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ABSTRACT This article investigates the application of swarm and evolutionary algorithms, namely the
SOMA, DE, and GA, for optimizing the F-transform-based image compression. To do this, we introduce
the cost function, evaluating the approximation of decompressed images to the original image, concerning
the parameters that control the approximation quality of the F-transform. This function is then minimized
by the selected algorithms to find optimal settings for image compression and decompression. We design
experiments to compare the performance of the original F-transform method and the methods optimized
by SOMA, DE, and GA on a dataset of 10 pictures. In all considered cases, the results obtained with the
optimized method completely surpass those obtained by the original one. We also apply a statistical test
(called Wilcoxon signed-rank test) for ranking the performance of selected algorithms in this issue. The
results show that the SOMA and DE perform well in cases where the compressed image sizes are small.
However, the GA algorithm shows outperformance in comparison with the others in more complicated cases
where the compressed image size is bigger. The outperformance of the GA is in terms of decompression
quality and computation time. Finally, we provide a visual comparison between the original F-transform-
based method and the method optimized by the GA, tested on a 128×128 picture. The decompressed image
by the latter is much sharper and more detailed than that obtained by the former.

INDEX TERMS Image compression, swarm intelligence, evolutionary algorithms, numerical optimization.

I. INTRODUCTION
At the current time, the development of hardware devices has
been faster than ever. The information and data have been
processed faster and faster and saved in devices or networks
with huge storage capacity. At a glance, it seems that the
reduction of data size to enhance the processing speed as
well as to save the memory is not so necessary. However,
it is a fact that people always want things to be faster and
storage devices, no matter how large, have limits. Therefore,
data compression is still necessary despite the development
of hardware devices. The image compression also follows the
rule. It has become indispensable in real-world applications
such as photography [1], remote sensing services [2], satellite
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image transmission [3], television broadcasting [4], and so
on. There are numerous techniques introduced for image
compression and F-transform-based image compression is
one of them, getting a lot of attention recently.

A. HISTORICAL REVIEWS
The F-transform (fuzzy transform) was first introduced by
Irina Perfilieva in [5] and then elaborated in [6]. Inspired by
the Takagi-Sugeno fuzzy system [7] and classical transforms
such as the Fourier and Laplace transforms, the F-transform
consists in two phases (namely, the direct and inverse trans-
forms), established with a fuzzy partition of a function
domain (a set of fuzzy sets fulfilling the so-called à la Ruspini
condition). In particular, the direct phase transforms a given
function into a finite-dimensional vector whose components
(called F-transform components) can be visualized as the
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weighted averages of the function on the regions covered
by corresponding fuzzy sets. In inverse, the inverse phase
approximately reconstructs the original function from the F-
transform components, formed by the linear combination of
the components and the corresponding fuzzy sets in the used
fuzzy partition. Note that the approximation of a function
by the F-transform is controlled by parameters of the fuzzy
partition (among those, the denser fuzzy partition the better
approximation). Moreover, by the computational simplicity,
noise reduction ability, robustness, and ability to approximate
functions from a few numbers of F-transform components,
the F-transform has been successfully applied in many fields,
including image processing.

The F-transform-based image compression was first intro-
duced in [8] at the international workshop on fuzzy logic
and applications (WILF) in 2005. The authors introduced
the F-transform of binary discrete functions and provided a
method for using it in image compression. In the compression
phase, an image is converted to a smaller size based on its
direct F-transform. More precisely, each pixel of the com-
pressed image gets a value of the corresponding F-transform
components. To reconstruct from the compressed image an
image of the original size (decompression), the pixel values of
the compressed image are combined with the corresponding
fuzzy sets in a fuzzy partition to interpolate the pixel values of
the reconstructed image. This is nothing else than the inverse
F-transform of the original image. By the approximation of
the inverse F-transform to the function that it is applied to, the
decompressed image is close to the original one. The quality
of the compression, which is assessed by the compression
ratio and the closeness of the reconstructed image to the origi-
nal, depends on the approximation quality of the F-transform.

B. MOTIVATION
Our works in this paper are motivated by previous
investigations aimed at improving the quality of the F-
transform-based image compression and the outperfor-
mance of bio-inspired optimization algorithms in recent
competitions.

Since the first paper [8], there has been a lot of research
to enhance the performance of the F-transform-based image
compression. Most of these studies are technical treatments
to retain as much information as possible during the compres-
sion process, for example, dividing an image into sub-blocks
and applying the original F-transform method to them [9],
[10], [11] or integrating the F-transform to the JPEG algo-
rithm [12], [13]. Some studies are motivated by theoret-
ical research to enhance the approximation ability of the
F-transform, for example, the compression with the higher-
degree F-transform [14] or with adjoint fuzzy partitions [1].
While few studies try to optimize key parameters which
control the approximation by the F-transform. To the best of
our knowledge, [15] is the only work in such a direction. The
paper suggests optimizing the construction of fuzzy partitions

by the gravitational search algorithm, an optimization algo-
rithm based on Newton’s law [16].

More popular and more efficient, swarm and evolutionary
algorithms, bio-inspired algorithms instead of Newton’s law
(another class of optimization algorithms), are often used to
solve complex optimization problems. They are inspired by
the competition-cooperation of individuals in a population of
creatures, such as finding food and protecting the nest (known
as swarm intelligence (SI)) or imitating the genetics-mutation
of the organism’s genome (known as evolutionary algorithms
(EAs)). The outperformance of swarm and evolutionary algo-
rithms has been proven at IEEECEC competitions. For exam-
ple, a self-adaptive spherical search algorithm (SASS) [17]
won the highest rank at the IEEE CEC Competitions on
Real-World Single Objective Constrained Optimization or
an improved multi-operator differential evolution algorithm
(IMODE) [18] won the IEEE CEC Competition on Single
Objective Bound Constrained Numerical Optimization, and
so on.

The success and efficiency of bio-inspired optimization
algorithms motivate us to conduct this study that is to apply
swarm and evolutionary algorithms for improving the image
compression by F-transform.

C. MAIN CONTRIBUTIONS
This paper investigates the application of bio-inspired
optimization algorithms, namely, the genetic algorithm
(GA) [19], the differential evolution (DE) [20], and the
self-organizing migrating algorithm (SOMA) [21], to opti-
mize the F-transform-based image compression. In particular,
we introduce a class of fuzzy partitions determined with
respect to parameters that will be considered as variables
affecting the quality of the image compression. We introduce
an objective (also known as cost or fitness) function to the
problem with respect to those variables. The GA, DE, and
SOMA algorithms are then applied to the function to find
optimal solutions (parameters for constructing fuzzy parti-
tions so that the compression achieves the highest quality).
This research is illustrated with a dataset of ten selected
pictures. The obtained results by the selected optimization
algorithms are compared to each other and with the original
F-transform-based image compression by statistical tests.

D. PAPER STRUCTURE
Section II is to introduce the principle of the selected swarm
and evolutionary algorithms. In Section III, a class of fuzzy
partitions definedwith parameters is introduced and an objec-
tive function measuring the quality of the F-transform-based
image compression is established in Section IV. Experimen-
tal tests are provided in Section V. The last, Section VI is to
conclude.

II. SWARM AND EVOLUTIONARY ALGORITHMS
This section introduces bio-inspired optimization algorithms
including swarm and evolutionary algorithms and explains
why to apply SI and EAs algorithms.
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FIGURE 1. The movement mechanism of individuals in SOMA.

A. THE SOMA ALGORITHM
First published in the 2000s at an international conference
in the Czech Republic, the self-organizing migrating algo-
rithm (SOMA) is known as a bio-inspired optimization algo-
rithm finding an optimal solution on continuous and bounded
domains [21]. The authors observed the foraging process
of organisms, i.e., when a food source is found, individuals
share information with the rest of the population. On their
way to the target, other individuals explore a better food
source if available, they will share new information with
others again, and the population will turn their attention to
the new food source. Inspired by that process, the SOMAwas
introduced [21], [22], and [23].

1) INITIALIZATION METHOD
The algorithm starts by initializing a population containing
random individuals that are possible solutions to the image
compression problem, using (1). The population distribution
is uniform over the entire search space (see Figure 1). Individ-
uals are assigned scores that are their fitness function values.
Then, strategies for organizing and migrating between them
are implemented in the search space to explore and exploit
promising sub-spaces with minimum fitness values under
computer loops.

nppopulation = uj
th

min + r (u
jth

min − u
jth
max) (1)

where:

• nppopulation: the population with the size of NP,

• uj
th

min: the minimum value of the jth, j = (1, 2, . . .NP),

• uj
th

max : the maximum value of the jth,
• r : the random number, r ∈ [0 1].

2) ORGANIZATION METHOD
At the beginning of the loop, the population is organized into
two separate parts: the leader with the highest score and the
moving individuals remaining. They will one by one move
toward the leader in the search space.

3) MIGRATION METHOD
That describes how an individual jumps toward the leader.
In the SOMA algorithm, jumping is considered as the change
of position on each dimension, gradually approaching the
leader andmoving away as described in (2). The jumping step
is determined by a parameter named Step, and the jumping
probability is determined by the parameter named PRT .

un,jML+1 = uc,jML + (ul,jML − u
c,j
ML) k PRTVectorj (2)

where:
• un,jML+1: the new position created for the next iteration
loop,

• uc,jML : the selected individual used for moving,
• ul,jML : the leader individual used for moving,
• k: the discrete step of moving, Step : Step : PathLength,
• if rj < PRT ; PRTVectorj = 1; else, 0.

4) EVALUATION METHOD
During migration, the generated position that has a lower
fitness value than the original can be discovered and retained.
The old will be eliminated to preserve the population size.

Those processes occur in Migration loops until the algo-
rithm reaches the specified stopping condition. The SOMA
algorithm is pseudocoded as in Algotithm 1.

Algorithm 1 Self-organizing migrating algorithm
input : SOMA control parameters
output: RMSE, Xnode, Ynode
nppopulation←

{
u | uj

th

min ≤ u ≤ uj
th

max , j =
(1, 2, . . .NP)

}
;

fupop ← f(upop) ;
while FEs ≤ MaxFEs do

uleader ←
{
u | min(fupop)

}
;

for i← 1 to nppopulation\ leader do

umoving← npj
th

population ;
upath← umoving move to uleader ;
fupath ← f(upath) ;

npj
th

population←
{
u | min(fumoving , fupath)

}
;

end
end

Over the past two decades, SOMA has evolved in twomain
aspects, one is to increase the performance of the algorithm,
and the other is to solve different classes of problems.

The performance-enhanced versions focus on two main
streams. The first is to improve the algorithm itself by
suggesting better control parameters such as SOMA with
clustering-aided migration [24] and leader selection in
SOMA [25], and reorganizing the mechanism the algorithm
operates such as self-adapting SOMA [26] and the ensemble
of strategies and perturbation parameter in SOMA [27]. The
second is to combine SOMA with other algorithms such
as GA and PSO to form hybridization versions like [28]
and [29], please refer to [30] for more details.
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FIGURE 2. The principle of GA.

Regardless of the stream, SOMA has obtained certain
achievements, most recently being tied with the HyDE algo-
rithm in the top 4 strongest algorithms in the well-known
CEC2019 competition [31].

B. THE GENETIC ALGORITHM
First introduced in 1989, the Genetic Algorithm (GA) is
a method for solving optimization problems that imitate
the inheritance and variational processes of an organism’s
genome [19]. Differing from swarm intelligence, which
exchanges information between individuals in a population
within the same generation, genes in GA inherit biological
characteristics from generation to generation to produce off-
spring from their parents for the next generation.

In particular, an important process applied will mutate
some points in the offspring genes, making them appear as
novel features that have never been seen in the population
before, as shown in Figure 2. Affected by the mechanism of
natural selection (cost function in this case), individuals car-
rying bad characteristics after mutationwill be eliminated and
good individuals will be kept and used for further generations.
The GA can be described as follows.
Initialization: The random feasible solutions of the opti-

mization problem will be encoded according to a certain rule
to form chromosomes, gathering into an initial population.
They can be real numbers, integers, ordinal numbers, etc. All
individuals are then evaluated by the defined cost function.
Selection: The chromosomes are selected randomly or

according to a certain strategy that is usually based on fitness
value, known as the parents. They will be used for the next
step.
Crossover: It takes place after the selection, in order to

swap part of the parental chromosomes with each other to
create offspring chromosomes that combine the genetic char-
acteristics of the parents. In GA, many different crossover
methods are implemented depending on the specific problem.

Mutation: A random or intentional change in one or more
positions on offspring chromosomes to produce other novel
chromosomes that have never existed in a population before.
Evaluation: The offspring chromosomes will be evaluated

by the defined cost function to remove the bad mutant chro-
mosomes and keep the good ones.

The mentioned activities are repeated in computer loops
till the GA satisfies the given stopping condition. The GA
algorithm is pseudocoded as in Algotithm 2.

Algorithm 2 Genetic Algorithm
input : GA control parameters
output: RMSE, Xnode, Ynode

[Initialization] npchr ←
{
chromoi

encode
:= c,

cj
th

min ≤ c ≤ c
jth
max , j = (1, 2, . . .NP)

}
;

[Evaluation] fnpchr ← f(npchr );
while FEs ≤ MaxFEs do

[Selection]
chrparent ←

{
chrj ⊂ npchr , j = (1, 2, . . .NP)

}
;

[Crossover]
(chromoI , chromoII )← C(chrparent ) ;
[Mutation]
(chromox , chromoy)← M(chromoI ,chromoII ) ;
[Evaluation]
fchromoxy ← f(chromo(chromox ,chromoy)) ;
[Accepting]
chrj←

{
chr | min(fchromoxy , fchrparent )

}
;

end

Since its introduction, the GA has been developed into
many different versions and is widely used in real-world
applications. Its development directions can be divided into
four main categories as listed below and detailed in [32].
• Hybrid genetic algorithms are combinedwith other algo-
rithms to generate versions of so-called Hybrid GAs to
increase solutions quality, and better performance, such
as a hybrid genetic algorithm and tabu search [33] and
hybrid genetic firefly algorithm-based [34].

• Parallel genetic algorithms aim to improve the compu-
tation time and performance of the GA, such as [35]
and [36].

• Chaotic genetic algorithms aim to preserve the diversity
of the population and avoid premature convergence of
the algorithm, such as [37] and [38].

• Encoding-based-method genetic algorithms include real
and binary chromosomes depending on the problem
being solved, such as [39] and [40].

C. THE DE ALGORITHM
Published in 1997, Differential Evolution (DE) was known
as a nature-inspired metaheuristic for solving numerical
optimization problems [20]. Over the past two decades,
DE with many powerful and robust variants has emerged
and beat other algorithms in the IEEE CEC competitions.
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FIGURE 3. The principle of DE.

The backbone of DE mimics the organism-natural evolution
and goes through similar steps as many other evolutionary
algorithms which are briefly described as follows, and briefly
summarized in Figure 3.
Initialization: DE generates an initial population contain-

ing NP individuals uniformly distributed over the whole
searching range, as in (3). All individuals are then evaluated
by the defined cost function, and the algorithm enters the first
iteration.

X⃗i,gen = [x1,i,gen, x2,i,gen, . . . , xD,i,gen], (3)

where xj,i,gen = xj,lo + r (xj,up − xj,lo).
Selection: For each individual (known as a target vector)

in the population till the end, the algorithm randomly selects
three other separate individuals to create the new one as in the
next step.
Mutation:By applying (4), the DE creates a new individual

(known as a donor vector) from the selected above.

V⃗i,gen = X⃗r1,gen + F .(X⃗r2,gen − X⃗r3,gen) (4)

Crossover: This process makes dimensional-swapping
between the individual just created and the initial to obtain
a new individual (known as a trial vector), which has charac-
teristics never been seen before (see (5)).

uj,i,gen =

{
vj,i,gen if (r ≤ Cr) or j = jr
xj,i,gen otherwise

(5)

Evaluation: The new individual is then evaluated and put
back into the population if it has a better cost value than the
selected individual.

The DE activities are repeated in computer loops till
the algorithm meets the given stopping condition. Figure 3
depicts the DE algorithm. The DE algorithm is pseudocoded
as in Algotithm 3.

DE has achieved great success by virtually dominating all
CEC competitions, for example, the jDE100 won the CEC
2019 [41], the improved multi-operator differential evolution
algorithm (IMODE) won the CEC 2020 [18], NL-SHADE-
RSP ranked the position in the overall performance of CEC
2021 [42], refers to [43] for more details.

The development and success of the above algorithms are
summarized in publications [30], [32], and [43]. In-depth
readers can refer to them for more details.

Algorithm 3 Differential Evolution, DE/rand/1/bin
input : DE control parameters
output: RMSE, Xnode, Ynode
[Initialization] np←

{
X⃗i i = (1, 2, . . .NP)

}
;

[Evaluation] fnp← f(np) ;
while FEs ≤ MaxFEs do

for a← 1 to NP do
[Selection]
(X⃗n1, X⃗n2, X⃗n3)← X⃗n ⊂ np, n = [1 . . .NP] ;
[Mutation]
V⃗a← X⃗n1 + F .(X⃗n2 − X⃗n3) ;
[Crossover]
U⃗a←

{
uda|uda = vda ↔ (randda ≤ Cr|

d = drand )|uda = xda, vda ∈ V⃗a,
xda ∈ X⃗a, d = (1, 2, . . .Dimension)

}
;

[Evaluation]
fU⃗a ← f(U⃗a) ;
[Accepting]
X⃗a←

{
X⃗a | U⃗a | min(fX⃗a , fU⃗a )

}
;

end
end

III. F-TRANSFORM-BASED IMAGE COMPRESSION
This section provides abstract knowledge about the binary
discrete F-transform and the framework for applying it to
image compression.

A. THE F-TRANSFORM OF BINARY DISCRETE FUNCTIONS
The F-transform of binary discrete functions was first pro-
posed by I. Perfilieva in [8]. The central notion of this trans-
form is the fuzzy partitions of rectangles.
Definition 1: Let [a, b] × [c, d] be a rectangle in R2,

and two integers M , N be such that M ,N ≥ 3. A fam-
ily

{
Kkℓ : [a, b]× [c, d]→ [0, 1] | k = 1,M , ℓ = 1,N

}
,

is said to be a fuzzy partition of [a, b]× [c, d], if

M∑
k=1

N∑
ℓ=1

Kkℓ(t, s) = 1,

for any (t, s) ∈ [a, b]× [c, d]. In this statement,Kkℓ is called
the kℓ-th basic function of the fuzzy partition.
The F-transform of a binary discrete function consists of two
phases, namely the direct and inverse F-transform.
Definition 2: Let D =

{
(i, j) | i = 1,m, j = 1, n

}
, and

let I : D → R be a discrete function. Let A ={
Kkℓ | k = 1,M , ℓ = 1,N

}
be a fuzzy partition of [1,m] ×

[1, n]. The direct F-transform of I with respect to A is the
matrix, denoted by F[I ] and given as follows:

F[I ] =


F11[I ] F12[I ] . . . F1M [I ]
F21[I ] F22[I ] . . . F2M [I ]
...

... · · ·
...

FN1[I ] FN2[I ] . . . FNM [I ]

 , (6)
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with

Fkℓ[I ] =

∑m
i=1

∑n
j=1 I (i, j)Kkℓ(i, j)∑m

i=1
∑n

j=1Kkℓ(i, j)
, (7)

for k = 1,M , ℓ = 1,N. The component Fkℓ[I ] is called the
kℓ-th F-transform components.
Note that (6) is well-defined if, for any k = 1,M , ℓ = 1,N ,
there exists (i, j) ∈ D such that Kkℓ(i, j) > 0. This condition
is known as the density condition of fuzzy partition A on D.
Definition 3: Let D, I and A be given as in Definition 2,

and let F[I ] be the direct F-transform of I with respect to A
as in (6). The inverse F-transform of I with respect to A is a
discrete function denoted by Ĩ and defined by

Ĩ (i, j) =
M∑
k=1

N∑
ℓ=1

Fkℓ[I ]Kkℓ(i, j), (i, j) ∈ D.

The inverse function Ĩ provides an approximation to the
original discrete function I (see [6]). The precision of this
approximation is driven by the way how the fuzzy partition
is constructed, in particular, the denser fuzzy partitions1 the
better approximations.

B. IMAGE COMPRESSION BY THE F-TRANSFORM
This subsection describes in an abstract frame of the image
compression by the F-transform initiated by [8].

Let D =
{
(i, j) | i = 1,m, j = 1, n

}
, and let I : D →

[0, 1] be a grayscale image. With the F-transform, we can
convert I to a smaller size image, and then, reconstruct from it
a full-size image as the original. More precisely, to compress
I to an image C of size M × N , M < m, N < n, by the
F-transform, we follow the following steps:

S1: set up a fuzzy partition
{
Kkℓ | k = 1,M , ℓ = 1,N

}
of

[1,m]× [1, n],
S2: compute the F-transform components Fkℓ[I ], for k =

1,M , ℓ = 1,N , by (7),
S3: construct image C : {1, . . . ,M}×{1, . . . ,N } → [0, 1]

from the direct F-transform F[I ] in (6) by C(k, ℓ) =
Fkℓ[I ], for any k = 1,M , ℓ = 1,N .

To reconstruct a full size image Ĩ : D → [0, 1] from C ,
we used the inverse F-transform function where the kℓ-th F-
transform components is replaced by C(k, ℓ), namely,

Ĩ (i, j) =
M∑
k=1

N∑
ℓ=1

C(k, ℓ)Kkℓ(i, j), (i, j) ∈ D.

IV. OPTIMIZE THE F-TRANSFORM-BASED IMAGE
COMPRESSION
The key of the F-transform-based image compression is the
fuzzy partition of rectangles (see Section III). Inwhat follows,
we introduce a particular class of fuzzy partitions of rectan-
gles defined with respect to variable parameters that can be
selected so that the compression reaches its best quality.

1Fuzzy partitions with a higher number of basic functions.

A. VARIABLE PARAMETERIZED FUZZY PARTITION OF
RECTANGLES
Definition 4: A function φ : R→ R is said to be a fuzzy

partition-generating function (or Fp-generating function, for
short) provided that it is continuous, increasing on [−1, 0]
with f (−1) = 0 and φ(0) = 1.
Example 1: 1) Linear Fp-generating function L(x) =

x + 1.
2) Quadratic Fp-generating function Q(x) = 1− x2.
3) Sine Fp-generating function S(x) = sin

(
π
2 (x + 1)

)
.

Proposition 1: Let [a, b]× [c, d] be a rectangle inR2, and
let φ andψ be Fp-generating functions. Let tk , k = 1,M, and
sℓ, ℓ = 1,N, be nodes in [a, b] and [c, d] such that a = t1 <
· · · < tM = b and c = s1 < · · · < sN = d, respectively.
Let Ak , k = 1,M, and Bℓ, ℓ = 1,N, be functions defined,
respectively, on [a, b] and [c, d] as follows:

A1(t) = 1− φ
(
t − t2
t2 − t1

)
, B1(s) = 1− ψ

(
s− s2
s2 − s1

)
AM (t) = φ

(
t − tM

tM − tN−1

)
, BN (s) = ψ

(
s− sN

sN − sN−1

)
,

where A1(t) = 0 if t > t2, AM (t) = 0 if t < tM−1, B1(s) = 0 if
s > s2, BN (s) = 0 if s < sN−1, and

Ak (t) =


1− φ

(
t − tk+1
tk+1 − tk

)
, t ∈ (tk , tk+1]

φ

(
t − tk

tk − tk−1

)
, t ∈ [tk−1, tk ]

0, otherwise,

Bℓ(s) =


1− ψ

(
s− sℓ+1
sℓ+1 − sℓ

)
, s ∈ (sℓ, sℓ+1]

ψ

(
s− sℓ

sℓ − sℓ−1

)
, s ∈ [sℓ−1, sℓ]

0, otherwise,

for k = 2, . . . ,M − 1, ℓ = 2, . . . ,N − 1. Then,{
Kkℓ(t, s) = Ak (t) · Bℓ(s) | k = 1,M , ℓ = 1,N

}
forms a

fuzzy partition of [a, b]× [c, d].
Proof: Let (t, s) ∈ [a, b]× [c, d] be arbitrary. It is easy

to see that Ak (t),Bℓ(s) ∈ [0, 1], for any k = 1,M and ℓ =
1,N . Assume that (t, s) ∈ [tk , tk+1] × [sℓ, sℓ+1], with k =
1,M − 1, ℓ = 1,N − 1. Then, we have

M∑
k=1

Ak (t) = Ak (t)+ Ak+1(t)

= 1− φ
(
t − tk+1
tk+1 − tk

)
+ φ

(
t − tk+1
tk+1 − tk

)
= 1

and

N∑
ℓ=1

Bℓ(s) = Bℓ(s)+ Bℓ+1(s)

= 1− ψ
(
s− sℓ+1
sℓ+1 − sℓ

)
+ ψ

(
s− sℓ+1
sℓ+1 − sℓ

)
= 1.
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FIGURE 4. Variable parameterized fuzzy partitions of [0, 10] × [0, 10].

It follows that
M∑
k=1

N∑
ℓ=1

Kkℓ(t, s) =
M∑
k=1

N∑
ℓ=1

Ak (t) · Bℓ(s)

=

M∑
k=1

Ak (t) ·
N∑
ℓ=1

Bℓ(s) = 1.

This means that {Kkℓ | k = 1,M , ℓ = 1,N } forms a fuzzy
partition of [a, b]× [c, d]. The proof is finished. □
Definition 5: Let [a, b] × [c, d] be a rectangle in R2, φ

and ψ be Fp-generating functions, and nodes tk , k = 1,M,
and sℓ, ℓ = 1,N, with M ,N ≥ 3, be such that a = t1 <
· · · < tM = b and c = s1 < · · · < sN = d. The
fuzzy partition of [a, b]× [c, d] defined as in Proposition 1 is
called the variable parameterized fuzzy partition determined
with respect to nodes tk , k = 1,M, and sℓ, ℓ = 1,N and
Fp-generating functions φ and ψ .
Example 2: Consider the rectangle [0, 10] × [0, 10] and

select nodes (0, 2, 3, 5, 7, 8, 10) and (0, 1, 3, 4, 6, 7, 9, 10).
In Figure 4, we display the variable parameterized fuzzy
partitions of the rectangle determined with respect to selected
nodes and linear and quadratic Fp-generating functions.

B. OPTIMIZE THE IMAGE COMPRESSION
As in Subsection III-B, the F-transform can be used to com-
press an image to a smaller size and then reconstruct the
original image from it. The quality of the reconstruction (how

the reconstructed image is close to the original one) depends
on the approximation quality of the F-transform driven by the
settings of fuzzy partitions [8]. This subsection aims to pro-
vide methods based on swarm and evolutionary algorithms to
establish fuzzy partitions leading to optimal results in image
compression.

Let I be a grayscale image of size m × n, represented as
follows:

I : {1, . . . ,m} × {1, . . . , n} → [0, 1].

Assume that the goal is to compress I to an image C of size
M × N , 3 ≤ M < m, 3 ≤ N < n and then reconstruct from
C an image of the original size m × n. By the F-transform-
based method, this issue is solved according to the procedure
mentioned in Subsection III-B. To be able to optimize this
procedure, we propose to use the F-transform with respect
to variable parameterized fuzzy partitions determined with
nodes and Fp-generating functions. Namely, the fuzzy par-
tition in step S1 in Subsection III-B is established according
to the following steps:

S1a: choose Fp-generating functions φ and ψ ,
S1b: select nodes tk , k = 1,M , and sℓ, ℓ = 1,N , satisfying

that 1 = t1 < · · · < tM = m and 1 = s1 < · · · < sN =
n.

S1c: construct a variable parameterized fuzzy partition of
[1,m] × [1, n] with respect to selected nodes and two
Fp-generating functions.

By this approach, the compressed image as well as the recon-
structed one are driven by selected nodes and Fp-generating
functions. Assume that the latter are fixed (for the computa-
tion in the next section, we fix to use the linear Fp-generating
function), we proposed to use the swarm and evolutionary
algorithms introduced in Section II to select nodes tk , k =
1,M , and sℓ, ℓ = 1,N , that maximize the quality of the
reconstructed image.

LetC[t1, . . . , tM , s1, . . . , sN ] and Ĩ [t1, . . . , tM , s1, . . . , sN ]
be the compressed and reconstructed images from I obtained
by the F-transform method specified to the variable parame-
terized fuzzy partition established in the previous steps with
respect to nodes tk , k = 1,M , and sℓ, ℓ = 1,N . To evaluate
the quality of the reconstructed image, we use the Root Mean
Square Error (RMSE) defined by

RMSE(I , Ĩ [t1, . . . , tM , s1, . . . , sN ])

=

√∑m
i=1

∑n
j=1(I (i, j)− Ĩ [t1, . . . , tM , s1, . . . , sN ](i, j))2

mn
.

Let

f (t1, . . . , tM , s1, . . . , sN )

= RMSE(I , Ĩ [t1, . . . , tM , s1, . . . , sN ])

and consider it as an objective function of variables
(t1, . . . , tM , s1, . . . , sN ). The optimization algorithms are
applied to find solutions that minimize the function under the
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FIGURE 5. The optimized F-transform-based image compression
flowchart.

constraints that

1 = t1 < t2 < . . . < tM−1 < tM = m,

1 = s1 < s2 < . . . < sN−1 < tN = n

and the searching ranges of variables t1, . . . , tM and
s1, . . . , sN are the sets {1, . . . ,m} and {1, . . . , n}, respec-
tively.2 Figure 5 describes the whole F-transform-based
image compression optimized by the swarm and evolutionary
algorithms.

V. ILLUSTRATIONS
This section is to analyze the application of the SOMA,
DE, and GA algorithms in image compression with the F-
transform. This includes comparisons between the original
F-transform-based method and the methods optimized by the
mentioned algorithms.

A. NUMERICAL COMPARISION
We select a dataset of 10 images as in Figure 6, taken by
the authors. Each image in the dataset is in the grayscale
with a unique size 16 × 16. The original F-transform-based
image compression (FT) and the methods optimized by the

2In general, the search ranges can be intervals [1,m] and [1, n]. However,
the discrete F-transform only depends on the number of discrete points cov-
ered by each basic function in the used fuzzy partition (see [6]). Therefore,
it is sufficient to search in the sets {1, . . . ,m} and {1, . . . , n}.

FIGURE 6. The image dataset, displayed in a resolution of
128 × 128 pixels.

TABLE 1. The control parameter values of three selected swarm and
evolutionary algorithms.

SOMA, DE, and GA (FT-SOMA, FT-DE, and FT-GA) are
applied in turn to each image to compress and reconstruct it.
Particularly, the compression is performed with three ratios
corresponding to three compressed image sizes, 4×4, 8×8,
and 12× 12. In this experiment, the FT method is performed
with uniform fuzzy partitions constructed from nodes that are
uniformly selected along two sides of rectangles (see [8]).
On the other hand, since the SOMA, DE, and GA algorithms
are implemented with random components that randomly
affect the obtained results, the experiment with FT-SOMA,
FT-DE, and FT-GA methods is repeated 25 times for each
image.

Our tests are performed on the Karolina Supercomputer
in the Czech Republic,3 using CPUs of 4 × 2x AMD
7452, 256 cores in total (two compute nodes), 2.35 GHz,
and 512GBRAM. The operating system used is Centos 64 bit
7.x, with MATLAB R2022a version.

The control parameters of the optimization algorithms are
set by default according to the recommendations in the orig-
inal publications [19], [20], [23] and specified in Table 1.
For GA, the Global Optimization Toolbox is used with the
default setting of MATLAB, except for some other parame-
ters pointed out in Table 1.
We first compare the four mentioned methods according

to the approximation of reconstructed images to the original
ones, measured by The Root Mean Square Error (RMSE).
Note that the lower error the better compression. The obtained
results are given in Tables 2, 3 and 4. In these tables, for
the optimized methods, we evaluate the mean and standard
deviation of the RMSE obtained from 25 independent runs.
It is clear that the original FT method is defeated by all opti-
mized methods over all cases and all images in the dataset.

3https://www.it4i.cz/en/infrastructure/karolina
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FIGURE 7. The design of experiments for optimization algorithm
performance testing.

Particularly, the errors obtained by the FT method are signif-
icantly higher than the mean error of the other methods. This
shows that the application of optimization algorithms, namely
SOMA, DE, or GA, has significantly improved the quality
of the image compression based on F-transform. On another
side, we used the Wilcoxon signed-rank test (WRT)4 to
compare the performance of FT-SOMA, FT-DE, and FT-GA
methods so that the comparison is statistically significant.
Particularly, we use the function signrank(x, y) in MAT-
LAB with default settings (5% significant level) to order
the performance of each pair of optimized methods based
on the RMSE from 25 runs. Note that when two methods
are incomparable (the p-value is higher than the significance
level), we put them in the same rank. The obtained ranking
is also shown in Tables 2, 3, 4 (between the bracket). Note
that the worst of the FT method is clear, so we do not sign
its rank. Especially, in Table 2, since all optimized methods
provide the same results, we do not compare them. It follows
from the ranking that the application of different optimization
algorithms makes a difference only when the complexity of
the cost function is increased with more variables. In partic-
ular, FT-SOMA, FT-DE, and FT-GA show the difference in
cases where the compressed image sizes are 8×8 and 12×12.
Especially, in the latter case (themost complicated casewhere
the objective function is of 20 variables), the GA shows the
best performance among the selected algorithms.

On the other hand, we also compare the performance of
FT-SOMA, FT-DE, and FT-GA with respect to the com-
putation time. To do this, we measure the length of time
corresponding to each method that needs to complete the
computational process on each picture once (including the
search of optimal nodes, compression, and reconstruction).
The obtained results a displayed in Figure 8. One can see that
the GA performed faster than the other algorithms in the most
complicated case (the compressed image size is 12 × 12).
As mentioned above, in this case, the objective function is
of 20 variables.

From the previous analysis, we can summarise as follows:
• The application of optimization algorithms has signifi-
cantly improved the F-transform-based image compres-
sion.

• Among the selected optimization methods (SOMA, DE,
GA), the GA shows its outperformance in complicated

4WRT is a nonparametric statistical test that is well-known in the field of
numerical optimization for comparing the position of two populations when
the observations are in pairs. More details of this test can be found in [44],
[45], and [46].

FIGURE 8. Execution time of proposed optimization algorithms
performed on 10 selected images.

cases where the objective function is of more variables
(or the compressed image size is larger).

The second conclusion supports the idea that GA should be
used for compressing large images.

B. VISUAL COMPARISION
As experimental results in Subsection V-A, the F-transform
optimized by the GA algorithm gives the best performance
among the selected methods in the cases where the size of
compressed images is large. In this subsection, we apply this
method to compress and decompress an image of size 128×
128 to illustrate the superiority of it that can be visible by eyes
in comparison with the original F-transform method.

We select the well-known image ‘‘cameraman’’, convert it
to a grayscale image of size 128 × 128 and consider it as
an original image for the illustration. To compare the two
mentioned F-transform-based image compression methods,
one is optimized by GA (FT-GA) and the other is the original
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TABLE 2. The comparison based on RMSE in case the compressed image of size 4 × 4.

TABLE 3. The comparison based on RMSE in case the compressed image of size 8 × 8.

TABLE 4. The comparison based on RMSE in case the compressed image of size 12 × 12.

version (FT), we apply them to compress the selected image
to images of sizes 32×32, 64×64 and 96×96 (corresponding
to the ratio of 1/16, 1/4, and 9/16) and then reconstruct
the original image from the compressed ones to evaluate
the reconstruction quality (measured by RMSE). As in the
experiment in Subsection V-A, the illustrations with GA
are repeated 25 times. A comparison between reconstructed
images obtained by the two mentioned methods is depicted
in Figure 9. In this figure, the results of the GA method
are randomly chosen out of 25 runs of the algorithm. There
is no doubt that one can recognize the difference between
using or not using the GA in the image compression by
the F-transform. The average RMSE of 25 running times of
the GA method is displayed in Figure 10 together with that
obtained by the original one. The compression ratio in this

figure is defined as the size ratio of the compressed images to
the original.

From the obtained results, we once again see that the appli-
cation of the optimization algorithms to image compression
brings outstanding results not only in terms of data as in
Subsection V-A but also in visual evaluation.

VI. CONCLUSION
This paper is a fairly complete and thorough study of the
application of popular bio-inspired optimization algorithms,
namely the SOMA, DE, and GA, to image compression using
the F-transform. To optimize the F-transform-based image
compression, we introduced the variable parameterized fuzzy
partition with respect to parameters that directly affect
the approximation ability of the F-transform. An objective
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FIGURE 9. The reconstructions by the FT-GA (left) and FT (right) methods.

FIGURE 10. The reconstruction quality by the FT-GA and FT methods
evaluated by RMSE. The small squares are the RMSE of 25 running times
and the green columns are the mean values of them.

function of the image compression was determined accord-
ing to those parameters for searching optimal solutions. The
proposed studies were tested on various images. It shows that
the application of optimization algorithms has significantly
enhanced the quality of the original F-transform-based image
compression. However, the performance of selected algo-
rithms is not the same in this issue. Particularly, the SOMA
and DE perform quite well in the case of small compressed

image sizes while GA shows the best performance for the
bigger sizes.

We restrict the consideration to bio-inspired optimization
algorithms. However, today there are quite a few classes of
powerful optimization algorithms (especially, physis-based
algorithms such as Gravitational Local Search Algorithm
(GLSA) [47], Gravitational Search Algorithm (GSA) [16],
Big-Bang Big-Crunch (BBBC) [48], and so on [49]) that
have proven effective inmany areas of application. Therefore,
besides the presented studies, it will be interesting if we can
extend our consideration to many other classes of optimiza-
tion algorithms to have a better overview and comparison in
optimizing the F-transform-based image compression. This,
therefore, is the next interesting topic for our future work.

On the other hand, the positive results in the current paper
have opened up a research direction that is to apply optimiza-
tion algorithms to optimize applications that the F-transform
has done very well such as time series decomposition, dimen-
sionality reduction of high-dimensional data, pattern recogni-
tion, and many others.

APPENDIX A
LIST OF ABBREVIATIONS
SOMA Self-Organizing Migrating Algorithm
DE Differential Evolution
GA Genetic Algorithm
FT Fuzzy Transform
FT-SOMA F-transform-based Image Compression

Optimized by the Self-Organizing
Migrating Algorithm

FT-DE F-transform-based Image Compression
Optimized by the Differential Evolution

FT-GA F-transform-based Image Compression
Optimized by the Genetic Algorithm

EAs Evolutionary Algorithms
SI Swarm Intelligence
CEC Congress on Evolutionary Computation
FEs Function Evaluations
RMSE Root Mean Square Error
WRT Wilcoxon signed-rank test
GLSA Gravitational Local Search Algorithm
GSA Gravitational Search Algorithm
BBBC Big-Bang Big-Crunch

APPENDIX B
DATA AND SOURCES
All data including optimization algorithms are publicly avail-
able at https://github.com/diepquocbao/SI-EA-in-Image-
Compression-by-F-transform.
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