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ABSTRACT This study presents a newly released algorithm for smartwatches – Sweat loss estimation for
running activities. A machine learning model (polynomial Kernel Ridge Regression) is used to estimate
the sweat loss in milliliters. A clinical dataset of 748 running tests of 568 people was collected and used
for training / validation. The data presents a diversity of factors playing an important role in sweat loss:
anthropometric parameters of users, distance, ambient temperature and humidity. The data augmentation
technique was implemented. One of the key points of the algorithm is an accelerometer-based model for
running distance estimation. The model we developed has a mean absolute percentage error (MAPE)= 7.7%
and a coefficient of determination (R2) = 0.95 (at distances in the range of 2–20 km). The performance of
the fully automatic sweat loss estimation algorithm provides an average root mean square error (RMSE) =

236 ml; more fundamentally, health-related parameter body weight percentage RMSE (RMSEBWP) =

0.33% and R2 = 0.79. To the best of the authors’ knowledge, the algorithm provides the best performance
of any existing solution or described in the literature.

INDEX TERMS IMU, PPG, fitness, running, sensors, skin temperature, smartwatch, sweat loss estimation,
wearables, wrist-wearable device.

I. INTRODUCTION
Hydration level is an important parameter to maintain the
health of your body, as almost every cell in the body needs
water to function properly. Knowing the personal physiolog-
ical need to consume water can be crucial in cases of intense
physical exercise (such as long-distance running). Dehydra-
tion (lack of drinking) poses a risk of thermoregulation dis-
orders and can lead to heat exhaustion or heat stroke [1].
Overhydration (excessive drinking) in rare cases can lead
to hyponatremia [2]. Thirst is not an accurate indicator and
incentive for water intake. Most guidelines contain detailed
recommendations for best fluid intake practices based on
estimates of sweat loss [3].
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Therefore, sweat loss estimation appears to be essential
for individuals (professional and amateur level) interested
in maintaining optimal physical performance and minimiz-
ing health risks associated with sports and fitness activities.
Knowing howmuch individuals sweat during exercise allows
to plan fluid intake effectively before (prehydration), during,
and after (rehydration) exercise.

An amount of sweat loss can be calculated as a difference
in individual’s body weight (BW) before and after physical
activity (nude weight with carefully toweled off sweat) [4].
Figure 1. Factors influencing the amount of a runner’s sweat
loss grouped by origin. Rectangles mark the factors currently
available for analysis with wearable devices (a part of them
are used by the reported algorithm).

Although the BWmethod is commonly used as a reference
for research studies, it is impractical for individuals in real life
sports and fitness activities.
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FIGURE 1. Factors influencing the amount of a runner’s sweat loss
grouped by origin. Rectangles mark the factors currently available for
analysis with wearable devices (a part of them are used by the reported
algorithm).

A number of studies are devoted to adopting direct sweat
lossmeasurement sensors for wearable devices [5] in the form
of absorbent patches [6], filter paper [7], glass capillaries [8]
and microfluidic collectors [9]. However, these methods can-
not be applied to wearables because of disposable compo-
nents and need of maintenance by qualified personnel. For
the same reason, medical tests such as urine specific gravity
are also outside the scope of the study.

The goal of this study was to develop a method for indirect
sweat loss estimation during running activities using data
from existing wearable sensors and general user information.

Numerous of factors that influence sweating during run-
ning exercise are shown in Figure 1. It is shown that only
some of these factors (marked by rectangles), can be used for
wearable health services (with no need of manual input of
exercise information).

Although environmental conditions can be obtained by
wearable devices in the case of outdoor running (for exam-
ple, from a local online weather forecast), we intentionally
excluded most environmental factors in order to describe a
single solution for all cases (outdoors and indoors, with or
without an Internet connection).

Obviously, an uncertainty about all the ambient conditions,
the user’s clothes, physical and functional status before and
during running leads to the limited performance of the indi-
rect method we describe. The following key components of
the studywere considered in order to reduce the error of sweat
loss estimation:

1) Collecting a dataset with a variety of external condi-
tions and user parameters

2) ML algorithm for accurate running distance estimation
3) Data augmentation for dataset expansion

FIGURE 2. Subject’s sequence of actions during data collection with
running distances <10 km; for longer distances (≥10 km) subject stops
running at the middle of distance for extra body weighting, so the
sequence is 1-2-3-4-5-3-4-5.

4) ML algorithm for sweat loss estimation
5) Validation of the developed algorithm

These components are described in separate sections (II-IV)
below. The results section (V) confirms the high predictive
efficiency of the algorithm, making it suitable for wearable
devices providing valuable information to the user. Con-
clusions and directions for further research are presented
in Section VI.
This paper is an expanded version of the publication [9] for

the ‘‘Biomedical and health informatics (BHI) and the Body
Sensor Networks (BSN) conference (IEEE BHI & BSN,
2022). An explanation of the distance estimation algorithm,
tests on an independent dataset including samples of different
ethnic groups, and amore detailed description of each chapter
are the distinctive characteristics of the actual article.

II. COLLECTING A DATASET
A total of 568 human subjects (age 18–53 years) participated
in a total of 748 running trials (distances of 2–20 km, both
indoor and outdoor). A special test rooms with treadmills and
controlled environmental conditions (ambient temperature
range of 10–40 ◦C and relative humidity range of 25–75 %)
were prepared for indoor running trials. More information
about the subjects’ characteristics and ambient conditions
can be found in Table 1. All subjects were capable of run-
ning distances under the specific environmental conditions
(preliminary agreed). Subjects admission to the tests and con-
trol of the subject’s condition during running were supervised
by a medical doctor.

Two remote testing sites were chosen for dataset collection.
The majority of the data (549 running trials) was collected
with Eastern Asian subjects (South Korea, Kookmin Uni-
versity). The smaller part of the data (199 running trials)
was collected with Eastern European subjects (Russian
Federation, Institute of Biomedical Problems). The purpose
of testing sites diversification was to validate methods with
inter-ethnic data collected with different conditions, equip-
ment, and researchers in order to minimize the risk of bias
between algorithm performance for training data and any
other data (including real-life conditions). The data collection
protocol was reviewed and approved by the Commission on
Biomedical Problems of the Russian Academy of Sciences
(Protocol No 0251 of March 1, 2020) and by the Institutional
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TABLE 1. Main values characterizing population sampling and conditions
used for algorithm training and validation.

FIGURE 3. Environment conditions used for data collection
(air temperature, relative humidity and apparent temperature).

Review Board (IRB) of Kookmin University (IRB registra-
tion number KMU-202101-HR-253 of February 15, 2021).
Before the participation, all subjects received detailed expla-
nation of the clinical tests and signed the informed consents.
The data was kept anonymized and it was used only for the
intended research purpose.

According to the protocol, each subject was examined
by the medical staff to measure anthropometric parameters
(including height) and to survey for general information (age,
gender, medical history, exercise habits, and current medica-
tion). After the screening, subjects were asked to put on the
smartwatch device on their left wrist and do the following
actions (see Figure 2): rest (seating) for 20 minutes in a room
with normal temperature (about 23◦C); perform the 1st nude
body weighing with precise CAS-HB-150 (South Korea)
scales; run a distance with predefined conditions.

If the trial distance is shorter than 10 km, then the sub-
ject runs the whole distance in one go; carefully towels off
sweat; performs the 2nd nude body weighing and completes
the test. In this case, sweat loss reference is defined as the

FIGURE 4. Data processing pipeline of sweat loss algorithm training and
testing. Sweat loss ML model requires general subject’s information, IMU,
PPG and temperature data.

difference between the 1st and 2nd body weights, excluding
water intake. If the trial distance is equal or longer than
10 km, then the subject stops running in the middle of the
distance; performs the 2nd nude body weight; changes into
dry clothes; runs the second half of the distance; carefully
towels off sweat; performs the 3rd nude body weight; and
completes the test. In this case, there are two sweat loss
references: for the half distance (difference between the 1st
and the 2nd body weights, excluding water intake) and for
the whole distance (difference between the 1st and the 3rd
body weights, excluding water intake). In the second case,
half-distance and whole-distance trials were considered as
two samples in the dataset.

Figure 3 illustrates a diversity of environmental conditions
at indoor and outdoor running scenarios. Our aim was to
cover the vast majority of ambient conditions for real-life
running monitoring use cases. Some of the data points struc-
tured as a ‘‘rectangular grid’’ correspond to running trials
under controlled environmental conditions (treadmill in a
special climatic chamber). Vertical points cloud at ambient
temperatures of around 23◦C corresponds to running trials in
regular gym conditions (with treadmill). Data points marked
with an ‘x’ symbol correspond to outdoor running (condi-
tions are defined by local weather). A smartwatch Galaxy
Watch Active 2 (Samsung, South Korea) model was used for
data collection. This smartwatch includes a set of sensors
commonly used in modern wearable devices: photoplethys-
mography (PPG used for heartrate measurement), an inertial
measurement unit (IMU including a three-axis accelerometer
and three-axis gyroscope), and internal thermistors (com-
monly used for monitoring of components temperature).
Smartwatch devices were sufficiently tightly fixed on the
wrist (not too tight, not too loose) during the running, provid-
ing convenient wearing for a subject and correct operation of
sensors to obtain a high signal quality.

Besides the raw sensor signals, the dataset contains
processed values of heartrate from PPG and running
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FIGURE 5. Samples of IMU (accelerometer magnitude) data. High peaks
correspond to wrist acceleration associated with steps, green rectangles
correspond to data windows length used for features extraction.

cadence (steps/min) from IMU. The whole data processing
pipeline is presented in Figure 4.

III. ML ALGORITHM FOR RUNNING
DISTANCE ESTIMATION
During intense running, human muscles do a lot of work, pro-
ducing excessive heat. Sweating helps the body to dissipate
the heat and maintain the normal temperature (in general, the
morework done – themore heat – themore sweat). In physics,
work is a product of force and displacement (when force and
displacement are co-directional). Obviously, running distance
(equal to displacement) is one of the most meaningful fea-
tures for sweat loss estimation. That’s why we place greater
focus on the distance estimation ML model in this study.

One way to estimate the runner’s distance is GPS.
However, this approach has a significant drawback – it’s
inapplicable when an individual is running on a treadmill.
An IMU-based approach is applicable for most running con-
ditions and scenarios.

The number of runners’ steps can be easily extracted from
the IMU data by calculating the number of peaks correspond-
ing to wrist acceleration and associated with leg acceleration
(see Figure 5). Total acceleration (R) was calculated using its
projections (ax , ay, az) measured by ‘inertial measurement
unit (IMU) sensor:

R =

√
a2x + a2y + a2z , (1)

However, the number of steps does not indicate the dis-
tance run, since the time taken per step may depend on the
speed, height and other runner’s parameters. The maximum
acceleration of hand (R) is a parameter that correlates with the
length of each step. So, we can write simple linear equation
to approximate the whole track distance (D):

D = n · h · (l + c · s (R)), (2)

where n – number of steps made by athlete, h – height of the
athlete, l – average distance of each step, s(R) – some statistic
based on hand acceleration time series. We found out that the
third quartile of the maximum acceleration series gives good
estimation results. It is simple to calculate and, at the same

time, is robust to the presence of pauses in training session.
If the user’s height is known, we obtain a linear regression
model with parameters l, c and D/(h · n) as target value.

The whole dataset was split into train and test sets, keeping
an identical distributions of user profiles, features and targets
in both splits. Running trials of the same user can present only
in one of the train or test sets.

TABLE 2. Performance of distance estimation ML model.

FIGURE 6. Correlation between predicted and true distance. The dotted
lines indicate the 95% confidence interval for the regression line.

Experiments with various algorithms showed that better
distance estimation doesn’t always lead to better estimation
of sweat loss. The final model in form (2) was selected to
maximize the cross-validation score of sweat loss estimation
while taking into account deployment restrictions.

The performance of the distance estimation ML model is
presented in Tab. 2 and Figure 6.

Here and elsewhere in this paper a cross-validation pro-
cedure is applied in leave one subject out way only for the
train set (not for the whole dataset). On each round of cross-
validation a distance estimation model is trained and then
used to predict distances on for all items in train set. Obtained
predictions are used as features for sweat loss estimation
model training. After training stage is completed, distance
and sweat loss estimation models are consequentially applied
to validation set.

The proposed model requires only two parameters to track
distance estimation: the number of peaks in acceleration and
the value of the third quartile of peak acceleration series.
Values of these parameters can be continuously updated
during the training session, so storage of all IMU data is
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not required. Low computational and memory requirements
are great advantages of the proposed algorithm in the context
of model deployment.

The computation of training session parameters consists of
several steps. In the first step, the input signal is downsampled
to 12.5 Hz. This operation reduces the computational cost
without any decrease in algorithm performance. In the next
step, the peak extraction algorithm is applied to find the
maximum acceleration and count the number of steps. Since
all the sequence of acceleration values required to compute
quantiles, we need to add defined acceleration into some
storage, for example, an array. We used the t-digest [11]
algorithm to obtain an estimation of the third quartile and at
the same time meet memory requirements.

Initially, the training set didn’t contain whole running trials
with short distances <5 km. Short-distance running samples
were added to the training set by augmentation.

The accuracy of distance estimation could be increased for
outdoor running for which GPS coordinates are available, but
this is out of the scope of our study.

IV. DATA AUGMENTATION FOR DATASET EXPANSION
A data augmentation procedure was implemented in order
to expand the dataset and make it more diverse in distances.
The protocol of clinical tests was limited to obtain only one
reference value (targets) of sweat loss at the end (or in the
middle) of a running trial. A technique described in this
section allows to obtain reference values of sweat loss for
any segment of a running trial, thus increasing the number
of samples to train the sweat loss estimation ML model.

The augmentation procedure consists of two steps:
first – training a model for aggregated output regression;
second – augmentation of the training dataset with refer-
ence target normalization. Aggregated output regression is
a task, where a label is associated with a set of observa-
tions in a region. Suppose we have some covariate space X
and a response space R. The aggregated output regression
model [12] is defined as (3):∫

X
f (x) d

∏
i
(x) + ξi, , , ξ i ∼ N (0, σ 2) (3)

where Xi ⊆ X is an observation region with distribution
5i with Lebesgue density πi and ξi is an independently
distributed Gaussian noise with σ > 0 [13]. A multilayer
perceptron (MLP) is used for aggregated output regres-
sion (see Figure 7). We use batch normalization right after
input. ReLU is used as a dense layer activation function.
This model approximates the target conditional distribution
P(ŷ|f ) – where f is our set of features and ŷ-estimation of tar-
get variable. This vector contains the same statistical values
as in the sweat loss estimation model, calculated for small
segments of a trial. One-minute-long segments were used to
train the model. Estimation of sweat loss for each segment is
calculated after a forward pass through the neural network.
The sum of estimations for all segments of a workout gives
the estimation of total sweat loss. Differences between these

FIGURE 7. Multilayer perceptrons are used for aggregated output
regression. It allows estimation of sweat loss targets for short (1 km)
running segments for further training of the ML model.

aggregated estimations and ground truth targets for workouts
were used to calculate the MSE loss function for error back-
propagation.

After MLP is trained, the dataset is augmented by split-
ting the whole running trials into segments of approximately
1 kilometer long.We’ve also experimented with other lengths
of segments (2, 3, 4 km), but we’ve found that 1 km of
augmentation gives the best performance.

MLP estimations are normalized for each running trial as
follows:

ynew =
ŷ ∗ y∑n
i=0 ŷi

, (4)

where ŷi- vector of estimated sweat loss targets for each of
1 km segments, y – our target variable, and ynew – normalized
target variable, which is used for augmentation.

Data augmentation allowed us to expand the dataset
from 748 to 6296 running samples (including whole running
trials and their segments). The technique described in this
section helped us to improve sweat loss estimation algorithm
performance (especially at short running distances <5 km)
for both train and test data.

V. ML ALGORITHM FOR SWEAT LOSS ESTIMATION
The amount of data (even with augmentation) has appeared
to be insufficient for deep learning architecture implementa-
tions. The best estimation performance was achieved with a
feature-based kernel ridge regression model with a polyno-
mial kernel:

k(xi, yj) = (1+
∑d

k=1
xi, kyj, k)m, (5)

where d is a size of feature vector.
The solution of the Kernel ridge regression model has the

following form:

f(x) =

∑N

n=1
αik(x, xi), (6)

where N - is a size of training set.
The input feature vector contains a set of features, calcu-

lated from each running sample (whole trials and segments):
- maximum heart rate,
- average cadence (steps/min),
- average thermistor temperature,
- user’s gender,
- distance run × user’s weight × average thermistor

temperature.
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TABLE 3. Performance of sweat loss estimation ML model.

FIGURE 8. Correlation analysis between features and target of the Sweat
loss estimation ML model. A high correlation between the target ‘Sweat
loss’ and the multiplicative feature ‘Dist. ∗Wei. ∗Av. temp’ can be
observed.

The last multiplicative feature was found through a deep
data analysis (it can be associated with work done by a run-
ner under certain temperature conditions). A correlation plot
between those features and the target is shown in Figure 8.
We have found that the multiplicative feature has the best
correlation with the target (a very close equation for sweat
loss estimation was described in [14]). Each feature is linearly
transformed to range from 0 to 1.

Regularization parameter and parameters of kernel (5)
were selected by optimization of RMSE error calculated
using cross-validation with the training part of dataset. Imple-
mentation, provided by Optuna framework [15], was used to
perform hyper parameters tuning. A Tree parzen estimator
model was selected as the surrogate model.

The performance of the ML model trained with and with-
out the data augmentation technique is presented in Table 3.
The Ridge regression model with a polynomial kernel was
trained on a training data split and evaluated on both train-
ing (cross-validation) and test data splits. A model that

FIGURE 9. (A) – Scatter plot of predicted versus true sweat loss for the
model trained with augmentation. (B) – Comparative boxplot of absolute
sweat loss error for models trained with and without augmentation.

was trained using an augmentation technique outperforms a
model with no augmentation at all performance metrics.

An important health-related parameter is the body weight
percentage of sweat loss. A number of sports medicine publi-
cations [16] state that 2% of body mass water loss with sweat
can be harmful for a human with some changes in mental
performance and endurance. Our ML model provides low
RMSEBWP error (<0.4%), thus it can reliably inform user
about upcoming dehydration threat.

Figure 9A shows concordance between sweat loss pre-
dicted by the ML model and ground truth values (from
changes in body weight). Only a few data samples have
high sweat loss error (up to 1000 ml), for the most of cases
predictions are well correlated with true sweat loss. Figure 9B
illustrates that augmentation is especially beneficial at short
running distances, e.g., at 3 and 4 km.

VI. INDEPENDENT EXTERNAL EVALUATION
OF ALGORITHM
The sweat loss algorithm was trained with Eastern Asian
and Eastern European subjects (with data collection at two
geographical regions).
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TABLE 4. Performance of sweat loss estimation on the independent
dataset.

FIGURE 10. Scatter plot of predicted versus true sweat loss for the
independent dataset (Left hand).

An independent external evaluation of the algorithm was
performed with data collection at the third geographical
region in South America with different ethnical groups of
subjects (including Latino and Black). The dataset represents
running trials of people from a wide range of anthropometric
characteristics. A total of 320 experiments were obtained in a
similar manner as described in Section II. In addition, to test
the versatility of the algorithm, metrics were calculated based
on data that was collected from both the left and right hands.
The distances of the running trials were 2.5, 5, and 7.5 km.
It is important to note that when calculating metrics on the
independent dataset, no training of a new model was carried
out—only themodel originally obtained by the R&Dprocess
was employed.

The performance of the ML model for sweat loss estima-
tion on the independent dataset is presented in Table 4.

The algorithm demonstrates good predictive ability. The
RMSEBWP error is 0.284% and 0.273% for the right and
left arms, respectively, which indicates that the system is able
to provide reliable information about the upcoming threat
of dehydration. The error in RMSEBWP of less than 0.1%
was predicted for 96 (124), less than 0.2% for 194 (214) and
less than 0.5% for 289 (295) people on the left (right) hand,
respectively.

As compared to the metrics in Table 3 for the initial
dataset, the MAE and RMSE have decreased. This happened
as a result of the shorter running trials in the independent
dataset (maximum 7.5 km, instead of 20 km distance). Sweat
losses were reduced as a result, and measurement errors

were reduced. However, the R2 metric has remained approx-
imately the same as the performance score. True sweat loss
and predictions are often well correlated; for both arms, the
R2 is greater or equal to 0.75. The algorithm performs well
for both the left and right arms simultaneously.

The correspondence between the ground truth values and
the predicted sweat loss by the ML model is illustrated in
Figure 10. This demonstrates that the algorithm is tolerant
of the wide range of anthropometric and ethnic traits of the
participants in the independent dataset because with no bias
in predictions (no regularities of underestimates or overesti-
mates at independent dataset). All the prediction errors within
the independent dataset are below 500 ml.

Each of these results makes it possible to state the system’s
reliability when using various types of data and the high
accuracy of the predictions, which allows to provide valuable
advice on user’s hydration.

VII. DISCUSSIONS AND CONCLUSION
The described method of sweat loss estimation is based on
sensors that are currently available in most smartwatches
and fitness trackers. Although we used indirect estimation
(no direct measurements of sweat amount), the approach
showed high performance.

It was shown that multiple factors influence sweating dur-
ing the running exercise and only a part of those factors can
be used for the smartwatch algorithm. A set of measures to
overcome the uncertainty of unknown factors were imple-
mented: dataset with a variety of external conditions and user
parameters; improved running distance estimation; data aug-
mentation technique; and sweat loss MLmodel optimization.

The essence of the proposed algorithm is the top perfor-
mance among existing solutions or ever described in literature
in the area of smartwatch-based fully automatic sweat loss
estimation (to the authors’ knowledge).

There is still a field for further research. Probably the
algorithm performance can be improved with access to addi-
tional data, e.g. geolocation, altitude above sea level, weather
info (from on-line services), and also the user’s sports habits
and some individual information (directly from the user).
Recent appearance of BIA sensor [17] in smartwatch could
be beneficial in sweat loss and body hydration monitoring
(considering body composition changes).

The sweat loss estimation research should be directed to
other activities and user scenarios (expand it from running to
any daily life and sports activities).

Monitoring the body’s hydration and reminders of timely
consumption of water will motivate users to achieve and
maintain a healthy lifestyle and high results in physical
exercises.
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