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ABSTRACT Coronary heart disease (CHD) is a dangerous condition that cannot be completely cured.
Accurate detection of early coronary artery disease can assist physicians in treating patients. In this
study, a prediction model called HY_OptGBM was proposed for predicting CHD by using the optimized
LightGBM classifier. To optimize the LightGBM classifier, the hyperparameters of the LightGBM model
were adjusted. In addition, its loss function was improved, and the model was trained using adjusted
hyperparameters. In this study, the hyperparameters of the prediction model were optimized by applying
the most advanced hyperparameter optimization framework (OPTUNA). The improved loss function is
referred to as the focal loss (FL). In this study, a prediction model was evaluated by using CHD data from the
Framingham Heart Institute. To evaluate the performance of the prediction model, various metrics, including
precision, recall, F score, accuracy, MCC, sensitivity, specificity, and AUC, were used. The AUC value of the
proposed model was 97.8%, which was better than that of other comparative models. The results demonstrate
that the rate of early identification of CHD among the general population can be improved by utilizing the
proposed method. This, in turn, could serve to mitigate the costs associated with the medical treatment of
patients suffering from CHD.

INDEX TERMS Coronary heart disease, hyperparameter optimization, LightGBM, loss function, machine
learning, OPTUNA.

I. INTRODUCTION Early detection of CHD can improve the cure probability

CHD is a prevalent cardiovascular disorder resulting from the
buildup of atherosclerotic plaques in the coronary arteries,
leading to a reduction in blood flow to the heart muscle. This
condition presents a range of symptoms, including chest pain
or angina, shortness of breath, palpitations, and heart failure.
In severe cases, CHD may lead to a heart attack, which can
result in permanent damage to the heart muscle and have a
profound impact on an individual’s quality of life. Therefore,
it is imperative to recognize and manage CHD through appro-
priate medical intervention and lifestyle modifications [1].
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and can decrease the cost of treatment. Numerous machine
learning algorithms and data mining technologies have been
widely used in the medical field [2], [3], [4], [5], [6] in recent
years, owing to advancements in machine learning algo-
rithms and a significant reduction in the cost of data storage.
Data mining technology has become essential for healthcare
data mining, such as disease diagnosis, auxiliary diagnosis,
drug mining, and biomedicine. Through data mining technol-
ogy, hidden knowledge about diseases can be extracted from
large quantities of unstructured medical data, disease predic-
tion models can be developed, and results can be analyzed.
Health organizations face tremendous challenges in pro-
viding high-quality and affordable healthcare. A hospital
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provides quality healthcare services that require physicians
to have comprehensive knowledge and a correct diagnosis
for the patient to avoid wasting healthcare resources due to
inaccurate diagnoses. Data mining technology can perform
efficiently and can play a crucial role in clinical cases. The
optimal hyperparameters [7], [8] for any classification algo-
rithm significantly affect its performance. The accuracy of
the classification algorithm can be improved by selecting the
optimal set of hyperparameters. In this study, a state-of-the-
art hyperparameter optimization framework (OPTUNA) [9]
was employed to obtain optimal hyperparameter values for
the LightGBM model. Therefore, in this study, the most suit-
able set of hyperparameters was determined from the avail-
able hyperparameters. Hyperparametric optimization can be
accomplished by different methods, such as random and grid
searches. Another method is the OPTUNA hyperparametric
search. Because the number of hyperparameters in the Light-
GBM significantly affects its performance, conventional ran-
dom and grid search methods do not learn from the previous
optimization, which wastes considerable time and is inef-
ficient. The OPTUNA framework continuously learns from
previous optimizations and adjusts the hyperparameters as
necessary. Therefore, OPTUNA was chosen in this paper for
hyperparameter optimization.

The loss function also affects the model accuracy [10].
In this paper, the focal loss function was proposed based
on the cross-entropy loss by adding the category weight «
and the sample difficulty weight modulating factor y. The
aim of this study was to address the problem of unbalanced
proportions of positive and negative samples. Additionally,
the focal loss function can improve the overall performance
of the model. In this study, the default loss function of the
LightGBM [11] model was revised using the focal loss func-
tion and applied to predict CHD. The key contributions of this
study are as follows:

1. This paper proposed a powerful classification model
(HY_OptGBM) for predicting CHD. This model is based
on optimizing the hyperparameters of LightGBM with the
state-of-the-art hyperparameter optimization framework
OPTUNA and the revision of the loss function of Light-
GBM by using the focal loss function.

2. In this study, a focal loss function was proposed.
By adjusting the category weight « and sample difficulty
weight modulating factor y, the problem of unbalanced
positive and negative sample proportions was addressed,
and the model’s overall performance was improved.

3. Data preprocessing and hyperparameter adjustment tech-
niques were used to predict CHD.

Il. RELATED WORKS

Artificial intelligence (AI) has been applied in various indus-
tries owing to rapid advancements in information technology.
Numerous academics have used machine learning technol-
ogy to predict and study diseases. Goldman et al. [12] pro-
posed an improved artificial neural network (ANN) model for
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predicting CHD. They used the Framingham Heart Institute
dataset to validate the experiment, and the results demon-
strated that the ANN model had greater sensitivity and speci-
ficity in predicting outcomes than the Framingham Risk
Score (FRS) (used to calculate an individual’s risk of devel-
oping CHD over the next ten years based on cholesterol levels
and noncholesterol factors). However, the area under the ROC
curve (AUC) was lower than that for FRS. Receiver operating
characteristic (ROC) curves were used to evaluate the clas-
sification performance of the machine learning models. The
proposed ANN model yielded significantly better results than
FRS for precision-recall measures. In 2020, Du et al. [13] pre-
dicted CHD in patients with hypertension based on electronic
health record data by using machine learning technology.
They divided the CHD dataset into a training set and a test
set; then, they used a variety of machine learning algorithms
to train the model on the training set and the test set to
evaluate the model’s performance and compared the results
with the FRS score. The experimental results demonstrated
that the highest AUC value (0.943) was obtained using the
XGBoost for the test set. They compared other machine
learning algorithms. The k-nearest neighbor algorithm had
an AUC of 0.908, the random forest algorithm had an AUC
of 0.938, and the logistic regression algorithm had an AUC
of 0.865. They analyzed the relevant features and found
that time-related features improved the model’s performance.
To predict CHD, Kim and Kang [14] proposed a neural
network algorithm that used feature correlation analysis (NN-
FCA). In their experiment, they first selected and ranked
the essential features relevant to predicting CHD and then
input them into the neural network algorithm to obtain the
final prediction results. The results of the experiment demon-
strated that in the dataset they used (a total of 4146 patients,
including 3031 with low CHD risk and 1115 with high CHD
risk), their proposed neural network algorithm AUC value
was 0.749 + 0.010, which is higher than the AUC value of
the FRS model (0.393 £ 0.010). Krittanawong et al. [15]
predicted cardiovascular disease, primarily CHD and stroke,
by using machine learning algorithms in 2020. For CHD
prediction, the boosting algorithm achieved an AUC value
of 0.88. For stroke prediction, the SVM algorithm yielded
an AUC value of 0.92, and the CNN prediction yielded an
AUC value of 0.90. These results demonstrate the promise
of machine learning algorithms for predicting cardiovascu-
lar disease. In 2021, Akella and Akella [16] proposed a
solution for predicting coronary artery disease (CAD). They
applied six machine learning algorithms to predict CAD on
the “Cleveland Dataset” to achieve a feasible clinical tool for
CAD detection. They used machine learning algorithms that
were over 80% accurate and neural network algorithms that
were over 93% accurate. This summary presents retrospective
research on the prediction of CHD using machine learning
and data mining technology. Muhammad et al. [17] devel-
oped CAD prediction models by using CAD datasets from
two general hospitals in Kano State-Nigeria. They applied
this dataset to support vector machines, K-nearest neighbors,
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TABLE 1. State-of-the-art methods for CHD. Note: Acc indicates accuracy.

Year Authors Research Title Method Performance Evaluation
2017  Jae Kwon Kim et al. Neural Network-Based Coronary Heart NN-FCA NN-FCA model AUC is
Disease Risk Prediction Using Feature 0.749+0.010
Correlation Analysis
2019  Juan-Jose Beunza et al. Comparison of machine learning algorithms  SVM+NN NN model AUC is 0.71
for clinical event prediction (risk of coronary and SVM model AUC is
heart disease) 0.75
2019  Tsatsral Marbayasgalan Reconstruction error-based deep neural AE-DNN  AE-DNN model acc is
et al. networks for coronary heart disease risk 0.8634, precision is
prediction 0.9137, recall is 0.8290,
F-score is 86.91 and
AUC is 0.867
2020  Zhenzhen Du et al. Accurate Prediction of Coronary Heart XGBoost XGBoost model AUC is
Disease for Patients With Hypertension 0.943
From Electronic Health Records With Big
Data and Machine-Learning Methods:
Model Development and Performance
Evaluation
2021  Yehong Liu et al. Systemic immune-inflammation index Gensini- Gensini-score’s
predicts the severity of coronary stenosis in score sensitivity is 0.71 and
patients with coronary heart disease specificity is 0.86
2021  Aravind Akella et al. Machine learning algorithms for predicting NN NN model acc is 0.93 and
coronary artery disease: efforts toward an recall is 0.93
open source solution
2021  LJ Muhammad et al. Machine Learning Predictive Models for SVM+KN  RF model acc is 0.9204,
Coronary Artery Disease N+RF+NB NB model specificity is
+GB+LR 0.9240, SVM  model
sensitivity is 0.8734 and
RF model AUC is 0.9220
2022  JoonNyung Heo et al. Prediction of Hidden Coronary Artery EGB+LR EGB model AUC is
Disease Using Machine Learning in Patients 0.763 and LR model
With Acute Ischemic Stroke AUCis 0.714
2022  Ch Anwar Ul Hassan et  Effectively Predicting the Presence of KNN+RF+ GBT and MLP model acc
al. Coronary Heart Disease Using Machine GBT+ML  is 0.95, RF model acc is
Learning Classifiers P+SVM 0.96

random forests, naive Bayes, gradient boosting trees, and
logistic regression algorithms. The performance of the model
was evaluated in terms of accuracy, specificity, sensitivity,
and ROC curve. For accuracy, the random forest algorithm
was the best model with 92.04%; for specificity, the naive
Bayes algorithm was the best model with 92.40%; for sen-
sitivity, the support vector machine algorithm was the best
model with 87.34%; for the ROC curve, the random forest
model was the best model with 92.20%. The experimental
results demonstrated that the random forest algorithm was
the best model in terms of accuracy and ROC curve. Hassan
et al. [18] used machine learning algorithms to predict CHD
by using various features to improve the accuracy of the
prediction model. Among the 11 classifier algorithms used,
the gradient boosting tree and the multilayer perceptron had
an accuracy of 95%, and the random forest algorithm had an
accuracy of 96%. The prediction results showed that using
feature combinations can effectively improve the accuracy of
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the algorithms. Table 1 summarizes studies related to CHD
prediction.

Some retrospective studies on machine learning and data
mining techniques for predicting CHD have been conducted.
The above study showed that the accuracy obtained using
machine learning algorithms and neural network models to
predict CHD was poor. Therefore, there is still room for
improvement in the use of machine learning to predict CHD.
To obtain a better prediction accuracy, this study proposes
a model named HY_OptGBM, which uses a state-of-the-
art hyperparameter optimization framework (OPTUNA) to
optimize the hyperparameters of LightGBM and improve its
loss function to predict CHD.

Ill. MATERIALS AND METHODS

A. DATASET

The CHD dataset, which contains 4240 records from the
Framingham Heart Institute, was used to validate the model.
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TABLE 2. Description properties.

SN Name Description

1 Sex Male=1; female=0 (nominal)

2 Age Age of the patient (continuous)

3 Education 0: High school degree, 1-4: a college degree or higher
4 CurrentSmoker Smokes (1=yes, 0=no)

5 CigsPerDay Average daily number of cigarettes smoked

6 BPMeds Takes antihypertension drugs (1=yes; 0=no)

7 PrevalentStroke Stroke (1=yes; 0=no)

8 PrevalentHyp Suffers from high blood pressure (1=yes; 0=no)
9 Diabetes Suffers from diabetes (1=yes; 0=no)

10 TotChol Total cholesterol level (continuous)

11 SysBP Systolic blood pressure (continuous)

12 DiaBP Diastolic blood pressure (continuous)

13 BMI Body mass index (continuous)

14 HeartRate Heart rate (continuous)

15 Glucose Glucose level (continuous)

16 TenYearCHD (Class) CHD within ten years (1=yes; 0=no)

A total of 15.188% of the records were for patients with CHD
(644 cases), and 84.812% were for normal cases (3597 cases).
Among the CHD patients, 53.260% were men and 46.740%
were women. The attributes of the dataset are listed in Table 2.

B. DATA PREPROCESSING
Data preprocessing is necessary for machine learning algo-
rithms and data mining technology. the performance of
machine learning algorithms depends on the data structure
and quality. Missing rows were removed during the data
preprocessing stage [20]. Then, the outliers were processed
using the statistical 36 principle, which uses the interquartile
range (iqr) to detect outliers and extreme values. The iqr is
a method for measuring the change in values in a dataset.
For this analysis, we assumed that these outliers were due to
measurement tool accuracy and other unrelated phenomena.
To detect outliers, the data were divided into three quar-
tiles, namely, Q1, Q2 and Q3, where Q1 and Q3 were the
boundary values, and the value of IQR is Q3-Q1. The upper
boundary B, value and the lower boundary B; value were
calculated using the following equations.

B; = Q01—1.5%I0QR @))
B, = 03+1.5%I0OR 2

According to Equations (1) and (2), data larger than the B,
value or smaller than the B; value were determined to be
outliers. In this paper, the synthetic minority oversampling
technique (SMOTE) [21] was used to reconstruct the data
distribution and to balance the data. In the present study,
a systematic analysis of the data was conducted to detect any
abnormalities, such as abnormal values, outliers, or missing
data points. This evaluation was imperative for establishing
the validity and reliability of the data. Moreover, heatmap
plots and correlation plots were utilized to graphically rep-
resent the interrelationships between the variables in the
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dataset. These graphical representations facilitated a deeper
understanding of the relationships between the variables and
informed the modeling process. To assess the model’s gener-
alizability and robustness, the dataset was divided into three
distinct subsets: training, testing, and validation sets, with
proportionate allocations of 80%, 10%, and 10%, respec-
tively. This division of the dataset was crucial for evaluating
the model’s performance and ensuring that the results were
robust and statistically significant. The thorough analysis and
division of the data in this study laid a solid foundation for
the subsequent analysis and modeling. The training set was
used to train the model, the test set was used to evaluate
the performance of the model, and the validation set was
used to verify the hyperparameters of the model. The random
parameter seed was set to 42.

C. EVALUATION METRICS

In this study, six machine learning algorithms were used
for comparison with the proposed model, and a 10-fold
cross-validation method was implemented to prevent algo-
rithm overfitting. Machine learning algorithms, including the
decision tree (DT) [22], random forest (RF) [23], CatBoost
(CB) [24], XGBoost (XGB), AdaBoost (ADA) [25], bagging
(BG) [26] and LightGBM (GBM) algorithms, were com-
pared. In the following section, the evaluation metrics for the
machine learning algorithms are described.

In this study, the sensitivity, specificity and accuracy of
each algorithm were calculated. The formulas below repre-
sent the mathematical equations used for assessing the per-
formance of the algorithms.

Sensitivity = 3)
vt TP + FN
f' . ]N ( )
Specificity = N 4

23369



IEEE Access

H. Yang et al.: Predicting Coronary Heart Disease Using an Improved LightGBM Model

TP
TPR= ———— (5)
TP + FN
FP
FPR= ——— (6)
FP + TN

Among the four essential elements, TP indicates true pos-
itives, TN represents true negatives, FP represents false-
positives, and FN represents false-negatives. Sensitivity
denotes the number of positive factors correctly identified
by the classifier, specificity denotes the number of negative
factors correctly identified by the classifier, TPR denotes the
actual positive rate, and FPR denotes the false-positive rate.

In this study, precision, recall, f-score, Matthew’s corre-
lation coefficient (MCC), accuracy, AUC, receiver operating
characteristic (ROC) curve, and precision-recall curve (prc)
metrics were used to evaluate the performance of different
classifiers. Precision denotes the proportion of samples pre-
dicted by the classifier that belong to the positive class, and
the closer to one the value is, the better the classification
effect. Recall denotes the proportion of categories correctly
predicted as positive by the classifier, and the closer to one
the value is, the better the classification result. The F-score is
defined as the harmonic mean of the precision and recall. The
MCC is used to evaluate the effectiveness of the binary and
multiclass models. Accuracy denotes the proportion of cor-
rect classifier predictions (positive and negative cases), and
the closer to one the values are, the better the classification
results. The AUC is defined as the area under the ROC curve.
The ROC curve is the receiver operating characteristic curve,
and the larger the area under the curve is, the better the clas-
sifier classification effect. The formulas below represent the
mathematical equations used for assessing the performance
of the algorithms.

TP + TN
Accuracy = @)
TP+ TN + FP + FN
. TP
Precision = —— ®)
TP 4 FP
TP
Recall = —— 9
TP 4+ FN

F — Measure

oy Precision % Recall (10)

Precision + Recall
(TPxTN) — (FP % FN)

~ J(TP+FP) (TPXFN) (IN +FP) (IN + FN)
(1D

Mcc

D. LIGHTGBM
LightGBM is an ensemble learning algorithm based on deci-
sion trees. It is more powerful and faster than the XGBoost
algorithm, which requires less memory, has better accu-
racy, and supports parallel computing. The major features of
LightGBM are gradient-based one-sided sampling (GOSS),
mutually exclusive feature bundling (EFB), and differential
acceleration that uses a histogram algorithm [27].

The basic concept of one-sided gradient sampling (GOSS)
is to reserve samples with large gradients and randomly select
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samples with small gradients in proportion to their size. The
fundamental idea of the exclusive feature bundling (EFB)
algorithm is to bundle two nonmutually exclusive features.
This binding reduces the number of features and the time
complexity, thereby improving the computational effective-
ness of the model.

The basic concept of the histogram algorithm [28], [29]
is as follows. First, the continuous floating-point eigenval-
ues are discretized into k integers, and then a histogram
of width k is constructed. When traversing data, statistics
are accumulated in a histogram based on discrete values as
indices. The continuous floating-point eigenvalues are first
discretized into k integers, and then a histogram of width
k is constructed. Fig. 1 shows the concept of the histogram
algorithm.

—)

SOIN)RAJ#
SaINJeaJH

\-'_4

#data

il
il

#bins
FIGURE 1. Histogram algorithm.

The LightGBM algorithm applies parallel computing to
improve the computing efficiency and is mainly divided
into the feature parallel, data parallel and voting parallel
algorithms. The main idea behind feature parallelism is that
different machines separately search for the best split points
on different sets of features, and then the best split points
are synchronized among the machines. XGBoost utilizes this
method of feature parallelism. However, this method has a
significant drawback. It divides the data virtually, with each
machine containing different data, and then uses different
machines to find the optimal split points of different features,
which adds complexity due to the need to communicate the
split results to each machine. LightGBM does not perform
vertical data partitioning; instead, it retains all training data
on each machine and performs the partition locally after
obtaining the best partition plan, thus reducing unnecessary
communication. The detailed process is shown in Fig. 2.

Traditional data parallelism strategies mainly involve hor-
izontally partitioning data, allowing different machines to
first construct histograms locally and then perform a global
merge. Finally, the optimal split points are found on the
merged histogram. This data division process has a major
drawback, excessive communication overhead, if point-to-
point communication is used. LightGBM uses scatter-gather
reduction in its data parallelism approach, distributing the
task of merging histograms among different machines to
reduce communication and computation. It also uses his-
togram differences to further reduce communication by half.
The specific process is shown in Fig. 3.
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FIGURE 3. Data parallelism diagram.

Parallel optimization -voting based parallel

Local Histograms

Local Voting Global Voting for selected features

Document]

Document2

Document3
_ Local top features
Document4

Document5

Global top features

—
il il
|I|||||I| I|||||I|

,,,,,,,,,,,,, Global aggregate

Global top features

Global Histograms
for selected features

FIGURE 4. Voting-based parallel diagram.
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Voting-based data parallelism further optimizes the com-
munication cost in data parallelism, making the communica-
tion cost constant. When the data volume is large, using the
voting parallelism approach only merges the histograms of
some features to reduce the communication volume, resulting
in very good acceleration effects. The specific process is
shown in Fig. 4.

E. FOCAL LOSS FUNCTION
In this research, a proposal for a focal loss function and its
application to the default loss function of the LightGBM
model are presented. The successful implementation of the
focal loss function is facilitated through a four-step process
that outlines the integration procedure.

STEP 1: This study proposes adding a modulating factor
y and a category weight o (¢ < 1) to the cross-entropy loss
with a tunable focusing parameter y > 0 and defining the
focal loss function, as shown in Equation (12).

FL (pr) = —a; (1 — p)” log (pr) 12)

STEP 2: The first-order derivative of the focal loss is calcu-
lated.
The first-order derivative of the focal loss is calculated
using the chain rule, as shown in Equation (13).
oFL OFL 9 )
9z o op 0,
ypilog (pr) + pr — 1)
pr (1 —py)

=ao (1 —p)” (

xyxps (1 —py)
=a;y (1 —p)Y (ypilog (1) +pi — 1) (13)

STEP 3: The second-order focal loss derivative is calculated.

In step 3, the chain rule is used to calculate the second-
order derivative. The focal loss second-order derivative chain
rule is given by Equation (14).

82FL_8(8FL) ] (8FL) ap, Op

—==—\\——)==|——)x—x= (U4
972 0z \ 0z op: 0z ap 0z

For the convenience of calculation, this study defines the
symbols u and v; therefore, according to Equation (13), the
following equations are obtained.

oFL

=uxv (15)

0z
u=ayyl—p)’ (16)
v =yplog (p:) +pr — 1 (7

Therefore, the second-order derivative of the focal loss
function is as follows.

92FL (Bu Bv) op; dp
= — Xv+uXx — ) X — X —
972 p: ap; p oz
= (—vyey (1= p)? ™+ uylog (o) + uy +u)
Xy xpr (1 —py) (18)
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STEP 4: Finally, this study implements the focal loss function
to revise the default loss function of LightGBM.

The above four steps are the major steps to improve the
default loss function of the LightGBM model. Algorithm 1
provides a concise, step-by-step explanation of the proposed
loss function. The detailed theoretical derivation of the pro-
posed loss function can be found in the appendix.

Algorithm 1 Focal Loss

Step 1: Define the focal loss.

Add a modulating factor y and a category weight o to the
cross-entropy loss, with tunable focusing parameter y >= 0.
Step 2: Calculate the focal loss first-order derivative.

Step 3: Calculate the focal loss second-order derivative.

Step 4: Implement the focal loss function to override the
default loss function of LightGBM.

F. OPTUNA: A FLEXIBLE, EFFECTIVE AND STABILIZED
HYPERPARAMETRIC OPTIMIZATION FRAMEWORK

In 2019, Takuya Akiba proposed OPTUNA, an open-source
library for hyperparametric optimization. It is capable of
searching for optimal hyperparameters based on the valida-
tion scores returned by the model [30], [31], [32]. OPTUNA
implements sampling algorithms, such as independent sam-
pling and relation sampling, and an asynchronous successive
halving algorithm (ASHA) for pruning the search space.
Hyperparameters have a significant impact on the accuracy
of machine learning models. Hyperparameter optimization
is an essential step in machine learning. In this study, the
hyperparameters of the LightGBM were optimized by using
OPTUNA. Next, this study describes the OPTUNA design
features in three ways.

1) DEFINE-BY-RUN STYLE API

OPTUNA employs a new define-by-run style, which is
very convenient for users to optimize the hyperparameters
of machine learning algorithms. OPTUNA [9], [33] hyper-
parameter optimization is characterized by minimizing the
objective function given a set of hyperparameters. OPTUNA
builds the target function step-by-step by interacting with a
trial object and dynamically creates the search space by using
the trial object during the execution of the target function (a
trial object is a special trace object of OPTUNA that uses
the name and range of the hyperparameter to search for the
optimal value).

2) EFFICIENT PRUNING AND SAMPLING MECHANISM
Pruning was used to define the process of unpromising
wind-up trials. It is also referred to as automated early stop-
ping [34]. This process is divided into two sections: 1) peri-
odic monitoring of the median value of the objective function
and 2) pausing the trials that do not fit the predefined proba-
bility. The Hyperopt, Spearmint, and SMAC hyperparameter
optimization algorithms are not available.
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TABLE 3. Description properties.

SN Parameter Default

1 verbosity 1

2 boosting_type gbdt

3 metric auc

4 objective binary: logistic
5 num threads max

The sampling method can be divided into relational sam-
pling [35] and independent sampling [36]. Relational sam-
pling takes advantage of the correlations between parameters.
Independent sampling did not account for the correlations
between the parameters. The cost-effectiveness of indepen-
dent and relational sampling depends on the task and the
environment. OPTUNA combines it with these two sampling
algorithms, which means it can manage independent sam-
pling methods such as TPE; therefore, convergence is faster
and more efficient.

3) EASY SETUP

When using machine learning models, the simpler the setup
is, the better, especially for large-scale training and large-
scale datasets. All of the above make OPTUNA an excellent
hyperparametric optimization framework. The architecture
of the optimized LightGBM model is illustrated in Fig. 5.
In Fig. 5, each worker performs an instance of the objective
function during the search.

4) PROPOSED ALGORITHM: HY_OPTGBM
Data preprocessing has a significant impact on the perfor-
mance of machine learning algorithms. First, the dataset
is preprocessed, the LightGBM model hyperparameters
are optimized, and the loss function is improved. Sec-
ond, the data in this paper are trained utilizing the
improved LightGBM. The optimization of the hyperparam-
eters was accomplished through the use of the OPTUNA
framework, and the focal loss function was employed as
the improved loss function. Ten hyperparameters, includ-
ing max_depth, lambda_I1, lambda_I2, num_leaves, learn-
ing_rate, n_estimators, feature_fraction, bagging_fraction,
bagging_freq and min_child_samples, were chosen for
parameter optimization. Although these ten hyperparameters
were chosen for optimization, some of the default hyperpa-
rameters of LightGBM were retained, as shown in Table 3.
Table 4 shows the ten hyperparameters optimized using
OPTUNA. max_depth limits the maximum depth for the tree
model and is also used to control overfitting. lambda_11 is for
L1 regularization; lambda_12 is for L2 regularization. L1 and
L2 can also decrease the model complexity and avoid overfit-
ting. num_leaves represents the maximum number of leaves
in a tree. For learning_rate, we know that a higher learn-
ing rate allows the model to converge faster but decreases
the accuracy. N_estimators represents the number of control
decision trees. feature_fraction is used for randomly selecting
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a subset of features; this parameter can also be used to speed
up training and address overfitting. bagging_fraction is used
to obtain the percentage of training samples used to train
each tree, and this parameter can also be used to speed up
training and to address overfitting. bagging_freq represents
the frequency for bagging, where default=0,0 means dis-
able bagging, with k means performing bagging at every k
iteration. For min_child_samples, the value depends on the
number of samples in the training dataset. Fig. 6 represents
the whole experimental flow chart.

IV. EXPERIMENTAL RESULTS

A. THE RESULTS FROM EXPLORATORY DATA ANALYSIS

In this study, exploratory data analysis [37] was used to
understand the preprocessed dataset while removing null val-
ues and outliers, and then the proposed algorithm and other
machine learning algorithms were applied to this dataset.

Fig. 7 shows a heat diagram [39] of the feature correlation.
The darker the color of this diagram is, the stronger the
correlation between the features, where a value less than zero
denotes a negative correlation and zero denotes no correlation
between two features.

Fig. 8 shows boxplot charts [38] that depict the use of the
interquartile range to detect and remove outliers from the
data. After filtering, there were no outliers in the dataset.
Then, the dataset was prepared for further analysis.

B. RESULTS OF THE EXPERIMENT

In this study, the LightGBM model was used as the machine
learning model. First, the OPTUNA framework was used
to optimize its hyperparameters, and these hyperparameters
were used for the LightGBM model. Second, the default loss
function of the LightGBM model was improved, and finally,
10-fold cross-validation [40], [41], [42] was used to obtain
the AUC scores of LightGBM.

Table 5 presents an evaluation of the performance of the
algorithm by using the sensitivity, specificity, and accu-
racy evaluation metrics. The classification algorithms were
the decision tree (DT), CatBoost (CB), XGBoost (XGB),
AdaBoost (ADA), bagging (BG), LightGBM (GBM) algo-
rithms, and the proposed HY_OptGBM classification algo-
rithm. Table 5 presents the comparison of the results obtained
with and without the FL function. The experimental results
indicate that the proposed algorithm demonstrates superior
sensitivity, specificity, and accuracy compared to other clas-
sification algorithms, with higher values for these evaluation
metrics.

Table 6 displays the results of the experiment conducted on
the proposed algorithm in comparison with other algorithms,
using the precision, recall, and F-score as performance eval-
uation metrics. According to Table 6, a model with improved
classification performance compared to other models was
introduced. The proposed method achieved a precision of
0.963, a recall of 0.897, and an F-score of 0.929.
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TABLE 4.

LightGBM hyperparameters.

SN Name Range Tuned parameters
1 max_depth [1~200] 117
2 lambda_11 [1e-8~10.0] 0.0011559055
3 lambda 12 [1e-8~10.0] 0.0131888932
4 num_leaves [1~512] 346
5 learning_rate [1e-8~1.0] 0.0219999851
6 n_estimators [200~3000] 726
7 feature fraction [0.1~1.0] 0.5066181469
8 bagging fraction [0.1~1.0] 0.5600164173
9 bagging_freq [1~10] 7
10 min_child samples [1~100] 2
TABLE 5. Classification results of different classification algorithms. Wo/FL indicates without FL and with OPTUNA; W/FL indicates with FL and with
OPTUNA.
Classifier Algorithm Sensitivity Specificity Accuracy
ADA 0.763 0.777 0.769
DT 0.778 0.784 0.780
BG 0.847 0.900 0.873
GBM 0.859 0.940 0.898
XGB 0.866 0.937 0.900
CB 0.869 0.937 0.902
Proposed model (Wo/FL) 0.887 0.963 0.924
Proposed model (W/FL) 0.897 0.963 0.930
TABLE 6. Precision, Recall and F-score.
Classifier Algorithm Precision Recall F-score
ADA 0.785 0.763 0.773
DT 0.793 0.778 0.785
BG 0.883 0.828 0.855
GBM 0.938 0.859 0.897
XGB 0.936 0.866 0.899
CB 0.936 0.869 0.901
Proposed model (Wo/FL) 0.962 0.887 0.923
Proposed model (W/FL) 0.963 0.897 0.929
TABLE 7. AUROC, AUPRC and MCC.
Classifier Algorithm AUROC AUPRC MCC
ADA 0.769 0.721 0.539
DT 0.783 0.732 0.565
BG 0.872 0.832 0.745
GBM 0.899 0.879 0.800
XGB 0.901 0.879 0.803
CB 0.902 0.880 0.806
Proposed model (Wo/FL) 0.932 0.917 0.851
Proposed model (W/FL) 0.978 0.983 0.861

Table 7 shows an evaluation of the model based on
three evaluation metrics: AUROC, AUPRC, and MCC. The
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AUROC of the HY_OptGBM model was 0.979, the AUPRC
was 0.983, and the MCC was 0.861.
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TABLE 8. The result of experimental FL function (when « ranges from 0 to 0.9 and y ranges from one to three).

alpha gamma Sensitivity Specificity Accuracy Precision Recall F score AUROC AUPRC MCC
0 0.887 0.956 0.921 0.956 0.887 0.920 0.976 0.981 0.844

1 0.897 0.963 0.930 0.963 0.897 0.929 0.978 0.983 0.861

None 2 0.881 0.953 0916 0.953 0.881 0915 0.978 0.981 0.835
3 0.868 0.960 0913 0.958 0.868 0911 0.976 0.981 0.830

0 0.812 0.986 0.896 0.984 0.812 0.890 0975 0.979 0.807

1 0.818 0.980 0.896 0.977 0.818 0.891 0975 0.98 0.806

0.1 2 0.815 0.983 0.896 0.981 0815 0.890 0975 0.979 0.806
3 0.803 0.983 0.890 0.980 0.803 0.883 0.973 0978 0.795

0 0.844 0.976 0.908 0.974 0.843 0.904 0975 0.980 0.824

1 0.863 0.976 0917 0975 0.863 0915 0.976 0.980 0.842

02 2 0.831 0.983 0.904 0.981 0.832 0.900 0.976 0.981 0.82
3 0.828 0.980 0.901 0.977 0.828 0.896 0975 0.980 0.814

0 0.856 0.960 0.906 0.958 0.856 0.904 0.974 0.979 0818

1 0.856 0.966 0.909 0.964 0.856 0.907 0975 0979 0.825

03 2 0.850 0.970 0.908 0.967 0.850 0.905 0975 0.980 0.823
3 0.837 0973 0.903 0971 0.837 0.899 0.974 0979 0.815

0 0.868 0.960 0913 0.958 0.868 0911 0.976 0.980 0.830

1 0.865 0.963 0913 0.961 0.865 0911 0975 0.980 0.830

04 2 0.862 0.967 0913 0.965 0.862 0910 0.976 0.981 0.831
3 0.856 0.966 0.909 0.964 0.856 0.907 0975 0.98 0.825

0 0.875 0.953 0913 0.952 0.875 0912 0.976 0.981 0.829

1 0.887 0.963 0.924 0.962 0.887 0.923 0.976 0.981 0.852

0.5 2 0.884 0.963 0.922 0.962 0.884 0.921 0.977 0.982 0.849
3 0.881 0.960 0919 0.959 0.881 0918 0.976 0.981 0.842

0 0.894 0.957 0.924 0.956 0.894 0.924 0.977 0.982 0.851

1 0.887 0.950 0917 0.949 0.887 0917 0.976 0.981 0.837

0.6 2 0.888 0.953 0919 0.953 0.888 0919 0.975 0.981 0.841
3 0.878 0.947 0911 0.946 0.878 0.910 0.975 0.981 0.825

0 0.896 0.927 0911 0.928 0.897 0912 0.975 0.98 0.823

1 0.897 0.94 0918 0.940 0.897 0918 0.976 0.981 0.837

07 2 0.900 0.943 0.921 0.944 0.900 0.922 0.976 0.981 0.843
3 0.891 0.940 0915 0.940 0.891 0915 0.975 0.981 0.831

0 0.925 0.900 0913 0.907 0.925 0916 0.975 0.980 0.826

1 0912 0.897 0.905 0.904 0913 0.908 0.974 0.980 0.809

08 2 0.916 0.910 0913 0.916 0.916 0.916 0.973 0979 0.826
3 0919 0.900 0.909 0.907 0918 0913 0.973 0.979 0.819

0 0.956 0.874 0916 0.889 0.956 0.921 0.974 0.979 0.834

1 0.938 0.880 0.909 0.892 0.938 0915 0.974 0.979 0.820

09 2 0.950 0.860 0.906 0.878 0.950 0913 0.973 0978 0.816
3 0.941 0.854 0.899 0.872 0.941 0.905 0.970 0.976 0.799

Fig. 9 shows the ROC curve, which displays the trade-off this curve is the AUROC. In Fig. 9, the AUROC value of
between the true positive rate (TPR) and false-positive rate our proposed algorithm was 0.978, which is better than the
(FPR) across different decision thresholds, and the area under AUROC values of the other algorithms.
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FIGURE 7. Heat matrix plot of the correlation of the eigenvalues.

Fig. 10 shows the precision-recall curve, demonstrating
the relationship between precision and recall at varying deci-
sion thresholds. The area under the precision-recall curve
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(AUPRC) measures its performance, with the proposed algo-
rithm exhibiting an AUPRC value of 0.983, which surpasses
the AUPRC values of the other algorithms.
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TABLE 9. Comparison of CHD prediction studies using the FHS dataset (2018-2022) (sen denotes sensitivity, spe denotes specificity, acc denotes accuracy,
pre denotes precision, rec denotes recall, and f-se denotes f-score).

Dataset Method Evaluation Metrics Evaluation Results
Orit Goldman et al. [12] FHS ANN auroc, sen, spe ANN model has higher performance than FRS model
Juan-jose Beunza et al. [43] FHS SVM auroc auroc=0.75
Meeshanthini V Dogan et al. [44] FHS RF acc, sen, spe acc=0.78, sen=0.78, spe=0.80
Meeshanthini V Dogan et al. [45] FHS Epit+Gen sen, spe sen=0.79, spe=0.75
Steven Simon et al. [46] FHS LR auroc auroc=0.71
S. Prabu et al. [47] FHS GPR+KRR rec, f-se, acc acc=0.86, rec=0.902, f-se=0.821
proposed method FHS HY_OptGBM roc, spe, acc, pre, rec, -  acc=0.930, sen=0.897, spe=0.963, f-se=0.929, pre=0.963,
se, auroc, aupre, mec rec=0.897, auroc=0.978, auprc=0.983, mcc=0.861
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The loss function graph of the HY_OptGBM model is
presented in Fig. 11. The proposed FL function can be altered
to impact the outcome of the loss function through changes in
the weight parameter « and the adjustment modulating factor
parameter y. The purpose of the category weight « is to let
the negative sample data increase the weight. It was used to
resolve the uneven proportion of positive and negative sam-
ples. The sample difficulty weight adjustment modulating
factor y was used to measure hard- and easy-to-classify sam-
ples. In the experiments, parameter « ranged from O to 0.9,
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FIGURE 11. Focal loss chart.

and y ranged from O to 3. The experiment showed that the
optimal results were achieved when the parameter o was set
to None and the parameter y was set to 1. In Fig. 11, the loss
function of HY_OptGBM converges the fastest when «
None and y = 1. At this time, the accuracy of the model was
optimal. The experimental results are presented in Table 8.

V. CONCLUSION AND DISCUSSION
This paper proposed a CHD prediction method based on
the HY_OptGBM model. Framingham Heart Institute data
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on CHD was selected as measurements, and the proposed
method was trained using the HY_ _OptGBM algorithm and
the comparison algorithms. Although different algorithms
were used for CHD prediction in this study, the best CHD
prediction was achieved by the improved LightGBM algo-
rithm. When using data from the Framingham Heart Insti-
tute’s CHD study, observing all predicted values using the
HY_OptGBM algorithm yielded more successful results,
which is the significance of this study. In the experiment,
sensitivity, specificity, accuracy, precision, recall, F-score,
AUROC, AUPRC and MCC were used as evaluation metrics.
The experimental results of the DT, RF, CB, XGB, ADA,
BG, GBM and HY_OptGBM algorithms were compared, and
the best results were obtained using the HY_OptGBM algo-
rithm. The sensitivity was 0.897, the specificity was 0.963,
the accuracy was 0.930, the precision was 0.963, the recall
was 0.897, the F-score was 0.929, the AUROC was 0.978,
the AUPRC was 0.983, and the MCC was 0.861. This study
proposed optimizing the hyperparameters of the LightGBM
algorithm and improving its loss function (FL). The exper-
imental results will change when changing the alpha and
gramma parameters of the FL function. After the experiments
were conducted, when the parameter alpha was None and
gamma was 1, the accuracy, F-score, AUROC, AUPRC, MCC
metrics had the best results. When alpha was 0.1 and gamma
was 0, the specificity and precision had the best results. When
alpha was 0.9 and gamma was 0, the sensitivity and recall
had the best results. When evaluating the performance of
a machine learning algorithm, usually multiple evaluation
metrics are considered together, so alpha was taken as None
and gamma was taken as 1 to obtain the final experimental
results. As shown in Tables 5, 6, 8, and Fig. 9 and Fig. 10, the
best results can be obtained when making predictions with
the proposed method.

To compare studies in the literature with the proposed
methodology, experimental studies using the Framingham
CHD dataset were checked. This dataset has mostly been
used to predict the probability of developing CHD within
ten years. In 2021, Orit Goldman et al. [12] used ANN
models to predict CHD, and the prediction results showed
that the lift and gain curves of ANN models were higher than
those of FRS models in terms of the highest percentile. For
higher risk scores, the ANN model had higher sensitivity and
specificity than the FRS model, but the ANN model had lower
area under the curve (AUC) values. For the precision-recall
measures, ANN models produce significantly better results
than FRS models in terms of AUC values. In a 2019 study,
Juan-jose Beunza et al. [43] conducted a comparative study of
the dataset using machine learning methods. Decision trees,
random forests, support vector machines, neural networks
and logistic regression were selected for the classification
study. The results of the study demonstrated that the support
vector machine algorithm had the best AUC value of 0.75.
Dogan et al. [44], in a 2018 study, used machine learning
techniques to construct predictive CHD models. The accu-
racy, sensitivity and specificity obtained using the random
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forest classifier were 0.78, 0.75 and 0.80, respectively. In a
2021 study by Dogan et al. [45], an ensemble genetic perfor-
mance genetic model for predicting 3-year coronary events
was developed. This model showed a sensitivity of 0.79, a
specificity of 0.75, a sensitivity of 0.15 and a specificity of
0.93 on the test set. In 2022, Simon et al. [46] used logistic
regression to classify and predict CHD, and AUROC values
of 0.71 were obtained. In a study by Prabu [47] in 2021,
CHD was predicted by using Gaussian process regression
(GPR) and kernel ridge regression (KRR) machine learning
algorithms and a hyperparametric search of the algorithm,
and the final prediction results demonstrated a recall of 0.902,
an Fl-score of 0.821, and an accuracy of 0.86. Table 9 gives
details of CHD prediction studies in the past 5 years using
the Framingham Heart Institute’s open dataset. Using the
synthetic minority oversampling technique (SMOTE) for pre-
processing the dataset, optimizing the hyperparameters of the
algorithm and improving its loss function in the experimen-
tal study were considered, and the success of the proposed
method in predicting CHD compared with other methods
was demonstrated. In contrast to other studies in the liter-
ature, the use of the most advanced algorithm in ensem-
ble learning (LightGBM) in this study, as well as the use
of the most advanced hyperparameter optimization frame-
work (OPTUNA) for optimization of the hyperparameters
of the algorithm and improvement of its loss function, led
to sensitivity, specificity, accuracy, precision, recall, F score,
AUROC, AUPRC and MCC enhancements, which are impor-
tant for diseases such as CHD, which have lethal disease con-
sequences. Due to the lack of similar optimized and improved
prediction methods in the literature, the proposed method
in this paper provides a new perspective for future CHD
prediction studies.

In future studies, the Framingham Heart Institute dataset
should be used to predict CHD, and multiple CHD datasets
should be used to build predictive models. When experiment-
ing with the FL function, the alpha and gamma parameters
affect the study results. Thus, more accurate results can be
obtained by constructing prediction models through multiple
trials. The methodology proposed in this study will also be
integrated in future studies. As the numbers of trials and
datasets increases, it will be necessary to obtain a successful
result by adjusting the default parameters presented in this
paper. In addition to using a single model to predict CHD,
alternatively, one may consider building a prediction model
by combining multiple models.
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