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ABSTRACT Finger vein recognition is a promising biometric authentication technique that depends on the
unique features of vein patterns in the finger for recognition. The existing finger vein recognition methods are
based on minutiae features or binary features such as LBP, LLBP, PBBM etc. or from the entire vein pattern.
However, the minutiae-based features cannot accurately represent the structural or anatomical aspects of the
vein pattern. These issues with the minutia feature led to increased false matches. Recognition based on
binary features have limitations such as increased false matches, sensitivity to the translation and rotation,
security and privacy issues etc. A feature representation based on the anatomy of vein patterns can be an
alternative solution to improve the recognition performance. In the IJCB 2020 conference, we showed that
every finger vein image contains one or more of a kind of 4 special vein patterns which we refereed as Fork,
Eye, Bridge, and Arch (FEBA). In this paper, we further enlarge this set to 6 vein patterns (F{FoEB1B>A) by
identifying two variations in the Fork and Bridge vein patterns. Based on 6 anatomical features of the possible
6 vein patterns in a vein image, we define a 6 x 6 feature matrix representation for finger vein images. Since
this feature representation is based on the anatomical properties of the local vein patterns, it provides template
security. Further we show that, the proposed feature representation is invariant to scaling, translation, and
rotation changes. The experimental results using two open datasets and an in-house dataset show that the
proposed method has a better recognition performance when compared to the existing approaches with an
EER around 0.02% and an average recognition accuracy of 98%.

INDEX TERMS FEBA classification, F2EB2A, feature representation, finger vein biometrics, matching,
vein anatomy.

I. INTRODUCTION

Recently, finger vein recognition has attracted considerable
attention due to its contactless acquisition, intrinsic nature
and high security. Finger vein recognition biometric trait is
a significant biometric modality that is regarded as more
secure, reliable, and emerging [1], [2]. Methods for finger
vein recognition can be broadly classified into two cate-
gories depending on the type of the feature being used:
image-based and vein pattern-based. The image-based meth-
ods [3], [4] extract features from both venous and non-venous
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regions of the vein image for recognition. The vein-pattern
based approaches [5], [6], [7], on the other hand, lever-
age features from the vein structure for recognition. The
vein pattern-based methods outperform image-based meth-
ods since they are based on the underlying vein pattern, which
is the distinguishing characteristic of a vein image [7].

Some of the vein-pattern based methods [5], [6], [7], [8]
initially extract the vein patterns from the image and then use
the binary vein pattern as the feature. These approaches match
the binary vein template with the input binary vein image
using the matched pixel ratio [7]. However, direct vein tem-
plate matching is prone to security and privacy threats. Hence,
these methods require additional mechanisms to protect the
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vein templates. Moreover, direct matching ignores the dis-
criminating features of the vein pattern like the morphology
of the vein structure, anatomy etc. Minutiae is a major feature
descriptor used for finger vein images [9]. Methods based
on the minutiae points, extract bifurcation and endpoints
from the binary vein pattern and perform matching using
distance measures [10]. However, the recognition accuracy
of these methods are generally unsatisfactory since the minu-
tiae points are very few in finger vein images. Furthermore,
matching points are challenging due to the rotation, trans-
lation, and scale variations. There exists vein pattern-based
methods that extract features like minutiae [9], SIFT [3],
LBP [10] etc. from the vein structure and utilize these features
for matching. Features like SIFT, has been extracted from
vein patterns for recognition [3]. However, the performance
of these methods can also get degraded under the effect of
image variations. LBP [10], LLBP [4] use pixel intensity
differences of each pixel in the vein image to generate the
binary code for recognition. Since they are dependent on
the pixel intensities of the entire vein image rather than the
vein pattern specifically, variations caused by image intensity
changes may have a negative impact on recognition perfor-
mance. To effectively identify individuals, a feature based
on the anatomy of the vein pattern can be used since the
anatomical properties of the vein pattern can more robustly
describe the features [11].

In the IJCB 2020 conference [12], we showed that every
finger vein image contains one or more of a kind of 4 spe-
cial vein patterns which we refereed as Fork, Eye, Bridge,
and Arch (FEBA). Based on this observation we showed
that there exists a fundamental anatomical classification for
finger veins analogous to the Henry classification for finger-
prints [11]. A CNN was designed to perform the classification
task and an identification mechanism was proposed based
on the classification. In this paper, we further enlarge the
set of 4 vein patterns (FEBA) to 6 patterns (F1F2EB1B2A)
by identifying two variations in the Fork (Up/Down Fork)
and Bridge (Acute/Obtuse Bridge) vein patterns. We refer
to the set of these 6 vein patterns as the F’EB?A patterns.
Since the focus of this paper is on feature representation and
matching we do not discuss about a classification scheme
based on these patterns. Based on 6 anatomical features of
the possible 6 vein patterns in a vein image, we define a 6
x 6 feature matrix representation for finger vein images.
The anatomical features include the number of vein patterns,
location, curvature, eccentricity, number of tributaries, and
angle between the parent and branch veins. The 6 x 6 feature
matrix is taken as the biometric template and is used for the
recognition. To the best of our knowledge, this is the first
work that utilizes the anatomical features of finger vein for
recognition.

A. CONTRIBUTIONS
It is a known fact that if the original vein image is
compromised, the finger vein biometric systems can be
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deceived [13]. Furthermore, recently it was demonstrated
in [14] that it is possible to reconstruct the original image
from a binary vein image. The proposed method is hard to
spoof as the template generation is based on the anatomical
features of local anatomical structures rather than the global
binary vein pattern. Reconstructing the vein pattern from a
template with feature values of local structures would be chal-
lenging. Besides, the proposed features are invariant to image
scaling, translation, and rotation. The major contributions in
this extension of [12] are summarized below.

1) The set of 4 fundamental vein patterns FEBA identified
in [12] is enlarged to 6 patterns F1F;EB 1B, A by iden-
tifying two variations in the Fork (Up/Down Fork) and
Bridge (Acute/Obtuse Bridge) vein patterns.

2) Based on the 6 anatomical features of the possi-
ble 6 vein patterns (F1F,EB1B;A) in a vein image,
a 6 x 6 feature matrix representation for finger vein
images is proposed. The anatomical features include
the number of vein patterns, location, curvature, eccen-
tricity, number of tributaries, and angle between the
parent and branch veins. The 6 x 6 feature matrix is
taken as the biometric template and is used for the
recognition. The features are invariant to image trans-
lation, rotation and scaling.

Most of the existing feature representation approaches are
designed based on the characteristics of the image rather
than the vein pattern. These characteristics are less dis-
criminative and can be influenced by image variations such
as rotation, scaling, and translation. Hence, these features
may not recognize the vein images accurately. In contrast
to existing features for vein images, the proposed features
are based on the anatomical classification of vein images.
From the vein images, special patterns are identified, and
anatomical features such as number, location, angle, curva-
ture, and so on are retrieved. The properties obtained from
these class patterns are fundamental to vein images, and
hence they can effectively discriminate vein images. Hence,
the proposed method can improve the recognition accuracy
significantly which is proved in detail in the experimental
section.

B. LIMITATIONS

Since the proposed method is based on the anatomy of vein
patterns, the efficiency of the vein pattern pre-processing
and extraction methods can have an impact on the proposed
features. However, we have used the most commonly used
state-of-the-art approaches for pre-processing [6] and vein
pattern extraction [15]. Even though all of the vein images
undergo refinement of the extracted vein patterns, the pro-
posed recognition accuracy could be affected by the quality
of the vein images. However, to further enhance the qual-
ity of the vein image, image restoration or enhancement
methods like [16] can be used. The vein pattern extraction
can be further improved by using vein extraction methods
like [7].
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Il. RELATED WORKS

Finger vein recognition methods fall into two categories
based on the features being used: image based and vein
pattern based. Since the vein patterns are the distinguish-
ing features of a vein image, features based on them were
shown to perform better than approaches based on the whole
images [6]. In this section, we discuss the state-of-the-art
feature representations based on vein patterns extracted from
vein images or vein images themselves.

In vein pattern-based methods [6], [7], the hidden pat-
terns are extracted from the vein images initially. Then, the
extracted vein patterns are stored as vein templates. Recog-
nition is performed by directly matching the stored binary
vein templates with the test vein templates. In methods such
as [5], [6], and [7] matched pixel ratio is used to determine
whether a test vein pattern belongs to a legitimate user or
not. However, most of these vein template matching-based
methods are sensitive to the variations in the vein image.
Even though mechanisms like [17] had been proposed to
deal with the variations in the vein image, they have a high
computational overhead.

In minutiae-based methods [18], [19], and [9], discrete
points are identified from the vein pattern for matching and
recognition. In contrast to direct vein template matching,
these methods match the characteristic points from the vein
patterns to establish identity and the template size is relatively
small for these methods. In most of the methods [9], matching
is done by comparing the minutiae pairs using distance mea-
sures. However, the accuracy of minutiae-based methods are
generally low since finding correspondence to the minutiae
pair in vein images with variations is challenging. Another
drawback of these methods is that feature descriptors based
on minutiae points are insufficient for reliably recognizing
individuals.

In [3], a method based on SIFT features was proposed for
finger vein recognition. However, the SIFT key-points were
not robust to variations due to scaling, translation and rotation
in the vein images. A feature based on the structure of the
vein was proposed in [20]. Here, the vein structures were
considered as curve segments and the features of these curves
were encoded as feature vectors for each pattern. A modified
angular chain code was used to describe the curve segments
extracted from the vein patterns. However, the size of the
feature vector was high as it stores the angular code for curves
traced from all the junction points and it may also get affected
by the image variations.

In [19], a modified LPB based feature was proposed
for better recognition of finger veins. LBP-based methods
encode vein patterns into binary codes based on pixel inten-
sity differences from the vein image. Rather than extracting
vein patterns from the entire vein image, this method uses the
whole vein image. The local areas in the vein images were
classified using an SVM as having a small amount, a large
amount, or a medium amount of vein pattern present. Then
the LBP code was given a weight based on the local area
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category corresponding to the image patch. In [21] another
approach based on LBP is proposed. However, these methods
are sensitive to the translations and rotation of the finger.

A tri-branch structure-based recognition was proposed
in [5]. However, this method contributes to improving the
matching performance by utilizing the vein structure rather
than utilizing the features from it. This approach uses the
vein-pattern as the template and uses it for matching. Hence,
a template protection mechanism is required to protect the
vein templates to avoid data breaches.

An anatomical structural analysis-based finger vein recog-
nition was proposed in [6]. The anatomical characteristics
identified in [6] for refinement of the extracted vein pattern
include continuity, solidness, directionality, and so on. How-
ever, the anatomical properties that have been considered are
generic and apply to all vein patterns. These characteristics
have not been employed as a feature but are used to address
issues such as burrs, breaks, and gaps in the extracted vein
network. The vein template is used as the feature in this work.
Hence, a template protection mechanism is required to protect
the vein templates to enhance the security of the system.

For the detection of finger veins, many deep feature learn-
ing methods such as [22] and [23] have been proposed
recently. A CNN model is proposed in [24] that is trained
using vein images for recognition based on the feature
retrieved by the model. In [25] a deep representation model
is designed to extract the vein patterns from the vein image.
Deep learning-based methods learn different features based
on the training images and the model that is being used.
However, deep learning models require a large dataset to train
the model accurately. Most of the method reduces the size
of the original image which adversely affects the efficiency
of the recognition. Furthermore, most of the deep learning
methods train the models with the raw vein image. The model
learns features from both venous and non-venous areas which
can increase the chance of false matches [7].

The minutia-based methods [18] rely upon image coor-
dinates for its location feature and the angle feature. The
variations in scale, translation and rotation of the vein images
have direct impact on the minutia features as they depend
on coordinates of the image. Hence, the performance of
minutia-based methods are low. SIFT based methods perform
well on texture classification problems. However, the perfor-
mance of SIFT features [3] are less discriminative for vein
images as the image intensity variations adversely affects the
recognition performance. Tri-branch based recognition [5]
utilizes the tri-branch structure only for alignment of the
vein structure. The method employs vein template matching
for recognition. Here, user defined threshold learning and
elastic matching is employed for recognition. However, the
matching performance gets affected due to the rotation and
translation variations. The performance of the angular-code
based method [20] can degrade due to the effect of variations
in the vein images. Since the CNN-FVR [24] utilized the
vein images as such for training the model, deep model
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may learn characteristics from the background pixels of the
vein image that adversely affect the classification accuracy.
Due to the training using incorrect labels generated by the
baseline-methods employed for identifying the vein patterns,
the performance of the Deep-FV [25] was degraded. Deep
learning-based algorithms also necessitate a huge amount of
data and a long computational time to train the model.

To address the various issues with the related works,
we propose a feature representation technique that is based on
the anatomical aspects of the vein pattern. Since it has already
been shown that any vein pattern can be classified into four
basic classes based on its anatomy, it will be possible to obtain
the anatomical features for every vein pattern.

lll. PROPOSED METHODOLOGY

This section describes the proposed feature representation
technique based on the FEBA classification of the vein
patterns [12] and the matching process. The recognition
based on the proposed features is also discussed in detail.
x Since the proposed approach leverages intrinsic features
of the vein image, the vein patterns are extracted initially.
In the proposed approach, the features of the 6 vein patterns
FF,EB|B>A (Up/Down Fork, Eye, Acute/Obtuse Bridge,
and Arch) present in the vein image are used for accu-
rate recognition. The initial step is to locate and extract
F1F,EB|B>A patterns present in the vein image. Then,
a 6 x 6 feature matrix is generated from the 6 class patterns.
To authenticate a person, matrix matching is performed.

A. ANATOMY OF PALMAR FINGER VEINS

In [12], a classification scheme for finger veins was pro-
posed based on the anatomical knowledge and visual char-
acteristics of the vein structure in the palmar side (side of
the finger where the fingerprints are present) of the finger.
A set of 4 special vein patterns which we refereed as Fork,
Eye, Bridge, and Arch (FEBA) was identified in finger vein
images. Based on the existence of these vein patterns a clas-
sification scheme for finger vein images into 4 classes was
proposed.

(a) (b)

FIGURE 1. The special vein patterns identified from a vein image based
on the vein types defined in [12]. (a) shows vein image having the vein
type SVA and (b) shows vein image having the vein type SAV.

A study by Nystrom et al. [26] on the anatomy of palmar
finger veins was used as the base for validating the observa-
tions and findings to establish the vein image classification.
Superficial Venous Arches (SVA) and Superficial Axial Veins
(SAV) as shown in 1 are the two main vein types that may
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be found in a finger. The SAV is a vein that runs parallel
to the long axis of the finger. In a finger, there can be one
or more SAVs that connect to one another through branches.
SAVs are present in all vein images, and the number, position,
branching, and other characteristics of these veins make each
vein image unique. SVA is an arch-shaped vein that joins two
SAVs and contains tributaries but no branches of its own.
SVAs may or may not be present in all vein images. It can
be observed from Fig.1(a) that the SVA has an arch shape
and it connects two parallel veins. The parallel veins that run
along the long axis of the finger as given in Fig.1(b) repre-
sents SAVs. Each class was defined based on the anatomical
properties of the vein types (SAV and SVA) and the visual
observations from the vein images.

The reference model of finger used for classification is
shown in Fig.2.

—mpoo —~w

o

FIGURE 2. Reference model of finger.

B. FPEB2A: CLASSIFICATION OF FINGER VEIN PATTERNS
This section details about the FEBA vein patterns and the
variations in the F and B patterns. We obtain a set of 6 differ-
ent vein patterns F1F,EB 1By A from the original set of 4 vein
patterns EE,B,A. We refer to this set of 6 vein patterns as
F?EB’A patterns.

1) FORK PATTERNS: Fy, F,

The Fork pattern is characterized by the presence of a “Y”
like structure in the vein pattern and we call these structures
as forks. This structure is formed by the sub-branches of the
major veins. There exist several variations in this vein pattern.
We identified two types of Fork patterns: Up Fork (Fp) and
Down Fork (F3), based on the visual observation that the
Y patterns can occur as pointed upwards and downwards.
An F; pattern is a Y like structure pointed in the upward
direction as shown in Fig. 3(a). An F; pattern is a Y like
structure pointed in the downward direction as shown in
Fig. 3(b). It can be observed that the patterns belonging to
these classes are mostly seen as forks.

2) EYE PATTERN
This pattern resembles the shape of a loop as shown in Fig.4.
The pattern differs from the closed region generated by two
lines connecting two SAVs. This pattern is formed by the
merging of the branches that bend around and cross itself,
as seen in Fig.4.
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FIGURE 3. (a) Variations in the vein patterns of type F; (b) variations in
the vein patterns of type F,.

yi

FIGURE 4. Variations in the Eye pattern.

3) BRIDGE PATTERNS: By, B,

A Bridge (Bj, Bp) is bridge like vein pattern connecting
two SAVs as shown in Fig. 5. The key requirement of the
connection is that it should be a direct connection. The visual
characteristic of this class is the presence of an “H” like
pattern in the vein images. There exists variations in the
Bridge class patterns. A combination of Down Fork and Up
Fork (branch of a SAV that acts as a tributary to another SAV)
are present in vein images that belong to this class.

The variations in this class is identified based on the angle
the bridge makes with respect to the SAV from which it
branches. A vein pattern is said to be Bridge B if it forms
a bridge making an acute angle with the parent vein as shown

s

FIGURE 5. (a) Variations in the vein patterns of type B; (b) variations in
the vein patterns of type B;.

(b)

A vein pattern is said to be Bridge B, if it forms a bridge
making an obtuse angle on the parent vein as shown in
Fig. 5 (b).

The different types of branches are illustrated in Fig.6.
It can be observed from Fig.6 that the branching vein always
makes an acute angle with the parent vein and forms a Down
Fork. The recipient vein and tributary together form an Up
Fork.

4) ARCH PATTERN

A vein pattern is said to be an Arch if it has an arch like
shape connecting two SAVs as shown in Fig. 7. This vein
type has only tributaries, comparable to the SVA vein type.
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(2) (]
= Parent/Recipient
—— Tributary

== Branch

FIGURE 6. Vein branching based on palmar venous anatomy.

oL

FIGURE 7. Variations in the Arch pattern.

It is always convex in shape and occurs between two SAVs.
The arch generally has a few lines connecting it, forming
a sunburst-like pattern. Variations were found in the arch
pattern depending on the position and orientation of the arch.
However, these variations are not enough to design subclasses
based on them.

In this paper, we utilize the characteristics of the vein
patterns to extract the features of the vein image. We describe
these features in detail in Section III-D.

C. IDENTIFICATION AND EXTRACTION OF F2EB*A
PATTERNS FROM BINARY VEIN IMAGE

A vein image contains at least one pattern or a combination
of patterns, as detailed in Section IV. This section details the
preliminary steps used to identify the F’EB?A vein patterns
in a vein image. First the vein images have to be rotated in
accordance with the anatomical reference model (Fig.2) for
the finger. It is important to make sure that all the images are
processed only in this direction since all the anatomical obser-
vations are drawn based on this reference model. The steps
to identify all the possible Up Fork, Down Fork, Eye, Acute
Bridge, Obtuse Bridge and Arch (F{F,EB1B2A) present in a
vein image are given below. This involves locating Y shapes,
loops and arches present in the image.

1) To identify the presence of ‘Y’ shapes, the bifurcation
points in the binary vein image is utilized. The bifur-
cation points can be traced to find out the Y patterns.
The located Y patterns are further characterized as
upward Y or downward Y based on the vertex of a
triangle fitted using the edges of the the Y structure.
The y-coordinate of the top vertex of the triangle (end
point of the parent vein) and the y-coordinate of the
bifurcation point are compared to distinguish between
downward Y and upward Y. For an upward Y the
y-coordinate of the bifurcation point will be less than
the y-coordinate of the top vertex of the triangle as
shown in Fig.8(a) and (b). In the case of downward Y,
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(a (b) (c) (d)

FIGURE 8. Samples of various Y types. (a) and (b) show sample image
patch having an ‘upward Y’ (Up Fork). (c) and (d) show sample image
patch having a ‘downward Y’ (Down Fork).

(’

(a) (b)

FIGURE 9. Sample vein image with Eye patterns. (a) shows a binary vein
image with two Eye patterns and (b) shows the identified filled regions of
holes present in the vein image.

the y-coordinate of the top vertex will be less than the
bifurcation point as evident from Fig.8(c) and (d).

2) To check the presence of loops in the binary vein image,
Euler number is used. Mathematically, Euler number, £
of a binary image can be calculated as,

E=N-—H, (1

where N is the number of connected components of
the object in the binary image and H is the number
of isolated regions in the background of the image.
Depending on the value of E, we can detect whether
the given vein pattern has loop or loops as shown in
Fig.9(a) and (b). If E = N, then there exists no loop
because, the number of holes will be zero in that case.
If E < N then, there exists at least one loop in the given
image.

3) To locate arch in a vein image, circular Hough trans-
form [27] is used. The circular Hough can locate
semi-circle or arch-like structures in an image.

4) In a vein image, all the Y’s occurring in the upward
direction (without a downward Y following) are taken
as Up Forks (Fy), all the Y’s occurring in the down-
ward direction (without an upward Y following) are
taken as Down Forks (F3), all the loops occurring are
taken as Eyes (E), and the aches occurring are takes as
Arches (A).

5) If the vein image contains combination of an upward
Y and downward Y(an upward Y followed by a down-
ward Y sharing a line), then this combination is taken
an Acute Bridge (B1). Similarly, if the vein image con-
tains combination of downward Y and an upward Y(a
downward Y followed by an upward Y sharing a line),
then this combination is taken an Obtuse Bridge (B5).

After identifying the locations of the F’EB’A patterns in

the input binary image, we extract each of them using a
bounding box. A circumscribed rectangle, or a bounding box,
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is the smallest rectangle that can be drawn around a set of
points such that all the points are inside it [28].

The bounding box of a Fork pattern is defined based on the
bifurcating point and the three end points of the structures as
shown in Fig.10(a). From these four points, top-most, lowest,
left-most and right-most points are identified by comparing
their (x, y) coordinate values. The bounding boxes for Bridge
and Arch patterns are defined based on the points of starting
and ending of the connecting vein branch. The binary image
is traced a fixed number of pixels (15 pixels) upwards and
downwards from the starting point and ending point of the
connecting vein branch to get the entire shape of the pattern.
The endpoints of these traced lines along with the starting
and ending points of the connecting vein branch are used
to define the coordinates of the bounding boxes similar to
Fork pattern. Fig.10 (c) and (d) show the bounding boxes of
Bridge and Arch patterns respectively. The Eye patterns have
holes and hence they are identified in the binary image using
the Euler number. These holes can be extracted using binary
image region measurement algorithms [29] that returns the
locations of pixels in a specific region. Fig.10(b) shows the
Eye patterns detected in the vein image.

(a) (b) (c) (d)

FIGURE 10. Bounding boxes on various patterns. (a) Fork (F, and F,)
patterns, (b) Fork (F;) and Eye pattern, (c) Bridge (B;) and a Fork (F;)
patterns and (d) a Fork (F,) and an Arch pattern.

D. FEATURE MATRIX AND FEATURE EXTRACTION
Features specific to F’EB%A patterns in a vein image are
extracted and are represented as a feature matrix of the size
6 x 6. The rows of the feature matrix correspond to the 6 fea-
tures: ¢ (number of F?EB?A patterns), p (anatomical posi-
tion of various patterns), « (curvature of various patterns),
0 (angle between bifurcations in a pattern), e (eccentricity of
the ellipse fitting the Eye pattern), a (number of tributaries to
the Arch pattern). The columns correspond to the 6 patterns
Fi, F», E, By, B, and A. The (i,j)th element of the matrix
corresponds to the i feature of the j pattern present in the
vein image. The (i, /)™ element of the matrix will be zero if
the j1 pattern is not present in the image or the i feature is
not applicable to the j™ pattern. Hence, the feature matrix has
the form as shown in Fig 11.

The details of various feature and the feature extraction are
described below.

Feature c: The feature ¢ denotes the number of F’EB%A
patterns present in the image.

Feature p: The feature p denotes the anatomical position
of the F’EB”A patterns present in the vein image. Here,
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F,. Fa E By By A
Count(c)
Position(p)
Curvature(x)
Angle(8) 0
Eccentricity(e) 0 0 0
Tributaries(a) 0 0 0 1]

FIGURE 11. The feature matrix with the 6 features as rows and the

6 patterns as columns.

(c) B1 (d) A

(a) F1 ME

FIGURE 12. Curvature points of various class patterns. (a) curvature
points of Fork (F,) pattern, (b) curvature of an Eye pattern, (c) curvature
of Bridge (B,) pattern and (d) the curvature of an Arch pattern.

we determine the position of the vein structures based on the
reference model given in Fig.2. The feature value is assigned
based on the centriod of the whole vein pattern and the top
most point of the particular pattern. If the top-most point of
a pattern is below and far from the centriod, then the value
—1 is assigned to p. If the top-most point of the vein pattern
is near and close to the centriod, then the value 0 is assigned
to p. If the top-most point of the class pattern is above and far
from the centriod, then the value 1 is assigned to p.

Feature «: The curvature feature is common to all the pat-
terns. The curvature of 20 or sufficiently enough edge points
are estimated as given in [30]. These edge points are selected
based on bifurcation points or midpoints of the patterns as
a reference point. For Fork patterns (F; and F,), we utilize
equally spaced 10 points on both sides of the bifurcating point
for curvature estimation. In the case of Eye patterns, the mid
points on both sides of the loop-structure are found using a
line drawn from the center of the structure. Then, 10 points on
both sides are selected to compute the curvature. For Bridge
patterns (B and B») and Arch patterns, the midpoint is found
based on the end points of the bridging line or the arch. Then,
10 points each on left and right of the midpoint are taken.

Feature 6: The feature 6 denotes the angle between two
branches in a vein pattern. This feature is defined only for
the Fork and Bridge patterns. For Fork (F; and F,) pattern
and Bridge pattern (B; and B»), the angle 6 is defined as
the angle formed between the branches from the bifurcating
points. Fig.13 shows the angle computation in Bridge and
Fork patterns.

Feature e: This is a feature specific to the Eye pattern and it
is based on the observation that the pattern Eye has an elliptic
shape. Thus, an ellipse can be fitted on the eye pattern and the
eccentricity of this ellipse is taken as the feature e.
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(b)

FIGURE 13. The branching angles of Bridge and Fork patterns.

4 [ ]
Xy
(a) (b) (c)

FIGURE 14. Arch patterns with varying number of normal lines.

Feature a: The Arch pattern appears to be a curved pattern
with some lines normal to it (like a sun-burst) [12]. The
number of such normals is taken as the feature a.

The number of bifurcating points within the Arch pattern
are used to find the number of normals. Fig. 14 shows differ-
ent Arch patterns with varying number of lines normal to it.
Fig.14 (a) hasa = 4, 14 (b)hasa = 2 and 14 (c) hasa = 5 as
indicated by green color points in the image. The red color
points indicate the start and end of the Arch connection.

It can be observed from that the feature matrix is it is
created using the 6 features c, p, «, 6, e and a and the 6
F2EBZA patterns. The features c, p and « are defined for all
the 6 patterns. The feature 6 is defined for all patterns except
Eye and Arch patterns. Hence, the feature value of 6 for Eye
and Arch patterns are 0. Similarly the feature e is defined only
for the pattern Eye and a is defined only for the pattern Arch.
Hence, the rest of the classes have 0 value corresponding to
the features e and a. Each element in the feature matrix can
be either a single value or a vector (when multiple patterns of
same type occur).

If multiple patterns of the same type are present in a vein
image, an order needs to be defined for the arrangement of
their feature values at a position in the feature matrix. While
scanning the whole vein image from left to right and top to
bottom, the order in which a particular type of class pattern
occurs is taken as the order of their feature values in the
feature vector occurring at any row and column of the feature
matrix.

E. MATCHING

The matching is performed by comparing the feature matrices
of the registered vein image and the query vein image using
matrix subtraction.

Let Q and T be the feature matrices corresponding to the
query image and the registered vein image and D = Q — T
denotes the difference matrix. Each value in the difference
matrix will be compared with a threshold value. Only one
threshold will be needed for each feature (row of the differ-
ence matrix) as the differences among the features of various
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TABLE 1. Distribution of vein images having one or more patterns.

No. of images

No. of images

No. of images No. of images

Databases Total Images with atleast 1 pattern ~ combination of 2 combination of 3 combination of 4
HKPU 3132 2190 2100 82 8
SDUMLA 636 450 172 9
In-House 600 550 167 11

patterns are comparable. Thresholds (71, 12, 13, 14, 5, 1) Spe-
cific to the six feature (rows) are estimated based on the exper-
imental evaluations. Each element in the difference matrix
will be compared with the threshold corresponding to the row
of that element. If all the elements in the difference matrix are
below the thresholds then, it will be considered as a genuine
match.

IV. RESULTS AND DISCUSSION

This section includes the description of datasets used, exper-
imental results obtained and the comparison of performance
with existing approaches.

Here, we have evaluated our approach based on two pub-
licly available datasets (HKPU, SDUMLA) and our inhouse
dataset. The HKPU [31] dataset contains finger vein images
of 156 subjects with 6 images per subject taken in the two
sessions. All the images are in BMP format and has a res-
olution of 513 x 256. The SDUMLA [32] has 636 unique
vein images with 6 images per subject captured in one ses-
sion. The images are in BMP format with a resolution of
320 x 240. The in-house dataset includes data captured from
100 subjects with 5 images per subject taken in one session.
The images are in BMP format and with a resolution of 320 x
240. The distribution of vein images in the databases having
various patterns (either as combinations of F>EB?A or atleast
one of the four patterns) is given in Table 1. From the table,
it can be noticed that in all the databases, almost all the vein
images have atleast one of the special pattern present in them.
We can also notice that the combinations of two patterns are
more frequent than the combination of three and four.

A. IMPLEMENTATION DETAILS

The raw finger vein images were pre-processed [12] to
remove noise and improve the quality of the image. In order
to normalize the resolutions of the images from different
databases, images were resized to 350 x 350 in the prepro-
cessing stage. There was no significant loss of information in
the vein pattern images due to the resizing process as it was
performed after pattern extraction. The customary maximum
curvature method was used for vein pattern extraction [15].
Post processing of the vein patterns was performed based
on the anatomical structure analysis detailed in [6]. Some of
the binary vein images given in this paper (for illustration
purpose only) is taken from the ground truth images provided
by Jalilian et al. [33].

B. PERFORMANCE EVALUATION
Experiments were carried out to evaluate the recognition
performance of the proposed method. For evaluation, first
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three images of each subject were considered as registered
templates and the rest of the images of each subject were used
as the test templates.

The Equal Error Rate (EER), Zero False Match Rate
(ZFMR), False Match Rate (FMR1000) metrics and Rank-1
recognition accuracy were used to evaluate the recognition
performance of the proposed method and that of existing
methods. The verification accuracy is higher when the EER,
ZFMR, and FMR 1000 values are low. We followed the bio-
metrics test protocol of the fingerprint verification protocol
FVC2004 [34] for calculating these metrics. The Rank 1
recognition accuracy is computed in the identification mode
and the EER, ZFMR and FMR1000 are calculated in the
verification mode.

Table 2 shows the recognition performance of the pro-
posed method and the existing methods such as Minutia [18],
SIFT [3], Angular-code [20], tri-branch [5], CNN-FVR [24]
and Deep-FV [25] based on HKPU, SDUMLA and the in-
house datasets. The ROC curves of the existing methods
like Angular code, Tribranch, Minutia, Deep Representation,
CNN-FVR and the proposed method based on the datasets
such as HKPU, SDUMLA and the inhouse are shown in
Fig. 15, Fig. 16 and Fig. 17 respectively. It is evident from
the ROC:s that the proposed method outperforms the state-of-
the-art methods.

B —e— Proposed method

Deep FV

° 0.08 CNN_FVR

5 —a— TriBranch

i 0.06 —e—  Angularcode

2 r—t | e SIFT

:(‘:: A —— Minutia

£ 00 o o e—o—%|— EERLne

p w,

=

0.02

0

0 002 004 006 008 01
False Acceptance Rate

FIGURE 15. ROC of the matching performances using HKPU dataset.

C. DISCUSSION: PERFORMANCE EVALUATION

It can be observed from Tables 2 that the proposed method
outperforms the existing methods in terms of all the met-
rics. The minutia-based methods [18] reply upon image
coordinates for its location feature and the angle feature.
SIFT based methods performs well on texture classification
problems. However, the performance of SIFT features [3]
are less discriminative for vein images as the image inten-
sity variations adversely affects the recognition performance.
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TABLE 2. Performance comparison using HKPU, SDUMLA and in-house datasets.

HKPU

Method EER (%) ZFMR (%) FMRI1000 (%) Recognition Accuracy (%)
Minutia [18] 5.35 8.16 8.51 60.13
SIFT [3] 3.11 6.22 6.01 76.33
Angular-code [20] 1.02 4.23 4.02 83.43
Tri-branch [5] 0.52 3.41 4.33 86.14
CNN-FVR [24] 0.5 2.23 2.01 90.22
Deep-FV [25] 0.08 1.21 1.35 93.12
Proposed Method  0.02 0.56 0.83 98.23

SDUMLA
Method EER (%) ZFMR (%) FMRI1000 (%) Recognition Accuracy (%)
Minutia [18] 8.33 8.12 9.11 59.55
SIFT [3] 7.12 6.22 7.27 75.33
Angular-code [20] 2.42 5.36 5.12 81.26
Tri-branch [5] 1.32 3.47 4.13 85.16
CNN-FVR [24] 0.67 3.03 2.31 90
Deep-FV [25] 0.07 1.02 1.23 94.32
Proposed Method  0.03 0.46 0.73 97.28

IN-HOUSE
Method EER (%) ZFMR (%) FMRI1000 (%) Recognition Accuracy (%)
Minutia [18] 7.17 8.06 8.41 60.21
SIFT [3] 6.01 6.08 6.51 76.23
Angular-code [20]  5.46 4.23 5.15 81.51
Tri-branch [5] 1.42 4.01 4.26 85.05
CNN-FVR [24] 0.71 2.01 2.05 91.3
Deep-FV [25] 0.09 1.31 1.25 93
Proposed Method  0.02 0.46 0.73 98.26

o } —e— Proposed method
i\/ﬂ-ﬂ—k.—f—%—f—k e
° 0.08 W P CNN_FVR
= s —t— TriBranch
% - —— Angularcode
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=
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FIGURE 16. ROC of the matching performance using SDUMLA dataset.
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FIGURE 17. ROC of the matching performance using in-house dataset.

Tri-branch based recognition [6] utilizes the tri-branch struc-
ture only for alignment of the vein structure. The method
employs vein template matching for recognition. Here, user
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defined threshold learning and elastic matching is employed
for recognition. However, the matching performance gets
affected due to the rotation, translation variations. The perfor-
mance of Angular-code based method [20] also gets degraded
due to the effect of variations in the vein images. The perfor-
mance of the deep learning models [24], [25] are better than
other approaches. However, the performance is low when
compared to the proposed method mainly due to the fact
that these based are trained based on raw vein images. The
proposed method achieves better accuracy mainly due to
the robustness in terms of image rotations, translation and
scaling. This is due to the fact that the proposed method
utilizes the anatomical features of local structures extracted
from the vein image. In addition, the anatomical structures
are more discriminative features of the vein patterns. Hence,
a method based on such structures can improve the overall
accuracy of a finger vein recognition system.

D. ROBUSTNESS EVALUATION
We evaluate the robustness of the proposed method based
on variations that can influence the overall recognition per-
formance of the system. Here, we analyse the performance
under scaling, rotation and translation variations using the set
of vein images from the in-house dataset. Here, the ‘drop in
performance’ refers to the difference in performance (both
EER and accuracy) without scaling or rotation or translation
with that of maximum amount of scaling or translation or
rotation.

The misplacement of finger while scanning the vein image
can affect the recognition performance [35]. To evaluate the
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TABLE 3. Performance comparison after rotating the images.

+0 +10 +20 +30 Drop in performance
Methods EER  Accuracy (%) EER Accuracy (%) EER Accuracy(%) EER Accuracy(%) EER Accuracy(%)
Minutia [18] 7.17  60.21 15.04 563 20.05 50 30.03 39.23 22.86 21
SIFT [3] 6.01  76.23 7.31 72.46 8.24 70.12 8.05 70.03 2.04 6.2
Angular-code [20] 546  81.51 6.01 79.19 7.22 72.06 8.12 70.02 2.66 11.49
Tri-branch [5] 142 85.05 3.03 79.02 5.66 71.12 6.16 69.06 4.74 15.99
CNN-FVR [24] 071 913 1.32 85.5 2.02 84.23 4.5 80.3 3.79 11
Deep-FV [25] 0.09 93 0.86 87.32 1.10 86.34 1.35 85.15 1.26 7.85
Proposed Method 0.02  98.26 0.03 98.04 0.05 97.14 0.06 96.7 0.04 1.56
TABLE 4. Performance comparison after scaling down the images.
without scaling 20 30 40 Drop in performance
Methods EER  Accuracy (%) EER  Accuracy (%) EER Accuracy(%) EER Accuracy(%) EER  Accuracy(%)
Minutia [18] 7.17  60.21 16.1 55 20.31 49.8 30.17 40 23 20
SIFT [3] 6.01  76.23 7 74.33 7.61 71.12 8.14 70.04 2.13  6.19
Angular-code [20] 546  81.51 7.01  71.1 7.37 70.06 8.19 70 2.73 11.51
Tri-branch [5] 142 85.05 2.03 83 3.12 80 6.16 6 474  17.69
CNN-FVR [24] 071 913 1.11 883 2.04 85.3 2.5 83.21 1.79  8.09
Deep-FV [25] 009 93 0.7 89.30 1.13 86.28 1.24 87.15 1.15 585
Proposed Method 0.02  98.26 0.04  98.02 0.05 97.02 0.06 96.32 004 194
TABLE 5. Performance comparison with translated images.
without translation 20 30 40 Drop in performance
Methods EER  Accuracy (%) EER Accuracy (%) EER Accuracy(%) EER Accuracy(%) EER Accuracy(%)
Minutia [18] 7.17  60.21 20.01  50.12 2245  43.01 24.03  40.13 16.86  20.08
SIFT [3] 6.01  76.23 6.31 74.46 7.3 70.17 7.21 70.05 1.2 6.11
Angular-code [20] 546  81.51 6.01 74 7.20 72 8.01 70.12 2.55 11.39
Tri-branch [5] 142 85.05 2.32 82.02 3.25 75.5 6.03 68.02 4.61 17.03
CNN-FVR [24] 0.71 913 0.82 91.1 0.85 91 1.12 90 0.41 1.3
Deep-FV [25] 0.09 93 0.74 92.5 1.13 92 1.24 91.4 1.15 1.6
Proposed Method 0.02  98.26 0.03 98.03 0.04 98.02 0.05 97.11 0.03 1.15

by rotation. Although the SIFT features are invariant to affine
transforms, for finger vein images SIFT features are less
discriminative. This is due to the fact that SIFT features are
extracted based on the vein images and the key points depend
on image changes. Minutia based [18] and tri-branch based
recognition [5] are less robust to rotation changes as they
are defined based on pixel coordinates. The angular-code
method [20] also gets affected by the rotation changes as
the code is not normalized to provide rotation invariance.
The performance of the deep learning models [24] and [25]

0 10 20 30

FIGURE 18. Sample vein images without rotation and with a rotation of
+10, +20 and +30 degrees.

rotation invariance, we have considered the rotation of finger
along the long axis of the finger.

We have obtained 50 vein images with rotation (only up
to £30 degree) to evaluate the robustness of the proposed
method against longitudinal rotations of the finger. Fig.18
shows sample images with no rotation and with rotations of
410, 420 and +30 degrees respectively. We have compared
the performance of the proposed and the existing approaches
such as minutia [18], SIFT [3], tri-branch [5], angular-
code [20], CNN-FVR [24] and Deep-FV [25]. The results
of performance evaluation based on EER and recognition
accuracy are shown in Table 3.

E. DISCUSSION: ROBUST EVALUATION
It can be observed from Table 3 that the EER and the recogni-
tion accuracy of the proposed method are not much affected
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are better when compared to other methods. However, when
tested with an unseen dataset with rotational variations the
recognition performances were found to be low. This is may
be due to the fact that the features contained unseen variations
compared to the training images.

We have scaled down 50 vein images from the in-house
dataset by 25%, 35% and 45% of their original sizes and
evaluated the performance of the proposed method and the
existing methods. The performance results are shown in
Table 4. It can be noticed that the performance of the proposed
method is not much affected by scaling. The performance
of SIFT [3] is affected as they extract features from the
degraded gray-scale image. The performance of minutiae
based methods, tri-branch and angular-code are low due to the
fact that the matchings are done based on image coordinates.
The performance of the deep learning models [24] and [25]
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are also affected. This may be due to the fact that the features
contained unseen variations compared to the training images.

Translation of vein images may occur when the user
shifts the fingers (finger moves horizontally) while imaging.
We have translated a set of 50 vein images by 20, 30 and
40 pixel positions along the x-direction. The performance of
the proposed method and the existing methods are compared
based on the EER. The Table 5 shows the EER and accuracy
of the proposed method and the existing methods without
translation and with the translations. It can be noticed that
the performance of the proposed method is not much affected
by translation. The performance of minutia and tri-branch
methods are low as they depend on the image coordinates to
define the features. The SIFT based method [3] and angular-
codes [20] perform better than these methods. The perfor-
mance of the deep learning models [24] and [25] were not
much affected. However, the proposed approach outperforms
significantly among all these methods.

V. CONCLUSION

In this paper, we proposed a novel feature representation
and recognition method based on the anatomical classifica-
tion of finger vein images. In the proposed approach, the
classification based anatomical structures identified from the
vein images are utilized for efficient recognition. We showed
through extensive experiments that the proposed features are
invariant to translation rotation and scaling and significantly
reduces the recognition error rate compared to the existing
vein based methods. The major future research directions
are adding more number of sub-patterns to the fundamental
F?EB’A patterns and improving the feature representation by
incorporating more pattern based features.
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