
relatively different for the windows and tasks. Window sizes
should be considered with selecting features for stress detec-
tion but may show varied responses for different tasks that
may induce different physical and psychological demands on
the individual. This suggest the generalized stress detection
systems may not be robust for changing stressful scenarios
due to each task evoking a different physiological stress
response.

Past stress detection approaches largely use predetermined
features or create a generalized system without considera-
tion for the time series nature of those features, but also

that those physiological signals may have different responses
(i.e., signal strength through neural activation) in different
individuals. The results show that many different features
may be selected across individuals. Further, the low selec-
tion rates of features such as heart rate, EDA, and RMSSD
indicate some individuals may have strong enough responses
to discriminate multiple levels of stress using those features,
while other individuals may lack the magnitude of change
required for detection, leading to lower classification accu-
racy. A system with those predetermined features may be
limiting the generalizability of the detection system to a
larger population. Future stress detection systems will need
to address individual differences in stress responses in order
to enhance detection capabilities.

The wrapper method was necessary to select features
that could be used to personalize the model with features
best discriminated stress for given window sizes, and sub-
sequently deployed to test real-time data in an adaptive sys-
tem [14], [15], [16]. Without a wrapper, features would have
to be predetermined and would generalize to a broad pop-
ulation when the system is deployed. However, they would
neglect important individual differences in the physiological
stress response. The simplest way to implement an optimized
pipeline is to have the classifier that is within the wrapper
match the classifier that is used during the validation tech-
niques. Other potential solutions are to use wrapper-based
decision trees to combine multiple classifiers to select mutu-
ally agreed relevant features [90]. It may be beneficial for
stress detection systems to continue to develop new methods
of personalization that account for differences in the physio-
logical stress responses between individuals.

While this study primarily used physiological measures to
predict stress, there may also be some benefit to including
other peripheral indicators of physiology or cognitive state,
such as demographics, behavior, gestures, eye movements,
and speech. Past research has shown that when physiologi-
cal activity is measured over a long term, factors including
demographic and lifestyle (e.g., age, sex, physical activ-
ity, alcohol use) show association to HRV [91]. Similarly,
behavior and gestures may indicate an emotional response
from stress, which have been previous use in stress detec-
tion [92]. While pupil dilation is a well-known response
controlled by the autonomic nervous system, eye movements
(e.g., glare, saccade) can be indicators of attention tunneling
from heightened threat appraisal [93]. Lastly, the linguistic
and para-linguistic features of speech and be used to detect
stress [31]. As detection methods continue to improve, stress
detection systems will increasingly move toward mobile and
less intrusive sensors.

The feasibility of the approach described in the study is
largely dependent on the sensors, signal quality, and type of
stress being detected. When designing systems, there must
be a balance between mobility and the system sensors abil-
ity to capture enough variability to model the physiological
stress response. The stress response is complex and involves
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multiple systems (i.e., neural, neuroendocrine, endocrine),
some that respond to acute stress on sort timescales and
some that measure chronic stress over longer time frames.
Further, as noted by a 2022 meta-analysis [19], physiologi-
cal systems are differentially activated by types of stressors
(e.g., acute social stressors are more likely to increase the
hormone cortisol). Since model training data obtains the
best predictive results when it captures similar patterns as
the testing data [94], the variation in both the psychological
and physiological stress response due to task context sug-
gests that models trained using stress signals from one task
(e.g., N-back) made not represent the stress in a different
task (e.g., VR-ISS). For this study which developed acute
stress detection for training in virtual reality, the individ-
ual models were trained and tested using the same task
(i.e., N-back trained models tested N-back data). The low
amount of physical movement allowed for multiple sensors
(e.g., ECG, GSR, BP) while also providing a high degree
of certainty in the stress response measurement. Further,
the approach using real-time preprocessing on signals and
feature selection wrapper was able to exclude or rectify
features that might be affected by signal artifacts or indi-
vidual differences in the physiological response (e.g., less
neural activation than normal). While this study benefited
from high-quality sensors that were able to send the data
to the computer via Bluetooth, future research is needed to
use the personalized approach with embedded and/or lower
quality sensors through enhancement of the preprocessing
and feature selection criteria.

The experimental results reflect the system performance
in real time because the real-time and post-hoc systems use
the same preprocessing, feature selection, and feature extrac-
tion under the same experimental interventions. However,
the classification performance will deteriorate over time in
a real-time system. The greatest limitation of the real-time
system is the inability to retrain the machine learning model
or calibrate over time due to changes in the appraisal of a
stressor (i.e., reappraisal) or the physiological habituation of
biomarkers over repeated exposure. In practice, this makes
model validation of real-time data for stress detection infea-
sible and erroneous unless the system can compensate for
individual changes over time. For example, systems that
measure acute or chronic stress through repeated sampling
of salivary cortisol [95] or sweat cortisol levels [96], could
become continuous stress detection systems by adjusting the
models based on the body’s adaptive physiological changes
in cortisol response and reactivity [97] which may become
dysregulated (blunted or sensitized) from exposure to stress.
Since the stress response is largely dependent on psycholog-
ical appraisal, model calibration has been attempted using
subjective rating [30]. However, additional challenges may
arise from attempting to use subjective questionnaires to
calibrate the models, as subjective stress metrics have been
shown to have a poor correlation to the physiological stress
response [98]. Both the reported real-time system and future
stress detection systems need a way to occasionally adjust

their models to account for how the individual changes over
time.

While this study primarily used young healthy subjects,
physiological systems undergo age-related changes that may
influence the feature selection. For example, there is an
age-related increase in SBP reactivity and parasympathetic
withdrawal to acute stress [99]. Further work is needed to
determine the impact of these changes on stress detection.

Another possible limitation is wrapper overfitting of the
models due to highly correlated variables. The SFS wrapper
fit the model by selecting a combination of features that
resulted in the highest accuracy. However, the wrapper did
not account for the correlation between features. If all the
features are selected from the same sensor, it not only neglects
important physiological responses in other bodily systems
but also places undue reliance on the sole sensor working
correctly [100]. Another limitation is that some estimation
error could have been caused by underspecification, which
occurs when the training process has multiple predictors
(e.g., feature structures) that appear equal, but have diver-
gent performance when deployed [101]. In this study, the
SFS wrapper selected the feature subset with the highest
wrapper accuracy but chose the subset with the least amount
of features if multiple subsets had equal maximal perfor-
mance. These subsets may have had different performance
during cross-validation or holdout, and further research is
needed to evaluate performance when deployed. Another
potential limitation is the ABayes will only be optimal in the
case that the features follow Gaussian distributions because
the classifier used a Univariate Gaussian kernel smooth-
ing parameter [102]. Further, the distributions obtained by
some features, like phasic and tonic EDA, can on occasion
be non-Gaussian. Thus, enhancing the ability of ABayes
to handle non-parametric data may further its utility as a
benchmark. Finally, it is unclear if different classifiers imple-
mented within the features selection wrapper may have
varying feature choices depending on window size (i.e.,
the prominence of selecting features for increasing window
sizes). Future work should evaluate if there is a significant
relationship between classifier wrapper and epoch length.

VI. CONCLUSION
To address the challenges of vast differences between
individual stress response, the time-series nature of physio-
logical signals, this research evaluated the objectivity, reli-
ability, and validity of a real-time stress detection system
using a personalized time-series interval approach. The sim-
ple and complex tasks were able to achieve distinct lev-
els of stress enabling their use as machine learning ground
truth. Analysis of the window sizes provided insight into
which sensors/features were useful for varying time-intervals.
The personalized model was found to have better perfor-
mance than a generalized model. Furthermore, it evaluated
the effect of indirect approximations by supervised machine
learning classifiers evaluated against a benchmark optimal
classifier, ABayes. It was found that indirect approximations
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TABLE 7. List of all features included in the feature extraction, grouped by signal and listed in alphabetical order.
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TABLE 7. (Continued.) List of all features included in the feature extraction, grouped by signal and listed in alphabetical order.

can have a minor-to-moderate effect on classifier perfor-
mance (-11% to +14% of ABayes). The current findings
suggest that a personalized system provides promising per-
formance when compared to past research on multi-class
stress detection. Researchers should be careful about the
selection of HMIs, sensors, and features for models, as they

may not account for inter and intra- individual differ-
ences in stress physiology. Future work will further inves-
tigate these personalized stress detection systems with the
aim of implementing approaches that account for temporal
changes in the individual stress response and physiological
signals.
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TABLE 8. List of all features included in the generalized model and listed
in alphabetical order.

APPENDIX
The features extracted from the physiological signals are
listed in Table 7. All features included in the generalized
model are listed in Table 8.
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