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ABSTRACT Autonomous Vehicles (AVs) have advanced rapidly in recent years as they promise to be safe
andminimize the burden coming from the driving task. AVs share the road with various categories of vehicles
as Emergency Vehicles (EMVs) (e.g police and ambulance vehicles). When being approached by an active
EMV, it is natural to expect all vehicles to cooperate with EMV, such that the EMV travel time is minimized.
The decision-making block of an AV includes the responsibility of instructing the AV to change lanes, which
is typically handled by the Lane Change Decision (LCD) model. A typical LCD model tends to overlook
the presence of EMVs around, as they neglect the impact of the lane change on the EMV utility. To address
this challenge, this paper proposes an Emergency Vehicle Aware LCD via utilizing Deep Reinforcement
Learning. To our best knowledge, this is one of the pioneering works that propose a DRL solution for the
problem, addressing important limitations that have been identified. The proposed solution was evaluated
against a rule-based LCD known as MOBIL in terms of safety and level of cooperativeness with the EMV.
Some key results found from the comparison between the proposed solution and MOBIL are (1) identical
safety levels,(2) proposed solution is takes far less time to give up the lane when being approached by an
EMV, and (3) proposed solution never blocks the path of the EMV, whereas MOBIL occasionally block the
path.

INDEX TERMS Deep reinforcement learning, autonomous vehicles, lane changes.

I. INTRODUCTION
There are various types of vehicles on roads such as
Human-driven Vehicles (HVs), AVs, and heavy trucks. There
has been huge interest from technical experts and researchers
on AVs due to the potential benefits they are capable of deliv-
ering, in terms of safety and efficiency [1], [2]. EMVs belong
to HVs and include police and ambulance vehicles. Naturally,
EMV deserves the highest priority when being in operation.
Thus, all other road users should prioritize the efficiency of
EMVs, with cooperative efforts by all vehicles to minimize
the travel times of EMVs to reach their desired destination.

The associate editor coordinating the review of this manuscript and
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Evidence of vehicles prioritizing the EMVs is manifested by
vehicles giving up the lane and avoiding making lane changes
when being approached by an EMV, especially when making
lane changes that directly hinder the travel path of the EMV.
Fig. 1 and Fig. 2 elaborate on two specific road situations,
where the existence of EMV changes the desired optimal
behavior. In the incident an EMV gets blocked by any vehicle
on the road, the consequence can be damaging. Several coun-
tries have targeted reducing the travel times for EMVs, as it
helps significantly in rescuing lives and protecting people’s
possessions [3]. In the UK, health authorities have set a target
of 8 minutes for the rescue time [4]. Dubai which is a major
state in the UAE, is aiming for a target of 4 minutes [5].
The importance of prioritizing EMVs over all other vehicles
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FIGURE 1. Red vehicles are HVs and the orange vehicle is the AV (or
ego-vehicle). In the depicted road situation above, the AV is expected to
give up the lane to prioritize the EMV. The optimal behavior for the AV in
this situation is to execute the LC left while avoiding any collision with
any vehicles.

FIGURE 2. Red vehicles are HVs and the orange vehicle is the AV (or
ego-vehicle). In the depicted road situation above, assume the AV is
preceded by an HV which is driving at a slow speed, which is affecting its
efficiency. Despite the fact that AV remaining in its current lane is an
inefficient decision, however, it is optimal as it would avoid blocking the
way on the EMV which is going to affect the efficiency of the EMV.

has been emphasized and established. Therefore, it should be
noted that AV’s decision-making must be aware of an EMV
that exists in the vicinity. The presence of an EMV around
can be classified as an edge case to the AV decision-making,
which it must be able to handle. This is a specific edge case
that cannot be compromised by the AV, as it only takes a
single vehicle being uncooperative with the EMV, to hinder
the prioritized operation of the EMV.

One component of the AV decision-making is the LCD
model, which has the main objective of instructing the AV
to make Lane Changes (LCs) as required [6]. Usually, the
output of the LCD model is Lane Keep (LK), Lane Change
Right (LCR), and Lane Change Left (LCL), where the lateral
direction control is managed [7]. The LCDmodel can instruct
mandatory or discretionary LCs, with the former being LC
triggered as a result of traffic regulations, destination, or any
other factor forcing the AV to execute LC [8], [9]. An AV
deploying an LCDmodel that does not incorporate the where-
abouts of an EMV is bound to have the shortcoming of not
being able to handle the aforementioned edge case. Typically,
an LCDmodel will be developed with the objective of having
to maximize its own individual reward including efficiency,
comfort, and safety. In the presence of an EMV around,

we expect the AV to prioritize the EMV’s interest. The typical
objectives a regular LCDmodel aspires to achieve can hinder
the efficiency of the EMVs. Thus, when being approached by
an EMV, the commonly known LCD models are not reliable
as EMVs are not considered.

One of the first works on developing LCD models can
be seen in Gipps models which are classed as rule-based
models [6]. A common theme in all Gipps’ and other sim-
ilar models is they are known to be deterministic which
provides an interpretable LCD model. The set of rules to
instruct an LC, based on necessity and safety. A variant of
the Gipps model, known as ‘‘Minimizing Overall Braking
Induced by Lane Changes’’ (MOBIL), has been suggested
by Kesting et al. [10]. MOBIL is an acceleration-based that
instructs LCs upon considering safety and desirability rules.
By modifying MOBIL parameters, various driving behaviors
can be simulated from conservative to aggressive types of
driving. Due to the rigid nature of MOBIL, they are prone
to struggle and fail to perform as expected in unanticipated
road situations. Another line of techniques that exist in
the literature is the use of Deep Reinforcement Learning
(DRL) [11] to obtain LCD models that can be used by the
AV. The DRL offers a set of approximation algorithms that
is capable of achieving near-optimal performance on various
problems [12], such as DQN and DDQN. DRL has shown its
potential in various domains such as game mastering [13],
[14], robotics control [15], algorithmic trading [16], and
autonomous driving [11]. Ye et al. proposed an LCD model
using Proximal Policy Optimization-based DRL mainly for
mandatory LCs. The study considered the safety, efficiency,
and comfort of the ego-vehicle were considered. The eval-
uation demonstrated a high success rate in performing the
required mandatory LC in heavy traffic while maintaining
high safety standards.Wang et al. [17] proposed a harmonious
LCD model where the welfare of neighboring vehicles is
considered. This work opted to exploit DQN to obtain an
LCD model that has demonstrated a high cooperative level
among AVs. Further existing research works have employed
DRL and have demonstrated huge potentials [18], [19], [20],
[21], [22].

As regular LCD models are not designed or trained to
handle the presence of an EMV, we suggest aiding the AV
decision-making with an Emergency Vehicle Aware LCD
(EMV-LCD). The EMV-LCD is a special type of LCDmodel
that overrides the decisions of the main LCDmodel deployed
by the AV, once an EMV is detected around. In other words,
the EMV-LCD will take over the LCD model responsibilities
as an EMV comes under the AV radar. It should be clear
to the reader, that EMV-LCD is not intended to replace the
main LCD model; however, it is indented to address the edge
case raised since it is considered as a shortcoming of existing
LCD models. In this paper, we refer to the AV using the
EMV-LCD or LCD as the ego-vehicle. Shoaraee et al. [23]
have discussed this edge case and proposed a DRL solution
that addresses it. They used the Dueling Deep Q-networks
(DDQN) to train a model which is similar to the concept of
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the EMV-LCD. The objective was to produce similar human
driving behavior, where the AV will give the lane to an EMV
behind it. They attempted to minimize an objective function
that comprised of a number of accidents, time steps taken
until the EMV-LCD gives way to the EMV, frequency of
leaving the road boundaries, and speed violations. The results
obtained by Shoaraee et al. [23] demonstrated their proposed
solution outperformed MOBIL in terms of safety and level
of cooperativeness with the EMV, which indicates the DRL
has the potential of handling the discussed edge case. Despite
the success, the existing work is still short to be complete and
contains several shortcomings, such as (1) their training and
evaluation only considered when the ego-vehicle resides in
the center lane, whereas far-end lanes were neglected under
evaluation and (2) considering various types of EMVs such
as an ambulance and police vehicles where they vary in
dimensions. The contributions for this paper are listed below:

• Proposes an EMV-LCD that can be deployed by
an AV where EMV interest is considered using a
DRL approach. The decision-making of the proposed
EMV-LCD provided a high level of safety and demon-
strated evidence of being highly cooperative as it gets
approached by an EMV.

• Addresses shortcomings found in [23] where our solu-
tion can maintain consistent performance over all lanes
and is capable of handling different types of EMVs with
varying dimensions.

This paper is organized as follows1: The problem statement
is presented in section II. Preliminaries required for this work
are covered briefly in section III. Then, we present our pro-
posed DRL solution in section IV. Next, the training details
including the simulation setup are discussed in section IV-C.
In sectionVI, evaluation results are presented coupledwith an
extensive discussion. Finally, sectionVII concludes the paper.

II. PROBLEM STATEMENT
Typical DRL-based LCD models deployed by AVs are
designed and trained to achieve efficiency, safety, and com-
fort for the AVs deploying it [17]. Naturally, these objectives
drive the ego-vehicle to become individual-oriented, which
makes the LCD model not suitable to handle the edge case
when being approached by an EMV. Thus, there is a need to
complement the AV decision-making with an EMV-LCD to
be able to handle this edge case, where the AV cooperates
with the EMV, behaving in the best interest of the EMV
while maintaining safety. To our best knowledge, only a
single work [23] has been found where DRL was leveraged
to propose an EMV-LCD, where they have demonstrated
huge potential. However, this work did contain a number of
limitations and shortcomings as earlier discussed in section
I. The primary aim of this work is to further explore the use
of DRL in developing an EMV-LCD and address some of the
existing limitations of the literature.

1This work is based on [24].

III. PRELIMINARIES
A. IDM
A well-known car following the model, proposed by
Treiber et al. [25], is the Intelligent Driver Model (IDM)
which is considered to be a rule-based model. It handles the
vehicle acceleration based on the current leading vehicle. The
IDM is known to be accident-free and easily interpretable
which makes us avoid accidents occurring as a result of
longitudinal control. At each time step, Eq. (1) is used to
compute the modified acceleration.

at+1 = at

[
1 −

(
vt
vexp

)δ

−

(
d∗

d

)2
]

(1)

d∗
= d0 + Tvt +

vt1v

2
√
ab

(2)

The variables define the behavior of the model, and these
variables are target velocity (vexp), desired time headway
which is the desired time gap to the leading vehicle (T ),
jam distance which is the required minimum distance to
the leading vehicle (d0), acceleration limits (a and b), and
velocity component (δ). In addition to the model parameters,
a set of other variables are required that represent the current
situation. The variables are (d) distance to the front vehicle
and (1v) difference in velocity with the leading vehicle. Note
that (d∗) is defined in Eq. (2) to compute the desired gap
distance based on the model parameters.

B. MOBIL
For the LCD model, we make use of the rule-based
model, Minimizing Overall Braking Induced by Lane
Change (MOBIL) [10]. Note, MOBIL will only be used by
Human-driven vehicles on the road to make LC decisions.
Recall that the model checks if making LC, from the current
to a specific target lane is possible and desired.

ãts ≥ −bsafe (3)

ã−a+ p
[
ãtf − atf + ˜acf − acf

]
> 1th (4)

Several useful notations are introduced as they are used
in the remaining of this subsection. (a) and (ã) refers to
ego-vehicle current acceleration before and after making the
LC to the target lane, respectively. Regarding the following
vehicle, (atf ) and (ãtf ) are associated with follower vehicle
acceleration in the target lane before and after the LC gets
executed, respectively. Similarly, the leading vehicle in the
target lane is represented using acf and ˜acf . MOBIL states two
criteria, which both must hold true, in order for the model to
instruct an LC to a particular target lane which is explained
below:

• Safety check if as a result of this ego-vehicle making
an LC, the new following vehicle will need to make
an abrupt stopping with a high deceleration value. Eq.
(3) defines the inequality that must hold for a specific
deceleration constant bsafe.

• Incentive determine if executing an LC has the potential
to improve the local traffic situation around the vehicle.

VOLUME 11, 2023 27129



A. Alzubaidi et al.: EMV Aware LCD Model for AVs Using DRL

The inequality in Eq. (4) must hold true for the cur-
rent vehicle to have the incentive to execute an LC.
In the LHS, the first term indicates the utility of the
ego-vehicle, and the second term denotes the utility of
both followers on the current and target lane. p is called
the politeness factor, which is a constant that states the
weight significance of neighbors’ utility if an LC is
made. In RHS,1th is the switching threshold, which sets
the minimum local traffic utility for an LC to be desired.

C. DQN
A subfield of machine is known as Reinforcement Learning
(RL) where an agent is trained to make certain actions in a
specific environment to maximize its reward over time [26].
The reward signal received following each action is defined
in the reward formula that is defined in terms of the objectives
the agent must achieve. Therefore, the agent will utilize the
reward formula to learn how to arrive at the goal state or
maximize its total cumulative reward over time. Most RL
algorithms target obtaining a policy that always selects the
action that maximizes its expected accumulative reward given
the current agent’s state. Such a policy is known as optimal
policy as it always selects the optimal action in every state,
providing the optimal performance for the agent. Formally,
a policy is mapping between states and action π (a|s) where
a is the action and s is the current state for the agent, with
π∗ being the optimal policy. Typically, the environment is
modeled as a Markov Decision Process (MDP), which is
composed of state space, action space, and reward formula.
In order to obtain the optimal policy, we need to have the
true values of the Q-function as seen Eq. 5. A well-known
RL algorithm called Q-learning is capable of obtaining the
optimal policy [27]. Q-learning works by gradually converg-
ing to true values of the Q-function that is associated with the
optimal policy. However, if the tackled problem is large or
infinite in terms of the state or action space, the huge required
computation time and memory makes Q-learning fail to be a
reasonable algorithm choice. In such problems, we opt to use
approximation methods, such as the ones under the umbrella
of Deep Reinforcement Learning (DRL), where it is possi-
ble to obtain near-optimal policies [12]. Deep Q-networks
(DQN) is an example of a DRL algorithm, that is capable of
obtaining near-optimal policies by approximating the values
of the Q-function [28].

π(s)∗ = argmaxaQ(s, a) (5)

IV. PROPOSED SOLUTION
The core of the EMV-LCD purpose is the decision-making
problem, which must be formulated to be able to proceed
with the solving task where an agent is trained. In this work,
we chose to formulate the decision-making problem as a
Markov Decision Process (MDP), which is composed of
state space, action space, and reward formula. Formally put,
an MDP is defined as tuple (S,A,R,T , γ ). S defines the state
space, A defines the action space, T is a transition probability

FIGURE 3. Snapshot constructed based on the road situation. The black,
white, and red cells correspond to 0, 1, and 2, respectively. Additionally,
the name on top of each of HVs (Red vehicles) defines the current relative
direction to ego-vehicle (Orange vehicle).

function, and R is a reward formula. For every time step t , st is
observed by the agent according to the state definition, where
the agent will have a set of possible actions at its disposal,
at ∈ A, executed based on T . The state defines the agent’s
observation, based on the current state of the environment,
which must be tailored to the current problem at hand.

A. STATE
The components of the state definition are tailored according
to the problem EMV-LCD tries to solve. The components
are snapshots, relative speed, and EMV-info. Each of the
components is explained below in detail:

• Snaphot is a binary 2D array or an occupancy grid
depicting the current road situation around the vehicle.
The 2D array aims to represent the grid around the vehi-
cle, having the vehicle centered along the y-direction.
Fig. 3 demonstrates the construction of the grid from
the current road situation. Cells are set to one (white),
indicating the existence of the vehicle, otherwise set to 0
(black). A cell occupied by an EMV is given a value
of 2 (red). Note that the top and bottom rows in the grid,
represent neighboring lanes, relative to the ego-vehicle
current lane. The grid construction requires defining a
set of parameters that defines the level of detail needed.
The parameters are cell size (dim), capture distance (d),
ego-vehicle head (h), and tail (t) distances (see Fig. 3).
A snapshot at t , is denoted asMt .

• Relative speed is a four elements vector composed of
relative speeds with respect to all neighbor vehicles.
The considered vehicles are ahead and behind in both
neighboring lanes which are Left Follower (LF), Left
Ahead (LA), Right Follower (RF), and Right Ahead
(RA). For further clarity, refer to Fig. 3. The rela-
tive speed is defined by taking the difference in speed
between the considered vehicle and the ego-vehicle,
as seen in Eqs. (6)-(9). RSt (A) denotes the relative
speed with respect to vehicle A, and Vt (A) returns
vehicle A’s current speed at time step t . The entire
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TABLE 1. Function descriptions.

relative speed vector is denoted as RSt and formed by
[RSt (LF), RSt (LA), RSt (RF), RSt (RA)]. Note that the
vehicle that is not within 30 m around the ego-vehicle is
disregarded.

RSt (LF) = Vt (LF) − Vt (EGO) (6)

RSt (LA) = Vt (LA) − Vt (EGO) (7)

RSt (RF) = Vt (RF) − Vt (EGO) (8)

RSt (RA) = Vt (RA) − Vt (EGO) (9)

• EMV-Info denoted as Et , which attempts to capture
the state of the ego-vehicle specifically in relation to
the EMV. The EMV-Info is composed of two elements,
namely, Edett and Esamet which are binary values defined
in Eqs. (10) and (11), respectively. Table 1 describes the
function definitions used in the equations. Edett checks if
the EMV is detected within the detection range, whereas
Esamet checks if the detected EMV is located in the same
lane as the ego-vehicle.

This finishes defining the entire information needed to
define the full state. Note thatRSt andEt are formed of a num-
ber of elements according to the state definition discussed in
this section.

Edett =

{
1, DET(EMV )
0, otherwise

(10)

Esamet =

{
1, DET(EMV ) ∧ LAN(EGO) = LAN(EMV )
0, otherwise

(11)

B. ACTION
At any t , the agent has a set of three actions to instruct
the ego-vehicle to execute. Namely, A = [LK ,LCL,LCR]
representing lane keep, lane change left, and lane change
right. As we select at ∈ A, the high-level decision is passed
down to the lower-level controller for the execution phase.
The at chosen by the agent will be executed over a specific
horizon time called the execution time (step). In this work,
step = 1s is used.

C. REWARD
The design of the reward formula is a crucial step in this work
and in general in DRL solutions. Thus, it must be defined
carefully, to both contribute to generating reliable EMV-LCD
behavior and speed up the training time. Upon formulating
the reward formula, a number of desired objectives were
targeted which are discussed below:

• It is desired that an ego-vehicle that happens to be fol-
lowed by an EMV should minimize the duration of time
it takes until it prioritizes the EMV by giving up the
lane to the EMV. This objective aims to contribute to
improving the efficiency of the EMV, by being able to
drive at its maximum speed.

• While we want the ego-vehicle to cooperate with the
EMV, there is a safety concern for the ego-vehicle
and the neighboring vehicles cannot be compromised.
Therefore, the LCs instructed by the EMV-LCD should
consider the safety of the lane changes.

• Recall that the EMV-LCD is only active while the EMV
is around the ego-vehicle. Thus, we also expect the
EMV-LCD to avoid executing LCs that would block the
path of the EMV as explained in Fig. 2.

• We also expect the EMV-LCD to consider the bound-
aries of the road such that it does not leave the
ego-vehicle to become outside the road boundaries.
For instance, the EMV-LCD should not instruct the
ego-vehicle to make the right LC in the situation
depicted in Fig. 2, as the ego-vehicle is currently residing
in the far right lane.

rt =

{
−300 collision
rlct + remvt otherwise

(12)

remvt =

{
−α1, DET(EMV ) ∧ LAN(EGO)=LAN(EMV )
0, otherwise

(13)

rlct =



−α2 LC(EGO) ∧ ¬(DET(EMV ))
−α3 LC(EGO) ∧ DET(EMV ) ∧ TAR(EGO)

= LAN(EMV )
−α4 LC(EGO) ∧ DET(EMV ) ∧ TAR(EGO)

̸= LAN(EMV )
−α5 LC(EGO) ∧ 0 < LAN(EGO) < 4
0, otherwise

(14)

Eqs. (12)-(14) define the reward formula used in this work.
Regarding the functions used in the reward formula, LC
checks if the vehicle is making an LC, DET checks if the
EMV is detected by the vehicle, LAN return the lane the
vehicle is currently residing, and TAR return the current
target lane for the vehicle. Refer to Table 1 for the full
definitions of the functions used in the reward formula. In Eq.
(12), if the ego-vehicle gets involved in a collision with other
vehicles on the road, a penalty of 300 is returned. Otherwise,
the reward is composed of two components, which are the
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FIGURE 4. Training model architecture.

EMV reward remvt and the lane change reward rlct . Eq. (13)
defines remvt , which is the reward associated with the position
of the ego-vehicle in regard to an approaching EMV. In the
case the EMV is noticed to be within the detection range and
the ego-vehicle happens to be driving in the same lane as the
EMV, the agent will be penalized by α1. However, if the EMV
is not within the detection area of the ego-vehicle, remvt is set
to zero. The second component of the reward is rlct which is
defined in Eq. (14). It evaluates the impact of any LC executed
by the ego-vehicle, with the intention to push the ego-vehicle
to make LCs only when it is required and safe, while being
cooperative with an approaching EMV. As seen in Eq. (14),
there are multiple conditions where the agent is penalized
with some αi. The conditions are: (1) EMV is not detected,
and the ego-vehicle is executing an LC, (2) EMV is detected,
and the ego-vehicle is changing lanes where the EMV cur-
rently resides, (3) EMV is detected, and the ego-vehicle is
making an LC to a lane that EMV is not currently at, and
(4) if the agent instructs the ego-vehicle to make an LC that
will lead the vehicle to leave the road boundaries regardless if
the EMV is detected or not. The consequence of this reward
formula is that the ego-vehicle being in different lane relative
to the detected EMV is encouraged, as it will not return any
penalties.

V. TRAINING
The details of how the training step was conducted are
explained in this section. This section presents the training

model architecture used, the simulation platform and setup
adopted, and discusses the parameters used in training.

A. MODEL ARCHITECTURE
The model used during the training can be seen in detail in
Fig. 4. The model was selected following experimenting with
various model architectures and we selected the one that pro-
duced the maximum performance. In every training step, the
state is constructed as explained in section IV.Whenever pos-
sible, features in the constructed state are normalized using
Max-Min normalization before starting the feature extraction
step. Then, a feature extraction step is done on both RSt
and Mt , using a set of convolution layers. As seen in Fig. 4,
Mt goes through two convolution layers, whereas RSt has a
single convolution layer. The details of each component used
in the feature extractor can be found in Table 2. Following
the extraction step, the extracted features will be combined
using a flatten layer. In turn, they would be fed into the
DQN model which is expected to output a specific action.
Over the training steps, it is expected that the DQN model
decision-making will improve as the DQN weights will be
tuned to optimize the performance.

B. SIMULATION SETUP
In this subsection, we present the environment configuration
and setup set under the training stage. For the simulation
task, this work has utilized an open-source implementation,
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TABLE 2. Feature extraction layers.

known as Highway-env [29]. The simulation tool facilitates
easy setup for custom observation, action definition, and
easy modification to vehicle macroscopic and microscopic
behaviors for all vehicles on the highway. Each training
episode includes a single EMV, a single ego-vehicle, and
set of HVs. The considered road environment is a 3-lane
highway, with each lane having a length of 4 m. A training
episode terminates in two conditions which are either reach-
ing the maximum episode length or in the case the EMV
passes the ego-vehicle with a distance of 50m. The maximum
length of an episode is set to 30 time steps or seconds. These
limits are set with the intention of exposing the agent to as
many different road scenarios as possible. During training,
the agent will encounter two different episodes with each
having a particular desired behavior. Eps-1 is intended to
teach the agent to give the way when it is being followed by
an EMV.WhereasEps-2 primary purpose is to avoid blocking
the way on the EMV and discourage making LCs when the
EMV is detected. The episode type is selected from uniform
distribution, with weights of 0.85 and 0.15 set for Eps-1 and
Eps-2, respectively. Eps-2 is set a lower probability to be
selected due to the less complexity and difficulty of learning
the desired behavior. Fig. 1 represents howwould Eps-1 start,
whereas the Eps-2 starting situation is depicted in Fig. 2.
EMV can be either a police vehicle or an ambulance vehi-

cle where they vary in dimensions as defined in Table 3. The
EMV starts behind all other vehicles along the longitudinal
direction with the desired speed of 150 km/hr which is the
highest speed aspired by any vehicle in the road portraying an
emergency situation where the EMV is in operation. In both
episode types, the EMV will start at lane Li, evenly chosen
among the set of lanes. As the EMV expects other vehicles to
give up the lane, the EMV will not be making any LCs and
remain located in Li during the entire length of the episode.
Regarding the ego-vehicle, its desired speed is chosen from
the uniform distribution defined by 125 km/hr and 140
km/hr . In Eps-1, the ego-vehicle will start at lane Li to be
located in the same lane as EMV with a specific gap distance
ahead of it. The gap distance is selected from a uniform
distribution, ranging from 10 m and 75 m. Whereas in Eps-
2, the ego-vehicle starts at lane Lj given that i ̸= j, which
implies that the ego-vehicle starts at a different lane compared
to the EMV. Additionally, the episode will include a set of
HVs on the road with their quantity ranging from 4 to 8,
selected at beginning of every training episode. Each HV
in the simulation will be set a specific driving behavior as
human driving attitudes varies among drivers. All HVs can
be located in any of the lanes apart from Li. To expose
the trained agent to various types of road situations under

TABLE 3. Dimensions set associated with each vehicle type.

TABLE 4. DQN Parameters for EMV-LCD.

TABLE 5. Agent state parameters for EMV-LCD.

TABLE 6. Agent reward parameters for EMV-LCD.

training, several parameters are selected from distributions
such as gap distance, desired speed, number of HVs, and
human driving styles.

C. TRAINING SETUP
This work opted to use the DRL model known as DQN, since
the tackled problem has an infinite state space. Following
optimizing the hyperparameters of the model, the values
selected can be found in Table 4. Additionally, the agent
includes optimizing a number of parameters found in the state
and reward. The agent parameters of this work can be found
in tables 5 and 6. The model was trained for 100k training
time steps. For the training task, the DQN implementation
provided by the DRL library SB-3 [30] was leveraged.

VI. EVALUATION
In this section, we present the performed evaluation exper-
iments in this work to assess the applicability and safety
of the proposed solution. The main purpose of the evalua-
tion is to see how the ego-vehicle deploying the proposed
EMV-LCD performs when being approached by an EMV.
A similar simulation setup is used under training as it is
sufficient to produce a broad range of road scenarios. The
only major difference is that we increase the maximum length
of an episode to 60 seconds. Under evaluation, the episode is
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defined by a specific expected speed for the ego-vehicle. This
allows evaluating the EMV-LCD when being approached by
an EMV against different desired ego-vehicle behavior. The
considered desired speeds are 125, 133, and 140, in km/hr .
This work has opted to perform the evaluation into two

stages. In the first stage, experiments were performedwith the
initial lane for the ego-vehicle is chosen randomly. Whereas,
in the second stage, an additional parameter is added into
the episode definition which specifies the starting lane of the
ego-vehicle. The second stage is intended to evaluate how
the EMV-LCD performance varies, among all three lanes.
This can give us further insight into the performance of the
considered EMV-LCD. We refer to the first stage as Random
Lane, whereas, the second stage is called Specific Lane. The
following subsection proceeds with the used metrics and
benchmarks for comparison purposes, followed by presenting
the obtained results.

A. METRICS
Several metrics were chosen to assess this work and compare
it against benchmarks. Each metric selection is associated
with a particular property that we desire the EMV-LCD to
possess. The metrics used in this work are as follows:

• Collision-free episodes: The percentage of evaluation
episodes that are free of any collision involving any of
vehicles on the road, including HVs, EMV, and the ego-
vehicle. This metric allows evaluating the safety of the
EMV-LCDwhich is an important feature the EMV-LCD
must provide. The metric will be evaluated using Eps-1
configuration.

• Steps-Sharing: This counts the number of seconds it
takes the ego-vehicle to give the way to the EMV. To be
further specific, the counts start from the beginning
of the episode until the EMV passes the ego-vehicle,
with a distance of 50 m, which can only occur if the
ego-vehicle gives the way to the EMV. In the case the
ego-vehicle was not able to give up the lane to the EMV,
the corresponding value should be the maximum length
of the episode which is 60 seconds. The metric will
evaluate how cooperative the EMV-LCD and the level of
emergency awareness when being followed by an active
EMV. As with the previous metric, Eps-1 is used.

• Blocks-free episodes: The percentage of evaluation
episodes that are free of any blocks done by the ego-
vehicle. A block occurs when EMV-LCD instructs an
LC that ends ups blocking the way ahead of the EMV
which contributes to delaying the arrival time for the
EMV. This also allows for capturing how cooperative
the EMV-LCD is when being approached by an EMV in
a different lane. Naturally, these metrics were evaluated
using the Eps-2 setup.

B. BENCHMARKS
To demonstrate the effectiveness of the proposed solution,
we compare the results of the proposed solution in this

TABLE 7. MOBIL parameters.

TABLE 8. Random Lane collision-free percentage results.

TABLE 9. Random Lane Steps-Sharing results.

TABLE 10. Random Lane block-free percentage results.

work with two different benchmarks. Recall that we are only
evaluating the lateral control of the ego-vehicle, when being
approached by an EMV. Therefore, to ensure a fair compar-
ison, all considered benchmarks and the solution proposed
will be using a rule-based car-following model with identical
parameter values.

• Detect-LC This LCD is naive and simple, where it
always makes an LC the moment it detects an approach-
ing EMV, while being in the same lane. Despite it being
extremely simple, it is useful to see how much improve-
ment the proposed solution offers over it.

• MOBIL As done by [23], the proposed solution is
compared against a well-known rule-based LCD model
in the literature, with parameters seen in Table 7. The
defined LCD model parameters simulate the maximum
level of politeness with neighboring vehicles. Conse-
quently, when being approached by an EMV, the param-
eters defined will push the ego-vehicle to cooperate with
EMV. Additionally, the maximum braking that can be
imposed on other vehicles is high to produce as aggres-
sive LC as possible when being approached by an EMV.

C. RESULTS
This subsection presents the results obtained for both evalu-
ation stages. Note that 200 episodes were run to generate the
evaluation results.
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TABLE 11. Specific Lane steps-sharing.

1) RANDOM LANE
Tables 8, 9, and 10 present the results obtained during the first
stage of evaluation. Table 8 compares our solution against
benchmarks in terms of the collision-free evaluation episodes
of Eps-1 type. The proposed solution scored an average per-
centage of 99.3%. Furthermore, the proposed solution scored
100% when the desired speed was 125 km/hr , whereas the
lowest percentage was obtained on 140 km/hr with 98.5%.
Moving to MOBIL, the achieved percentages were all 97.5%
for all desired speeds. Detect-LC results were below MOBIL
and the proposed solution standards, as Detect-LC ranged
from 57% to 61%. Table 9 compares the proposed solution
against MOBIL in terms of Steps-Sharing, by averaging the
results of 200 episodes of Eps-1 type. The difference in aver-
age score is 32.39s to the advantage of the proposed solution.
The proposed solution results range from 13.57s to 14.02s,
whereas MOBIL scores range from 39.23s to 54.91s with
an increasing trend noticed as the speed increases. Finally,
Table 10 compares the proposed solution against MOBIL in
terms of the percentage of block-free Eps-2 type episodes.
The proposed solution obtained 100% for all desired speeds,
whereas MOBIL scores were all below 88% for all scenarios.
Regarding MOBIL, the obtained results ranged from 63%
to 87.5%, with an increasing trend noticed as the speed
increases.

2) SPECIFIC LANE
Figs. 5-6 and Table 11, present the results obtained following
Specific Lane experiments. Regarding the figures, each speed
on the x-axis is associated with three pairs of bars. The pair
located on the left is associated with results obtained on the
left-lane, the center pair corresponds to the center-lane, and
the right pair relates to the right-lane. In all of the consid-
ered figures and table, the solution proposed and MOBIL
are compared considering varying ego-vehicle desired speeds
and starting lanes. Fig. 5 depict the result with collision-free
being the considered metric. The proposed solution scored
the highest percentage when used in the left-lane with an
average percentage of 99.8%. In the other far end of the road,
the proposed solution obtains a 98.16% average, with the
percentage ranging from 97% to 99.5%. The lowest average
percentage occurred in the center-lane, with an average of
97.83%. Comparing the proposed solution with MOBIL, the
maximum average difference occurred in the left-lane with a
magnitude of 1.47%. Whereas 0.17% percentage difference
is seen in the center-lane, which is the least average obtained
among all lanes. Table 11 present the results associated with

the Steps-sharing metric. Both solutions obtained the best
Steps-sharing in the center-lane, with 12.83s and 40.7s asso-
ciated with the proposed solution and MOBIL, respectively.
MOBIL scores in both far ends of the road were in the
range of 48s. However, the proposed solution varied in result
between the two far-ends with 13.51s and 15.22s scored
for the left-lane and right-lane, respectively. Comparing the
solutions, the difference in average is significant ranging from
27.87s to 35.5s to the advantage of the proposed solution.
Fig. 6 show the results obtained regarding the Blocks-free
metric. In all scenarios considered, the proposed solution
obtains a 100% percentage. Regarding MOBIL, the average
percentage ranges from 70.5% to 75.16%.

D. DISCUSSIONS
The safety of the proposed EMV-LCD is evaluated in terms
of the results obtained in Table 8, where the proposed solution
obtained similar results when compared to MOBIL percent-
ages. This was further bolstered by the result seen in Fig. 5,
where high safety is maintained among the lanes. From the
same table, one is able to observe that our proposed solution
is the safest when used in the left-lane. Furthermore, the
proposed solution performed the worst when used in the
center-lane. However, as evident in the results, the difference
is insignificant. The authors attribute this difference to the
set of traffic situations observed and experienced during the
training stage. Overall, it can be concluded that MOBIL
and the proposed solution maintain similar levels of safety.
Additionally, the obtained results by the proposed solution
are very close to 100% which indicates a high level of
safety is promised to be achieved. The percentages scored by
Detect-LC demonstrated that executing an LC immediately
as detecting the EMV produced unacceptable levels of safety.
This illustrates that neglecting the safety of the LC when
trying to cooperate with EMVs can be damaging.
The results seen in Tables 9 and 11 show that the proposed

solution is superior to MOBIL in terms of the duration spent
sharing the same lanewith EMV. In both tables, the difference
is noticeable and significant which indicates that the proposed
solution will react sooner than MOBIL while ensuring the
safety of LC being executed, as seen in Table 8. From the
results seen in Table 11, one can notice that for both solutions,
less amount of time is taken to give up the lane in the center-
lane. This is a natural outcome of having two possible lanes
when the ego-vehicle is in the center-lane, as opposed to one
when residing at either end of the road. Looking at Table 10,
it can be concluded that the proposed solution cooperates
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FIGURE 5. Specific lane collision-free.

FIGURE 6. Specific lane blocks-free.

better when it gets approached by an EMV while being in
a different lane when compared to MOBIL. This fact is also
maintained for the proposed solution across all lanes, as evi-
dent in Fig. 6. In fact, the scores obtained by MOBIL were
certainly expected, as the nature of MOBIL is inconsiderate
to an approaching EMV. This bolsters the claim that we need
to complement existing LCD models, which can intervene as
the ego-vehicle gets approached by an EMV.

VII. CONCLUSION
In this paper, we proposed an EMV-LCD using techniques
from the field of DRL. The objective was to develop an
EMV-LCD that is deployed by an AV and used only when
being approached by an EMV. To our knowledge, this is
one of the pioneering works that has used DRL to specif-
ically tackle the discussed scenarios, addressing potential
limitations of existing work. The proposed EMV-LCD was
compared against MOBIL. The results demonstrated that
an ego-vehicle deploying the proposed EMV-LCD will be
far more cooperative than using MOBIL as evident by the
significantly less time it takes the AV to leave the lane for

the EMVwhile achieving high safety levels. Additionally, the
EMV-LCD avoids blocking the path of the EMV. This allows
concluding that if the proposed EMV-LCD was to comple-
ment aMOBIL or any other well-known LCD, it will produce
an AV that is capable of cooperating with an approaching
EMV.
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