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ABSTRACT A dominant statistical method, in which the best combination of factors’ levels are predicted
by analyzing a few representative combinations of factors’ levels, named as orthogonal experimental design
(OED). The OED is an effective approach for analyzing the effect of multi-levels factors simultaneously
and it works on orthogonal learning (OL) strategy. An evolutionary programming based heuristic method
has two contradictory features—exploration and exploitation, balancing in these features have significant
impact on its optimization performance. We have applied an OED based auxiliary search strategy for
enhancing performance of the bird swarm algorithm (BSA) by improving its exploitation search ability.
It is a challenging task to keep balance among two contradictory features—exploration and exploitation
of a heuristic approach, while addressing optimal power flow (OPF) problems in power systems. In this
research study, we have proposed improved BSA (IBSA) for solving the OPF problems in thermal power
systems. We have conducted a study of the OPF problems with objective functions-reducing electricity
generation cost, emission pollution, and active power loss to measure the efficiency of proposed IBSA.
In this work, we have utilized five benchmark functions and solved OPF problems using three IEEE test
systems including IEEE-30 bus system, IEEE-57 bus system, and IEEE-118 bus system to verify stability,
effectiveness, and performance of proposed IBSA. The statistical and simulation results have indicated that
the proposed IBSA has better convergence, efficiency, and robustness features than the original BSA as well
as other heuristic approaches. It is observed that lowest electricity generation cost 800.3975%/h on IEEE-30
bus system, 41663.5500$/h on IEEE-57 bus system, and 134941.0367$/h on IEEE-118 bus system have
been achieved using proposed IBSA to address the OPF problems. Furthermore, in transmission lines of the
power system network minimum active power loss 16.2869MW has been observed by conducting a case
study on the IEEE 118-bus system based on the proposed IBSA approach.

INDEX TERMS Orthogonal learning, bird swarm algorithm, optimal power flow, smart power grid.

I. INTRODUCTION

A. BACKGROUND AND MOTIVATION

In 1962, Carpentier first introduced the optimal power
flow (OPF) problem as an extension of the economic
dispatch problem in the power system [1]. The OPF problem
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is a nonlinear, nonconvex, and quadratic nature large-
scale optimization problem. Initially, a numerous traditional
mathematical approaches [2], [3], [4], [5], [6], [7], [8], [9]
are employed to address OPF problems. These mathematical
methods include simplified gradient method [2], interior
point method [3], mixed integer nonlinear programming
(MINLP), [4], nonlinear programming [5], generalized
benders decomposition (GBD) [6], newton method [7],
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linear programming [8], and linear/quadratic programming
[9]. The OPF problem objective function and its imposed
constraints are nonlinear in nature and the traditional
mathematical methods could not solve it directly due to their
linear approach [10]. Due to these limitations of mathematical
methods, the OPF problem’s nonlinear constraints and
objective function are normally transformed into linear form.
The conversion from nonlinear to linear form may result
in the loss of accuracy and stability of the power system
planning and operations.

In the last few decades (since 1980s), numerous meta-
heuristic approaches have also been employed to handle
OPF problems in networks of power systems. Simulated
annealing (SA) [11] and tabu search algorithm (TSA) [12] are
single-solution based approaches which focus on improving
and modifying a single solution. In literature, various
population-based solutions metaheuristic approaches includ-
ing bird swarm algorithm (BSA) [13], differential evolution
(DE) [14], moth swarm algorithm (MSA) [15], differential
search algorithm (DSA) [16], and harmony search algorithm
(HSA) [17] have also been proposed to address OPF
problems.

A metaheuristic approach has two contradictory features
— exploration and exploitation, balancing in these features
have significant impact on its efficiency and optimization
performance. In the exploitation process, a large set of
local optima of the problem is evaluated so that a local
optimum is found in a local search region. The exploitation
also looks away from the current search region, in another
dimension of search space for a best local optimal solution.
The exploration means finding a global optimum solution
to the problem by exploring the search space on a large
scale. In the optimization problem, the number of decision
variables defines the size of the problem or search space
dimension. Intuitively, a large-scale OPF problem’s search
space in a power system may contain more than one feasible
or optimal solution or exponentially enormous local optima.
The tuning of decision parameters and finding the most
appropriate settings of operating points in the power system
is a challenging task. It is also a challenging task to keep
balance among two contradictory features — exploration and
exploitation of a heuristic approach, while addressing an
optimization problem [18]. A better balance in exploration
and exploitation may lead to improving search efficiency of
a metaheuristic algorithm.

In research literature, various techniques have been
proposed for balancing these two features of a metaheuristic
algorithm [19], [20], [21]. In study [19], authors have
proposed a new search strategy based on crossover and space
expanding (SE) strategy — a leader selection to improve
optimizing features of the PSO. In this strategy, crossover
plays a significant role to keep stability of optimized
solutions and enhance convergence by exploiting the problem
search space. The SE strategy guides particles to explore
the problem’s objective search space rapidly. In study [20],
authors have introduced a new approach based on exploration
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TABLE 1. Abbreviations.

ABC Artificial bee colony

ACO Ant colony optimization

BBO Biogeography based optimization

BTS Backtracking search

BSA Bird swarm algorithm

CBO Colliding bodies optimization

CEFO Chaotic electromagnetic field optimization
COFS Constraints-prior object fuzzy sorting

CS Cuckoo search

DE Differential evolution

DGWO Developed grey wolf optimizer

DSA Differential search algorithm

EA Evolutionary algorithm

EP Evolutionary programming

ESA-DE  Enhanced self-adaptive DE

FBA Firefly-bat algorithm

FBICL Fuzzy-based improved comprehensive-learning
FI-DE Forced initialized DE

FOPSO-EE Fractional order PSO with entropy evolution
GA Genetic algorithm

GABC Guided artificial bee colony
GA-MPC GA based on multi-parent crossover
GBD Generalized benders decomposition
GBO Gradient-based optimizer

GSA Gravitational search algorithm

GSO Group search optimization

GWSO Glowworm swarm optimization
HHO Harris hawk optimization

HSA Harmony search algorithm

ICA Imperialist competitive algorithm
ISP-EA Improved strength pareto EA

IWO Invasive weed optimization

KHA Kirill herd algorithm

LAPO Lightning attachment procedure optimization
MBFA Modified bacteria foraging algorithm
MDE Modified DE

MFO Moth flame optimization

MGO Modified grasshopper optimization
MICA Modified ICA

MINLP Mixed integer nonlinear programming
MPA Marine predator algorithm

MSA Moth swarm algorithm

MSCA Modified sine-cosine algorithm
MSFL Modified shuffle frog leaping

OA Orthogonal array

OED Orthogonal experimental design

OL Orthogonal learning

OPF Optimal power flow

PPS Powell’s pattern search

PSO Particle swarm optimization

SA Simulated annealing

SDP Semi-definite programming

SHADE  Success history-based adaptive DE
SKH Stud krill herd

SMA Slime mould algorithm

SOS Symbiotic organisms search

SSA Salp swarm algorithm

SSO Social spider optimization

TLA Teaching-learning algorithm

TLBO Teaching—learning-based optimization
TLSBO  Teaching-learning-studying-based optimizer
TSA Tabu search algorithm

and exploitation for the PSO to address many objectives of
the optimization problem simultaneously more efficiently.
The authors named this approach a hybrid global leader
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selection (GLS) strategy. A framework based on joint
heuristic approaches has been proposed for optimizing the
index tracking problem [21]. In literature, these techniques
or strategies are broadly classified into: 1) integrating a
new search approach into basic heuristic algorithm, 2)
heuristic algorithm’s variants — adjusting the parameters,
3) neighborhood topologies based enhancement and multi-
swarm strategies.

In 1920, R.A. Fisher first introduced a dominant statistical
method, orthogonal experimental design (OED) for studying
factors’ levels combinations. In this method, the best combi-
nation of factors’ levels has been predicted by analyzing a few
representative combinations of factors’ levels (experimental
test cases) [22]. The OED is an efficient approach for
studying the effect of multi-levels factors simultaneously
that works on orthogonal learning (OL) strategy. In an
optimization problem, the factors are decision or control
variables that affect to find feasible value of its objective
function. Assigning different values to a factor is considered
as levels of a factor. The OED is briefly explained in section
III. A wide range of improved metaheuristic approaches also
have been designed for efficiently solving OPF problems,
in addition to original metaheuristic algorithms. However,
an efficient and efficient optimization algorithm is always
needed for solving OPF problems.

B. LITERATURE REVIEW
In the last five decades, numerous studies [1], [14], [15],
(161, [17], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36] based on original metaheuristic
approaches have been documented to find feasible solutions
to OPF problems. In these studies different population-
based original metaheuristic algorithms including binary
backtracking search (BTS) algorithm [1], DE [14], grav-
itational search algorithm (GSA) [23], glowworm swarm
optimization (GWSO) [24], stud krill herd (SKH) [25],
tree-seed algorithm [26], biogeography based optimiza-
tion (BBO) [27], symbiotic organisms search (SOS) [28],
semidefinite programming (SDP) [29], salp swarm algo-
rithm (SSA) [30], lightning attachment procedure optimiza-
tion (LAPO) [31], harris hawk optimization (HHO) [32],
multi-objective backtracking search (BTS) algorithm [33],
gradient-based optimizer (GBO) [34], slime mould algorithm
(SMA) [35], and marine predator algorithm (MPA) [36] have
been applied to find feasible solutions of OPF problems.

In Table 1, abbreviations of various methods to find
feasible solutions of OPF problems are specified.

Summaries of original algorithms based studies are given
in Table 2. In all these studies, OPF problem’s objective
function - to minimize electricity generation cost (fuel cost)
&, based on regular quadratic fuel cost has been studied.
In most studies, objectives including minimizing power
output cost &4, based on valve-point effect quadratic fuel
cost, active power loss Py, and emission pollution E),
have also been studied. In these studies, one or more IEEE
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TABLE 2. Summaries of Studies with Original Algorithms.

Objectives IEEE Test System
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BTS [1]
SA[11]
TSA [12]
DE [14]
MSA [15]
DSA [16]
HSA [17]
GSA [23]
GWSO [24]
SKH [25]
Tree-Seed [26]
BBO [27]
SOS [28]
SDP [29]
SSA [30]
LAPO [31]
HHO [32]
BTS [33]
GBO [34]
SMA [35]
MPA [36]
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test systems have been utilized for evaluating performance
of proposed approaches. The standard IEEE-30 bus system
has been utilized to evaluate performance of employed
heuristic approaches except in studies [26], [30]. The IEEE-
57 bus system has been utilized for measuring optimization
performance of applied heuristic algorithms in 11 studies.
The scalability and optimization performance of heuristic
algorithms are tested on the IEEE-118 bus test system in
8 studies.

In literature, it is observed that the majority of heuristic
approaches due to scalability issues and the premature
convergence property do not perform well to solve the
OPF problem in a large-scale power system network such
as IEEE-118 bus system. The limitations of some studies
are mentioned here. The metaheuristic approach PSO traps
in local optima and shows prematurity to find global
optimum solution of the optimization problem [23]. In case
of addressing large-scale optimization problems, the well-
known heuristic approach GA also traps in local optima
due to the scalability issue and premature convergence
property [37]. The DE has premature and slow convergence
characteristics and poorly performs to find a feasible solution
of the OPF problem in a large-scale power system [38].
In case of solving the OPF problem in a large-scale power
system (i.e. IEEE-118 bus system), the ACO does not find
a best feasible solution [39]. In recent literature, numerous
improved heuristic and metaheuristic approaches have been
documented for finding feasible solutions of OPF problems.

In research literature, to solve OPF problems numerous
studies have been conducted by applying various improved
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heuristic and metaheuristic approaches such as enhanced
ACO (EACO) [39], forced initialized DE (FI-DE) [38],
improved strength pareto EA (ISP-EA) [10], improved ABC
(IABC) [40], improved CBO (ICBO) [41], AGSO [42],
GA-MPC [43], improved GA (IGA) [44], enhanced GA
(EGA) [37], modified sine-cosine algorithm (MSCA) [45],
FOPSO-EE [46], improved EP (IEP) [47], modified shuffle
frog leaping (MSFL) [48], improved PSO (IPSO) [49],
improved HSA (IHSA) [50], chaotic self-adaptive differential
harmony search (CSA-DHS) [51], Fuzzy HSA [52], multi-
Objective EA based decomposition (MOEA/D) [53], efficient
EA (EEA) [54], improved BBO (IBBO) [55], developed
grey wolf optimizer (DGWO) [56], improved krill herd
(IKH) [57], enhanced self-adaptive DE (ESA-DE) [58], mod-
ified DE (MDE) [59], cooperative ABC (CABC) [60], mod-
ified pigeon-inspired optimization (MPIO) [61], improved
SSO (ISSO) [62], improved MFO (IMFO) [63], modified
grasshopper optimization (MGO) [64], improved CEFO
(ICEFO) [65], and adaptive MFO (AMFO) [66].

Summaries of studies based on improved or enhanced
metaheuristic algorithms are available in Table 3. In all
studies, the OPF objective — reducing power generation cost
&, based on a regular quadratic fuel curve is considered for
examining optimization performance of applied approaches.
In most studies to evaluate the performance of employed
approaches, reducing power generation cost &, based on
a valve-point effect quadratic fuel curve, emission pollution
E,, and active (real) power loss Py, objectives also have
been considered. As specified in Table 3, for evaluating
scalability and performance of proposed approaches one
or more standard IEEE-N bus test systems were utilized.
In all these studies, scalability and performance of proposed
approaches were measured on the standard IEEE-30 bus
system except [59], [66]. In some studies, IEEE-57 bus
and IEEE-118 bus test systems were utilized to measure
performance and scalability of proposed approaches.

Although numerous research studies based on original and
improved or enhanced metaheuristic approaches are con-
ducted for addressing OPF problems. However, an effective
and efficient optimization approach to address the large-scale
OPF problem is always needed.

C. CONTRIBUTION AND PAPER ORGANIZATION
The bird swarm algorithm (BSA) [67] is a new stochastic
swarm intelligence approach. The working model of stochas-
tic bio-inspired BSA based on the birds’ social behaviours.
The foraging and vigilance behaviours of birds exploit the
search space for finding a local optimum. The optimization
problem’s search space is explored on a global scale by flight
behaviour of birds for finding a best feasible solution (global
optimum). Due to the stochastic decision for exploiting the
optimization problem, the original BSA is trapped in local
optima due to premature convergence property [67], [68].

In this research work, we have applied an OED based
auxiliary search strategy for enhancing the optimization
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TABLE 3. Summaries of studies with improved algorithms.
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performance of the BSA by exploiting search ability. We have
proposed improved BSA (IBSA) to find feasible solutions to
OPF problems. To the best of our knowledge, application of
proposed IBSA for solving the OPF problems has not been
documented in research literature. This is a main contribution
of our research study. The knowledge contributions of our
research study are the following:

« We have developed a novel IBSA based on OL strategy
by improving the optimization performance of the bio-
inspired BSA.

o We have proposed IBSA to find feasible solutions of
OPF problems in power systems.

In this study, OPF problem objective functions — reducing
electricity generation cost (i.e. regular quadratic fuel cost
and valve-point loading effects quadratic fuel cost), emission
pollution, and active power loss are studied. We have
utilized three transmission networks such as IEEE-30 bus
system, IEEE-57 bus system, and IEEE-118 bus system
for evaluating and verifying stability, convergence, and
optimization performance of the proposed IBSA. We also
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have conducted a comparative study with some modern
metaheuristic approaches including original BSA, ABC,
PSO, DE, and HSA.

The rest of this paper is structured as follows. In section II,
the OPF problem and its objective functions are formulated.
The details of proposed IBSA approach, original BSA, and
OL strategy are described in section III. The brief description
of case studies and the details of simulation and statistical
results are given in section IV. Finally in the last section V,
the conclusion and future work are presented.

Il. OPF PROBLEM FORMULATION

The OPF problem is a nonlinear, nonconvex and quadratic
nature large-scale optimization problem due to its quadratic
nature primary objective function and imposed numerous
constraints. Under secure and stable settings of state and
control variables aka operating points, a certain objective has
been achieved in solving the OPF problem. Its mathematical
formulation can be described as [14]:

Minimize :  f(x, u)
subjectto :  gx,u) =0
h(x,u) <0 (1)

where, function f (x, u) represents the OPF problem objective,
x is a set of state or dependent variables that describes the state
of the power system network and u is a set of control variables
that controls the power flow in a power system. The term
g(x, u) represents equality constraints and A(x, u) represents
inequality constraints. All these constraints must be satisfied
in solving the OPF problem. Further details of variables and
constraints are given in sub-sections.

A. CONTROL OR INDEPENDENT VARIABLES

Control or independent variables play a significant role to
control the power flow in a power system. Active or real
power Pg output from thermal energy sources excluding
at swing bus, voltage magnitude Vs of energy sources,
shunt capacitors Q¢ on selected buses, and transformers tap
T settings on selected branches are considered as control
variables. In the form of vector u, control variables can be
defined as [14]:

u= [PGi"‘PGNG’ VGi"'VGNG’ ch "'QCNC’ Tk---TNT]

@)
where Pg, represents active power generation from the energy
source at bus i € [1,2,..., NG] except the energy source

at the swing bus and NG is the number of energy sources.
The term Vg, is voltage magnitude of generator at i bus,
Qc; represents shunt capacitor at 7™ bus, and T represents
transformer tap at branch k. The term NC is shunt capacitors,
and NT represents the number of transformers tap.

B. STATE OR DEPENDENT VARIABLES
There is a need for dependent variables for describing the
state of a power system network. Active (real) power Pg of
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the swing bus energy source, reactive power Q¢ of all energy
sources, all load buses voltage magnitude V,, and line load Sy,
of transmission lines are dependent or state variables. In the
form of vector x, state or dependent variables can be written
as [14]:

x=[P6. Vi, Vig. 06 - Qg+ Sty - -Stm|  3)

where Pg, is the active (real) power output of an energy
source at swing i bus. The term V1, is the voltage magnitude
of PQ or load buses, p = [1,2,..., NL], and the term NL
represents PQ or load buses. The term Qg, is reactive power
produced from an energy source at i’ bus, S, , 1s line loading
of transmission line ¢, and NI represents transmission lines.

C. CONSTRAINTS

In the OPF problem, finding the best fitness value of objective
is subject to satisfying equality and inequality constraints.
Active (real) power flow and reactive power flow equations
are named as equality constraints. Security constraints on
transmission lines, operating limits of equipment, and voltage
magnitude limits on load buses are named as inequality
constraints and their details are given below.

1) EQUALITY CONSTRAINTS

The active power Pg; output from the thermal energy source
attached at bus i”* should be equal to the sum of active
(real) power (i.e. load demand) and active power loss, Vi €
NB (number of buses). Similarly, reactive power Qg; output
from the thermal energy source attached at bus i would be
required to equal reactive power demand and reactive power
loss, Vi € NB. The mathematically equality constraints can
be written as [14]:

NB

Pgi = Ppi+ Vi > Vi{Gijcos(0yj) + Bysin(0)} Vi€ NB
j=1

“4)
NB

Qi = Opi + Vi ) Vi{Gysin(8) — Bijcos(9)} Vi e NB
j=1

Q)]

where the terms Pg; and Qg; represent active and reactive
power generation from an energy source connected at i bus.
The terms Pp; and Qp; are active and reactive load demand
at i’ bus. The terms V; and V; are voltage magnitude at i’
bus and j” bus. The term 0; = 6; — 0; is voltage angle
difference. The term B;; represents transfer susceptance and
Gjj is conductance between i bus and j bus.

2) INEQUALITY CONSTRAINTS

In power systems, stable and secure physical settings of
equipment and operational boundary limits are reflected by
inequality constraints. The operating limits of generators,
shunt capacitors, transformers tap settings, security con-
straints on transmission lines, and voltage magnitude limits
of load buses are referred to as inequality constraints. These
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constraints ensure security of power system and categorized
as follows:

a: GENERATORS’ CONSTRAINTS
min < Pgi < PR Yie NG (6)
0" < Qi < Q¢ YieNG (7
Vi < Ve < VI Vie NG 8)

where superscripts “min” and “max” are boundary limits of
Pgi, Qci, and Vg; variables.

b: SHUNT CAPACITOR (COMPENSATOR) CONSTRAINTS

Qf" < Qg < Q™ VjeNC (9
where term Qc; is volt-ampere reactive (VAR) injected by
j™ shunt capacitor (compensator) and Q'C”;" and Q’g]f‘x are
boundary limits of j# shunt compensator. NC represents the
total number of the shunt compensators.

c: TRANSFORMER TAP CONSTRAINTS
" < T < T/ Yk eNT (10)

where T} indicates transformer tap setting located at bus k
and 7" and T;"* are boundary limits. NT represents the
total number of transformers.

d: SECURITY CONSTRAINTS
VL":"" <Vp, <V{™ V¥peNL (1)
Sty < S

VgeN, (12)

where VL, represents voltage magnitude on load bus p and
terms VL’Z’" and VL’Z‘”‘ are boundary limits imposed on voltage
magnitude. The term NL shows the total number of PQ or
load buses. The term Sy, represents line flow of transmission
line g and § Z’;‘” is maximum line flow on g transmission line.
N represents transmission lines.

D. OBJECTIVE FUNCTIONS
We have conducted a study on OPF problems with four
objective functions in thermal energy-based small-scale to
large-scale power systems. Generating electrical power using
fossil fuels like coal, oil, and natural gas in thermal generators
are primary sources of harmful gases or green gases emission
into the atmosphere. The electricity generation cost of
a thermal energy source can be formulated as a regular
quadratic cost curve and its three different forms; 1) piecewise
quadratic cost curve, 2) prohibited operating zones quadratic
cost curve, and 3) valve-point loading effect quadratic cost
curve. We have made an assumption in this research work
that the same fuel is used in all thermal energy sources for
electricity generation. We have applied the proposed IBSA to
solve OPF problems, considering four objectives:

1) Minimizing electricity generation cost based on regular

quadratic fuel cost).
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2) Minimizing electricity generation cost based on valve-
point loading effects quadratic fuel cost.

3) Minimizing active power loss in transmission lines of
power system.

4) Minimizing carbon emission pollution into the atmo-
sphere due to burn of fossil fuels in thermal power
plants.

1) QUADRATIC FUEL COST
In a thermal energy-based power system, fossil fuel cost ($/h)
has a quadratic relationship with power output (MW) from
energy source (i.e. generator) [14]:

NG

filr,w) =" ai + biPg, + ciPg, (13)

i=1
where terms a;, b;, and ¢; represent cost coefficients and term
Pg; is active power generation from thermal energy source
(generator) connected at i bus.

2) VALVE-POINT LOADING EFFECTS QUADRATIC FUEL COST
A steam turbine has multi-valve that exhibit a large variation
in fossil fuel consumption in the thermal generator. There-
fore, in this study for realistic and precise modeling of power
generation cost of thermal power plants, we have included
valve-point loading effects in calculating fuel cost. It can be
formulated as a sinusoidal function to measure fuel cost [14]:
NG
S, u) = Z a; + biPg; + CiP%;,.
i=1

+ |d; x sin(e,- X (P’gf" — PGI-)) (14)

where terms a;, b;, and c; represent fossil fuel cost coefficients
and terms d; and e; are cost coefficients based on valve-point
loading effects of energy source connected at i bus. P’gf"
indicates the minimum active power generation capacity of
an energy source at i’ bus. Pg; is active (real) power output
from a thermal energy source connected at i bus.

3) ACTIVE POWER LOSS

The active (real) power loss is unavoidable in a power system
because of inherent reactance and resistance in transmission
lines. Reducing active power loss has significant effects on
operations and planning of the power system and control or
independent variables are also optimized for this purpose.
The mathematically active power loss (MW) is written as
[14]:

NI
S w) =X Gy [V + VE = 2ViVjeos@p}  (15)
q=1
where term N/ indicates number of transmission lines and
term Gg(;j) represents transfer conductance of transmission
line ¢ connecting i bus and j” bus. The terms V; and V;
represent voltage magnitude at i and j buses. The term 0ij
= 6; — 0, is voltage angle difference among i” bus and j"
bus.
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4) EMISSION POLLUTION

It is well known that primary source of harmful gases such
as carbon monoxide (CO), NO,., COy, and SO, emission into
the atmosphere is burning of fossil fuels in thermal power
plants. It has become necessary with climate changes and
global environmental concerns, to regulate thermal energy
based power systems by reducing emission pollution. The
harmful gases emission (ton/h) into atmosphere during power
generation from thermal energy source has been measured as
follows [14]:

NG
fatew = > | @i+ BiPa, + viPG,) x 0.01 + wie"e) |
i=1
(16)

where terms o;, fBi, ¥i, wi, and w; represent emission
coefficient for energy source connected at i bus.

Ill. ORTHOGONAL LEARNING BIRD SWARM ALGORITHM
In addition to the traditional mathematical methods,
numerous nature-inspired and bio-inspired metaheuristic
approaches have been proposed for solving optimization
problems in research literature [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], [36]. The
bird swarm algorithm (BSA) [67] is a new population-
based stochastic swarm intelligence approach. The original
BSA has premature convergence and poor capability to
escape from local optima due to the stochastic decision for
exploitation of search space of high dimensional optimization
problems [67], [68]. We have applied an OED based auxiliary
search strategy to enhance optimizing features of the BSA
by efficiently exploiting local regions of search space in this
research work. We have proposed the improved BSA (IBSA)
for solving OPF problems.

A. ORIGINAL BIRD SWARM ALGORITHM

In the BSA [67], swarm intelligence, based on birds’ social
behaviours, has been employed for solving the optimization
problem. In BSA, four search approaches including vigilance,
foraging, scrounger, and producer are efficiently regulated to
explore and exploit the optimization problem search space.
A bird’s interactions in swarm and social behaviours can be
easily understood based on following five well-defined rules:

1) In this rule, a stochastic decision based on bird’s for-
aging behaviour probability P. Every bird in the swarm
may have foraging behaviour or vigilance behaviour.
If probability P is greater than the stochastically
selected value from rand (0, 1), the bird swaps into
foraging behaviour, otherwise the bird has vigilance
behaviour.

2) In this rule, every bird in a swarm updates its fitness
to search for food items based on social behaviour and
the swarm’s best experience. This information such as
the swarm’s best experience and bird’s social behaviour
are shared in the bird’s swarm immediately. It can be
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3)

mathematically modeled as [67]:
Xt =xl i+ (pij—xi;) x 8 x rand (0, 1)

ij
+ (g —xit’j) x T x rand (0, 1) (17)

where i € {1,2,...,N} indicates i bird in N birds
and j € {1, 2,..., D} represents the jlh dimension of
D dimensions of optimization problem search space.
The term xf,j represents the i bird’s position in the
j™ dimension of search space for possible flight of
birds at time t and these birds may have foraging
or vigilance behaviour. § is cognitive accelerated
positive coefficient and t is social accelerated positive
coefficient. The term p; ; represents the previous best
position of the i bird in the swarm. The term g
represents the best previous position (global optimal)
shared by the swarm. The term rand(0, 1) is a function
of uniform distribution.

Every bird in the swarm wishes to move in the direction
of the swarm’s center due to its vigilance behaviour.
This movement of each bird towards the center of the
swarm may be affected by competition among birds
to reach the swarm’s center. According to this rule,
birds could not move in the direction of the swarm’s
center directly. The vigilance behaviour of bird can be
modeled as [67]:

xl.tj'l = xit,j + Y (mean; — xit’j) x rand (0, 1)
+ Tz(pk,j —xf,j) X rand( -1, 1) (18)
pFit;
T = ————— XN 19
=X exp( sumkFit + ¢ % ) (19

pFit; — pFity N x pFity
|pFity — pFit;| 4 ¢ ] sumFit + ¢
(20)

Ty = vy X expl(

where term mean; is the 7™ bird mean position in the
swarm. k € {1,2,...,N} and k(k # i) is a randomly
selected positive integer. The terms v and v, represent
two positive constants within range [0,2]. The term
pFit; indicates i bird’s best fitness value. The term
sumFit indicates swarm total fitness value (or sum of
each bird’s best fitness in the swarm). ¢ represents the
very small positive constant to prevent the error of zero
division.

Every bird in the swarm moves towards the center of
the swarm due to direct and indirect effects. The force
induced by birds’ social behaviours and environments
affects the swarm’s mean fitness and it is calculated
as an indirect effect. Other force induced by specific
interference is calculated as direct effect and Yy is
applied for simulating it. The scenario Y, > v, occurs,
if k(k # i) bird has a better fitness value than i
bird. It means the k™ bird may suffer from a smaller
interference force than the i bird. On the basis of
unpredictability and some randomness, k" bird would
be more likely to travel in the direction of the swarm’s
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TABLE 4. Experimental design for chemical reaction.

TABLE 5. Best combinations using OED and factors analysis.

Factors
Levels A:Temperature(°C') B:Oxygen C:Water(%)
(em”)
Ly 80 90 5
Lo 85 120 6
Ls 90 150 7

center than i bird. The minimum fitness value of a bird
in a swarm defines the global optimum or best feasible
value for solving the minimal optimization problem.

4) Inthe swarm, birds switch to flight behaviour by flying
from one site to another site in any direction and
this flight behaviour may be due to birds’ foraging
behaviour, predation threat or any other circumstances.
After arriving on a new site, birds often swapped into
two groups of birds such as scrounger and producer
during foraging for food patches. The birds’ behaviours
including producer and scrounger mathematically can
be formulated as [67]:

xi"]fl — xf’j + randn(O, 1) X xl{j (21)

xl.tjl = xl{j + (x,t(’j — xf’j) x FL x rand(O, 1) (22)
where, k € {1,2,...,N} and k(k # i), indicates
a positive integer. FL(FL € {0,2}) means that
for searching food patches, the producer would be
followed by scrounger.

5) After arriving on a new site, food patches are explored
actively by producers and scroungers randomly follow
producers for searching food patches.

B. ORTHOGONAL EXPERIMENTAL DESIGN

In order to present the concept of OED method and how
to use it, a simple example is considered based on a
chemical reaction experiment [69]. In this chemical reaction
experiment, the chemical conversion rate depends on three
quantities such as temperature (°C), amount of oxygen (cn?),
and water percentage (%), which are respectively interpreted
as A, B, and C factors of the experiment. In Table 4, there are
three different values of each factor denoted as levels L1, L2,
and L3. For example, the amount of oxygen can be 90, 120,
or 150 cm3. In this example, a total 33 = 27 combinations of
factors’ levels are possible and so 27 experimental test cases
have been derived for finding the best chemical conversion
rate. In general, the possible combinations of factors’ levels
can be calculated as QN , where N represents factors and
Q represents levels per factor. It may be impractical to
conduct a large number of experimental test cases Q" to
find the best combination of levels for chemical conversion
rate when Q and N are very large. In such a case to
reduce experimental testing cost, it is required to use small
representative combinations of factor’s levels instead of all
combinations of factor’s levels. The OED plays a significant
role in predicting a small set of representative combinations
based on ‘“fractional factorial” experiments. For a better
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Combination A:Temperature B:Oxygen C:Water (%) Results
(e) (em®)
Cq (1) 80 (1) 90 s fi=31
Cy (1) 80 (2) 120 2)6 fo =54
Cs (1) 80 (3) 150 3)7 fs =38
Cy (2)85 (1)90 2)6 fi =53
Cs (2)85 (2) 120 3)7 fs =49
Cs (2)85 (3) 150 s fo = 42
Cy (3)90 (1) 90 37 fr =57
Cy (3)90 (2) 120 s fs =62
Co (3) 90 (3) 150 2)6 fo =64

Factors Analysis

Levels A:Temperature(°C) B:Oxygen (em?) C:Water(%)
Ly Har =

Hp1 = Heq =
(fitfat+f3)/3 =41 (fi+fat+fr)/3 =47 (fi+fe+fs)/3 =45
A2 — B2 — c2 —
(fatfs+fe)/3 =148 (f2+fs+fs)/3 =55 (fa+fa+fo)/3 =057

A3 = B3 = c3 =
(fr+fs+fo)/3 =61 (fa+fe+fo)/3 =148 (fa+fs+fr)/3 =48
A3 B2 C2

Lo
Ls

Best

understanding of the OL strategy, the important terms are
described herein.

1) ORTHOGONAL ARRAY
The array is termed as orthogonal because all factors in
an orthogonal array (OA) can be independently evaluated.
In which the core effect of one multi-levels factor on response
variables (results or objectives) does not influence to measure
the effect of another multi-levels factor. By OA, nominated
combinations of factors’ levels are uniformly distributed over
the all possible combinations of levels which guarantees a
secure and stable comparison of individual factor’s levels.
In OA, an individual row indicates the factors’ levels in
every combination, while an individual column indicates a
particular factor that may be altered from every combination.
Let’s consider N factors and each factor consists of three
different levels. For a complete experiment, a total 3 number
of experimental test cases or combinations of levels are
required. The notation Ly, (Q") is used to represent an array
for N factors with Q levels of each factor, where L represents
an array and M represents number of rows and each row
is a combination of levels. In such case to construct an
OA = Ly;(3Y) with M rows for N factors, an integer M =

3(11]10g3(2N+1)’ where [[]] is a ceiling function. Based on a
chemical reaction experiment specified in Table 4, an array is
defined that contains 9 representative combinations of levels
for 3 factors in which each factor has 3 levels, as follows:
1117
122
133
212
223 (23)
231
313
321
1332

An array [a; j]y xn has index ¢ and strengthAon0 <A < Q
is defined as OA when every sub-array [a; j1a x5 of A consists
of all representative combinations of ordered A —tfuple exactly

Ly(3%) =
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t times as a row. An example of [a; j]9»3 OA which has index
t = 1 and strength A = 2 specified in Eq. 23. It consists
of ordered 2-tuples or ordered pairs (1, 1), (1, 2), (1, 3), (2,
1), (2,2),(2,3), (3, 1), (3, 2), and (3, 3) that occur only one
time in any two columns. As stated above, few experimental
test cases are conducted based on OED for finding the best
representative combination of levels. Based on OED, the total
nine experimental test cases identified by Lo(3%) are specified
in Table 5. For example, the first representative experimental
test case is first combination of levels (C1) and represents
the first row [1 1 1] in OA. In this experimental test case,
factor A (temperature °C), factor B (amount of oxygen cm?),
and factor C (water percentage) have been designed to the
initial level of each factor such as 80 °C, 90 cm® , and 5%,
respectively. Similarly, the second experimental test case is
the second combination of levels (C;) and represents the
second row [1 2 2] in OA, and so on.

2) FACTOR ANALYSIS

A systematic technique to find the best factors’ levels
combination for evaluating the influence of every factor’s
levels on experimental outcomes is named as factor analysis.
It has been conducted on experimental outcomes of all known
M test cases of OA for finding the best factors’ levels
combination. This process is explained herein.

Let f;, is the response variable or experimental test case
result of m” combination of levels, where 1 < m < M. The
H,, represents the average effect of the g™ level of the n'
factor, where 1 < ¢ < Qand 1 < n < N. The average
effect Hy, for a chemical reaction experiment is calculated as
follows [70]:

9
z fm X Zmnq
_ m=l

Hyg = "= 24)
Z Zmnq
m=1
where Z,, = 1, if the m™ combination (m = 1,2, 3,...,9)

is with the ¢ level (¢ = 1,2,3) of the n™ factor (n =
A, B, C), otherwise Z,pg = 0.

For instance, measured effect of L; on factor A (temper-
ature °C), represented by Al. By inspecting 2" column of
Table 4, we observe that combinations of levels C;, C, and
(3 contain all the experimental test cases of L; for factor A.
The corresponding combination results are fi = 31, 5, =
54 and f3 = 38 and the mean effect is Hy; = 41. After
measuring mean effects H,, of all levels for every factor,
the best combination of factor’s levels of every factor can be
obtained by choosing Hj, with higher value for each factor
in case of maximization problem. The factor analysis base
results for a chemical reaction experiment are specified in
Table 5 and the details of factor analysis are explained in [69].
From Table 5, the best combination of factors’ levels for a
chemical reaction experiment discovered by factor analysis
is A3, B2 and C2. Although this combination temperature
90°C, amount of oxygen 120cm?®, and water 6% is not
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FIGURE 1. Improved BSA working model.

included in the nine experimental test cases (combinations
of levels). We have implemented OL strategy in order to
improve BSA optimization performance for finding optimal
solutions efficiently based on OED.

C. ORTHOGONAL LEARNING BIRD SWARM ALGORITHM
An evolutionary programming based heuristic method has
two contradictory features such as exploration and exploita-
tion, balancing in these features have significant impact on
its search efficiency and optimization performance. As men-
tioned before, the original BSA has premature convergence
and poor capability to avoid trap into local optima due to
a stochastic decision for exploitation of the search space of
high dimensional optimization problems. Therefore, we have
proposed OL strategy to enhance optimization performance
of original BSA by improving the ability of exploitation of
search space dimensions. The number of decision or control
variables are referred to as a search space dimension or a
solution vector dimension. For instance, if the optimization
problem contains 10 control variables, it is interpreted as a
10-dimensional search space optimization problem.

In IBSA, optimization process starts by initializing param-

eters, control variables Xpo = [}, X200 ... XD 1,
— el 42 D : .
Xmin = [Xpjs Xipins - -+ » Xin] and N solutions uniformly

distributed amongst [X;,qx, Xmin]. The fitness of the initial
solution vector is evaluated in the next step, before exploring
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TABLE 6. Benchmark functions.

Name Formula Dimensions Search domain Global
(d) optimum
Ackley f(z) = —aexp (fb\ /L Zle x?) —exp (i Zle cos(c a:z)> +a+exp(l) 200 x; € [—32.768,32.768] 0
Gricwank f(z) = YL, g5 — TIL, cos(Z) + 1 200 2; € [~600, 600] 0
Rastrigin f(z) = 10d + 3¢, (27 — 10 cos(2mz:)) 200 x; € [-5.12,5.12)] 0
Rosenbrockf(z) = 301 [100(zis1 — 27)? + (zi — 1)?] 200 x; € [—2.048,2.048] 0
Sphere  f(z) = 3¢ | a? 200 x; € [=5.12,5.12] 0

and exploiting search space. Procedure of searching optimal
solution switched into exploring or exploiting search space
based on birds’ flight behaviours frequency FQ. The foraging
and vigilance behaviours of birds exploit the search space
for finding a local optimum and flight behaviour of birds
explores the search space to find global optimum solution.
During exploration of the search space, birds often swapped
into two groups of birds such as scrounger and producer
during foraging for food patches based on their food
reserves.

The procedure of applying OL strategy to determine best
exploitation of original BSA is explained onward. Initially,
a random integer (index) r is selected. In next step whenever
the current candidate solution index i is not equal to randomly
selected index r (i # r), a stochastic decision based on
bird’s foraging behaviour probability P. Every bird in the
swarm may have foraging behaviour or vigilance behaviour.
If the stochastically selected value from rand (0, 1) is greater
than probability P, the bird swaps into vigilance behaviour,
otherwise the bird has foraging behaviour. In other case,
whenever the current candidate solution index i is equal to
randomly selected index r (i == r), a new transmission
solution vector 7, mathematically formed as:

T, =X;j +rand(0, 1) X Xpesr — Xj), j#r el[l,N]
(25)

where Xpes; represents an optimal solution based on best
fitness value in current iteration, X; represents the j’h solution
of N optimal solutions which is not the same as current
solution X, .

In the current iteration, the OL strategy is applied
for predicting an optimal solution vector O, by merging
transmission solution vector 7, and current solution vector
X, with few experimental test cases based on OED. To reduce
computational cost, OL strategy is used once at each iteration
when randomly selected index r is equal to current index i
(i == r). The detailed working model (flowchart) of the
IBSA is shown in Figure 1.

The goal of utilizing OL strategy is to obtain an optimal
solution. In this strategy the OED has been applied to
conduct few experimental test cases instead of exhaustive
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experimental test cases for predicting the best combination
of every dimension of two candidate solution vectors. The
process to obtain a solution vector O, by OL strategy is
described as following steps:

1) Construct a two-level OA Ly (2P) of D factors, with

M = 2m]log2(D +D where M represents number of
combinations or rows in OA, D is the number of
columns in OA or dimension of problem and |'['|]
is a ceiling function. The reason behind constructing
two-level OA is that in our case, there are two
solution vectors such as transmission solution vector
T, and current solution vector X, used for OL strategy.
A procedure for constructing a two-level OA for D
factors is written as follows [69]:

1: procedure Generate_OA(OA, D)
M = 20 ]lee2D+ 1),

2:

3: fori:=1:Mdo

4 forj:=1:Ddo

5: level := 0;

6: k:=j,

7: mask := M /2;

8: while £ > 0 do

9: BAnd := bitwiseAnd (i — 1, mask);
10: & // where mask = 2”"~! and
11: > // bitwiseAnd (o, mask)
12: > // returns m™ least significant bit of «
13: if (kmod2) & (BAnd # 0) then
14: level := (level + 1)mod?2;

15: endif

16: k= |k/2];

17: mask = mask /2;

18: OATi][j] := level + 1;

19: endwhile
20: endfor
21: endfor

22: endprocedure

2) The two-level OA Ly(2P) for D factors (control
variables of problem) is filled by choosing *1’ for the
values of transmission vector 7, and ’2’ for the values
of current solution vector X.
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FIGURE 2. Algorithms’ convergence properties on benchmark functions.

3) Obtain M experimental test results f,,(1 < m < M)
based on corresponding value of transmission vector 7’
(25) and current solution vector X, according to a two-

level OA
4)

to (24).
5)
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Ly (2P) for D factors.

Using factor analysis the best combination of levels
for every factor (control variable) is obtained. Based
on these best levels, the best combination of factors’

levels H), is predicted and H), is evaluated with fitness
values.

6) If H, has the best fitness value as compared to Hp, it is
selected as solution vector O,.

Using factor analysis each experimental test result
fm(1l < m < M) is evaluated based on fitness value
and the average effect of experimental results (com-
bination of factors’ levels) Hj is measured according

IV. SIMULATION RESULTS AND CASE STUDIES

In this section, we have evaluated the optimization perfor-
mance and efficiency of proposed IBSA, in order to verify the
effect of the OED auxiliary search strategy. We have utilized
five benchmark functions, IEEE-30 bus test system, IEEE-57
bus test system, and IEEE-118 bus test system for verifying
stability, effectiveness, and optimization performance of
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TABLE 7. IEEE test systems characteristics [1].

IEEE-30 bus test system

IEEE-57 bus test system

IEEE-118 bus test system

Items Quantity  Description Quantity  Description Quantity ~ Description
Buses 30 [1] 57 [1] 118 [1]
Branches 41 [1] 80 [1] 186 [1]
Generators 6 Thermal energy sources attached at 7 Thermal energy sources attached at 54 Thermal energy sources attached at
bus no. 1 (slack/swing), 2, 5, 8, 11 and bus no. 1 (slack/swing), 2, 3, 6, 8, 9 bus no. 1, 4, 6, 8, 10, 12, 15, 18, 19,
13 and 12 24,25, 26, 27, 31, 32, 34, 36, 40, 42,
46, 49, 54, 55, 56, 59, 61, 62, 65, 66,
69 (slack/swing), 70, 72, 73, 74, 76,
717, 80, 85, 87, 89, 90, 91, 92, 99, 100,
103, 104, 105, 107, 110, 111, 112,
113 and 116
Shunt capacitors 9 On bus no. 10, 12,15, 17, 20, 21, 23, 3 On bus no. 18, 25 and 53 14 On bus no. 5, 34, 37, 44, 45, 46, 48,
24 and 29 74,79, 82, 83, 105, 107 and 110
Transformer taps 4 On branch no. 11, 12, 15 and 36 17 On branch no. 19, 20, 31, 35, 36, 37, 9 On branch no. 8, 32, 36, 51, 93, 95,
41, 46, 54, 58, 59, 65, 66, 71, 73, 76 102, 107 and 127
and 80
Control variables 24 Active power of generators attached 33 Active power of generators attached 130 Active power all generators (except
on bus no. 2, 5, 8, 11 and 13, volt- on bus no. 2, 3, 6, 8, 9 and 12, volt- at swing bus), voltage magnitude of
age magnitude of all generators, shunt age magnitude of all generators, shunt all generators, shunt compensator and
capacitors and transformer taps at se- capacitors and transformer taps at se- transformer tap at selected buses
lected buses lected buses
Connected load - 283.4 MW - 1250.8 MW - 4242 MW
Reactive Power - 126.2 MVAr - 336.4 MVAr - 1439 MVAr
Load buses 24 Voltage [0.95 - 1.05] p.u. on 100 50 Voltage [0.94 - 1.06] p.u. on 100 64 Voltage [0.94 - 1.06] p.u. on 100

MVA base

MVA base

MVA base

proposed IBSA. We have used MATLAB R2017a for
implementing IBSA, original BSA and other approaches such
as ABC, PSO, DE, and HSA. The MATPOWER 6.0 software
package integrated with MATLAB R2017a was utilized for
power flow calculation. The simulation and statistical results
were measured and a comparison was made with original
BSA and other metaheuristic approaches such as DE, PSO,
ABC, and HSA. Laptop has Intel(R) Core™ {7-5500U
CPU @ 2.40GHz 2.40 GHz and installed RAM @8.00 GB
and Microsoft Windows 10 64-bits has been used for the
simulation purpose.

In order to measure the optimization performance of
proposed IBSA, we have evaluated it on five benchmark
functions of different characteristics. The benchmark func-
tions are listed in Table 6 and dimension value is set to be
200 in each function. To verify the efficiency and effective-
ness of proposed IBSA on benchmark functions, we have
selected the original BSA for comparison. In Figure 2, the
simulation results are reported for algorithms’ convergence
properties on selected benchmark functions. The proposed
IBSA has exhibited competitive performance on Griewank,
Rosenbrock, and Sphere functions to find global optimum
value. It is observed that the proposed IBSA has better
convergence, efficiency, and robustness features than the
original BSA.

We have conducted ten case studies for measuring stability
and performance of the proposed IBSA to solve OPF
problems in small-scale to large-scale thermal energy-based
power systems. In these case studies, we have considered
four objective functions - minimizing electricity generation
cost (i.e. regular quadratic fuel cost and valve-point loading
effects fuel cost), emission pollution, and active (real) power
loss in thermal power systems. Experimental results and
statistical analysis of 10 case studies on three standard IEEE
test systems are given in the following section.
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TABLE 8. IEEE-30 bus test system - fuel cost and emission
coefficients [14].

Fuel cost coefficients

Energy source  Bus no. a b c d e

G1 1 0 2 0.00375 18 0.037
Ga 2 0 1.75 0.0175 16 0.038
Gs 5 0 1 0.0625 14 0.04
Gg 8 0 3.25 0.00834 12 0.045
G111 11 0 3 0.025 13 0.042
Gi3 13 0 3 0.025 13.5 0.041

Emission coefficients

Energy source Bus no. « 5] o w I
G1 1 4.091 -5.554 6.49 0.0002  2.857
G 2 2.543 -6.047 5.638 0.0005 3.333
Gs 5 4.258 -5.094 4.586 0.000001 8

Gy 8 5.326 -3.55 3.38 0.002 2
G111 11 4.258 -5.094 4.586 0.000001 8
Gi3 13 6.131 -5.555 5.151 0.00001  6.667

A. IEEE-30 BUS TEST SYSTEM

In initial four case studies (i.e. case study 1 to case study
4), the standard IEEE-30 bus test system has been utilized
for verifying the performance accuracy and effectiveness
of IBSA in a small-scale power system. It has active
power 283.4 MW (2.834 p.u.) demand and reactive power
126.2 MVAr (1.262 p.u.) demand. Its data and characteristics
are specified in Table 7 and further details can be found in
study [1]. There are 24 control or decision variables including
5 generators active power output (except swing bus), all
6 generators’ voltage magnitude, 9 shunt compensators,
and 4 transformer taps. The voltage magnitude limits of
generators and load buses are kept in range [0.95 1.05] p.u.
and [0.95 1.1] p.u., respectively.

1) CASE STUDY 1: MINIMIZING QUADRATIC FUEL COST

The OPF problem’s primary objective is to minimize
generators’ fossil fuel cost ($/h) for producing the electricity
based on regular quadratic objective function fi (13). Energy

VOLUME 11, 2023



M. Ahmad et al.: Orthogonal Learning Bird Swarm Algorithm for Optimal Power Flow Problems

IEEE Access

TABLE 9. Simulation results of case studies 1 and 2 on IEEE-30 bus test system.

Case study 1: Minimization of fuel cost

Case study 2: Minimization of fuel cost with valve-point effect

Control variables Range IBSA BSA DE PSO ABC HSA IBSA BSA DE PSO ABC HSA
Pga (MW) [20 80] 487145  49.2616  48.7909  48.9971 487204 474937  44.4761 41.6874 449752 49.6048 425023  39.9103
Pgs (MW) [1550] 21.3766  21.3824  21.4098  21.4862  21.3861 21.7700 18.7530 16.3145 18.3806 15 18.8874  20.3057
Pgg (MW) [10 35] 21.2188 204812  21.1246  21.9370  21.2326 17.4468 10 16.2795 10.0039 10 11.3847 11.9537
Pgi1 (MW) [10 30] 11.9239 12.5738 11.9508 10 11.9166 13.7208 10.0022 11.0654 10.0047 10 10 11.5736
Pg13 (MW) [12 40] 12 12 12 12 12 12.7600 12 12.1737 12 12 12.9557 13.1903
Vi (p.u) [0.951.1] 1.0838 1.0851 1.0839 1.0786 1.0814 1.0581 1.0805 1.0776 1.0850 1.0375 1.0714 1.0563
V2 (pu) [0.951.1] 1.0647 1.0378 1.0649 1.0595 1.0626 1.0461 1.0581 1.0585 1.0619 1.0130 1.0474 1.0322
Vs (p.u.) [0.951.1] 1.0336 1.0393 1.0336 1.0277 1.0317 1.0184 1.0243 1.0561 1.0281 0.95 1.0208 1.0099
Vg (p.u.) [0.951.1] 1.0383 1.0346 1.0383 1.0330 1.0364 1.0969 1.0338 1.0317 1.0361 0.9807 1.0282 1.0848
Vi1 (pu) [0.951.1] 1.0810 1.0553 1.0873 0.95 1.0946 1.0217 1.0590 1.0537 1.0897 1.1 1.0696 1.0201
Vis (puw) [0.951.1] 1.0406 1.0428 1.0437 1.1 1.0548 1.0277 1.0650 1.0592 1.0549 0.95 1.0766 1.0667
Qc10 (MVAr) [05] 5 4.4861 1.4910 0 2.8537 42034 5 2.6433 5 0 5 3.1996
Qc12 (MVAr) [05] 4.2745 4.9819 1.2007 0 0 4.3327 5 2.4942 0.0034 5 4.9139 3.0004
Qc15 (MVAr) [05] 3.7546 1.5426 4.1043 3.0126 3.9257 3.5678 5 1.6647 3.8135 0 5 2.7138
Qc17 (MVAr) [05] 4.9999 2.8036 5 0 5 2.3204 5 0.1694 5 5 5 4.5963
Qc20 (MVAr) [05] 4.0215 4.2474 4.2008 0 3.8813 4.9025 4.3774 1.6062 3.9775 5 4.2495 3.2355
Qc21 (MVAr) [05] 5 2.1105 4.9984 5 5 1.8086 5 2.1155 5 5 5 1.2258
Qc23 (MVAr) [05] 2.9689 4.0812 2.8275 5 2.7926 1.4554 5 24121 2.5369 5 2.7446 3.7076
Qc24 (MVAr) [05] 5 4.0190 4.9899 0 5 3.8810 5 2.1160 5 5 5 3.1557
Qc20 (MVAr) [05] 2.4366 2.6661 2.3734 5 22213 3.5505 2.5404 0.7494 2.5270 0 2.4516 1.6686
Ty (pu.) [091.1] 1.0126 0.9534 1.0525 0.9707 1.0774 0.9926 1.0386 0.9984 1.0249 1.009 0.9971 1.0091
Th2 (p.u.) [0.91.1] 0.9770 1.0761 0.9225 0.9 0.9 0.9460 0.9396 1.0490 0.9886 0.9 0.9684 1.0897
Ths (p.u.) [091.1] 0.9662 1.0314 0.9648 1.0477 0.9795 1.0262 1.0112 1.0522 0.9759 0.9 1.0284 1.0453
Ts6 (p.u.) [091.11 0.9738 0.9868 0.9731 0.9777 0.9718 0.9647 0.9878 0.9522 0.9787 0.9 0.9667 0.9532
State variables

and parameters

Pg1 (MW) [50200] 177.16277 176.95956 177.11977 178.25196 177.14156 179.86083 198.85353 196.73864 198.68198 199.13298 198.38781 197.59449
Qa1 (MVAr) [-20 150] 2.69059  25.82336 2.68720  -0.90316  0.60742  -17.25271 1.50142  -6.32686  5.79981 13.29559  2.00799  -0.60683
Qa2 (MVAr) [-2060]  20.10741 -20 20.35496  18.90873  17.31498 28.79175 12.40395 3.25166 14.58834  39.78293  0.4434 -8.07769
Qas (MVAr) [-1562.5] 25.55891 40.03170 25.38722 27.11731 24.88422 2881415 2230349 56.66535 22.99489 3.42775  27.56737 27.78952
Qas (MVAr) [-1548.7] 28.06872 32.80059 27.64679 38.11267 23.20047 48.7 27.75564 2220115 27.36748 38.57959 29.06624 48.7
Qac11 (MVAr) [-1040]  16.25831 5.04806  23.93212 -10 29.37808  0.37109 1249753 13.81813  22.55452 34.61831 11.1122  8.04698
Qg13 (MVAr) [-1544.7] -6.94745 13.25851 -4.63822  39.24385 2.90680  9.54657 11.54638 28.32962 3.86903  -15 20.47395 34.83518
Pp (MW) 283.4 283.4 283.4 283.4 283.4 283.4 283.4 283.4 283.4 283.4 283.4 283.4
Pg (MW) 2923965  292.6586 2923959  292.6722 292.3972  293.0521 294.0848 294.2591 294.0464 295.7377 294.1179 294.5281
Pioss (MW) 8.9965 9.2586 8.9959 9.2722 8.9972 9.6521 10.6848 10.8591 10.6464 12.3377 10.7179 11.1281
Voltage deviation (p.u.) 0.92389  0.45639  0.92158  0.79384  0.94569  0.31239  0.81467  0.39253  0.85351 0.67178  0.87181 0.32430
Emission (ton/h) 0.36633  0.36567  0.36622  0.36989  0.36628  0.37307  0.43814  0.42957  0.43762  0.44054  0.43574  0.43169
Fuel cost ($/h) 800.3975 801.3396 800.3978 801.1773 800.4040 802.3204 832.1423 836.6486 832.0568 838.2431 832.8819 835.8461

TABLE 10. Simulation results of case studies 3 and 4 on IEEE-30 bus test
system.

Case study 3: Minimizing active power loss

Algorithm Pioss Pg Fuel cost Emission Voltage deviation
(MW) (MW) ($/h) (ton/h) (p.u.)
IBSA 3.0951  286.4951 1027.4002 0.20727 0.90383
BSA 3.1714  286.5714 1027.6328 0.20728 0.46360
DE 3.0828  286.4829 1027.3620 0.20726 0.91058
PSO 3.1545  286.5545 1027.5810 0.20727 0.93267
ABC 3.0830  286.4835 1027.3652 0.20726 0.91560
HSA 33961  287.1109 1005.4364 0.20794 0.34839
Case study 4: Minimizing emission pollution
IBSA 3.2907  286.6907 1015.6857 0.20484 0.90570
BSA 3.9530  287.3530 1030.0347 0.20739 0.49478
DE 32177  286.6177 1015.4273 0.20482 0.90409
PSO 3.4315  286.8315 1016.1882 0.20488 0.99724
ABC 3.2671  286.6671 1015.6162 0.20483 0.85700
HSA 3.9707  287.3707 1011.7692 0.20681 0.43134

sources or generators’ fuel cost coefficients are given in
Table 8, which are taken from study [14]. The minimum
electricity generation cost of fossil fuel energy sources
achieved from the proposed IBSA was 800.3975 $/h to fulfill
the active load demand, which was less than the fuel cost or
electricity generation cost obtained from original BSA and
all other algorithms. The optimal values of control variables,
state variables, and objective function’s parameters achieved
by all algorithms are specified in Table 9, while minimum
electricity generation cost is shown in boldface.

VOLUME 11, 2023

2) CASE STUDY 2: MINIMIZING VALVE-POINT LOADING
EFFECTS QUADRATIC FUEL COST

The OPF problem’s objective function - reducing electricity
generation cost ($/h) f> defined in (14) was considered, in this
case study. In Table 8, cost coefficients of fossil fuel for
thermal energy sources are specified. To fulfill active load
demand in system, fossil fuel cost 832.1597 $/h to generate
electricity from thermal generators (energy sources) was
obtained from the proposed IBSA, which was less than the
power generation cost of original BSA and close to minimum
power generation cost 832.0568 $/h obtained from DE. The
optimization results are specified in Table 9 for this case
study.

3) CASE STUDY 3: MINIMIZING ACTIVE POWER LOSS

The objective function f3 of the OPF problem defined in
(15) was under consideration for the active power loss Py
reduction in the power system. In which fuel cost function
> defined in (14) was considered for calculating electricity
generation cost. The active power loss Pj,s in the power
system for proposed IBSA approach was 3.0951 MW close
to minimum power loss 3.0828 MW obtained from DE.
The optimization results are given in Table 10 for this
case study.
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FIGURE 4. Load buses’ voltage magnitude profile for IBSA on IEEE-30 bus
test system.

4) CASE STUDY 4: MINIMIZING EMISSION POLLUTION

Based on the function fy (16), the objective was set as
reduction of emission pollution in this case study. In Table 8§,
the emission coefficients for thermal energy sources are
provided. The amount of emission pollution in case of
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proposed IBSA was 0.20484 ton/h, which is close to
minimum emission 0.20482 ton/h polluted in case of DE
approach and less than in case of original BSA. In Table 10,
the simulation results of case study 4 are specified.

A comparison is made between simulation results achieved
using the proposed IBSA, original BSA, and other meta-
heuristic approaches to solve the OPF problems. In Figure 3,
algorithms’ convergence profiles are graphically plotted for
four case studies on the IEEE-30 bus test system.

The summary of statistical results for each case study
on IEEE-30 bus test system (i.e. case study 1 to case
study 4) conducted with IBSA, original BSA, and other
search algorithms is shown in Table 11. In each case study,
the columns min, max, and average indicate the objective
function values (i.e. best, worst, mean). The column time(s)
indicates the execution time in seconds for a single run is
taken to obtain the feasible solution (best result). In case
study 1, the best fuel cost (minimum) 800.3975 $/h is
obtained from IBSA, with the worst fuel cost (maximum)
800.3978 $/h, the mean 800.3976 $/h, and standard deviation
0.0001. It is observed that no single approach is capable of
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TABLE 11. Statistical summary on IEEE-30 bus test system.

Case study 1: Minimization of fuel cost

Algorithm  Min($/h) Max($/h) Average($/h) Standard Time (s)
deviation(o)
IBSA 800.3975 800.3978 800.3976 0.0001 521.86
BSA 801.3396 801.3402 801.3398 0.0002 468.23
DE 800.3978 800.4000 800.3987 0.0012 349.34
PSO 801.1773 801.1773 801.1773 0 652.42
ABC 800.4040 800.5000 800.4379 0.0538 499.62
HSA 802.3204 802.3204 802.3204 0 11.23
Case study 2: Minimization of fuel cost with valve-point effect
IBSA 832.1423 832.1597 832.1510 0.0123 669.05
BSA 836.6486 836.7052 836.6769 0.0400 332.80
DE 832.0568 832.0568 832.0568 0 331.50
PSO 838.2431 838.2431 838.2431 0 543.46
ABC 832.8819 833.0035 832.9427 0.0860 571.34
HSA 835.8461 836.8257 836.3359 0.6927 13.57
Case study 3: Minimizing active power loss
IBSA 3.0951 3.0951 3.0951 0 493.24
BSA 3.1714 3.1715 3.1715 0.0001 302.64
DE 3.0828 3.0828 3.0828 0 368.68
PSO 3.1545 3.1545 3.1545 0 472.53
ABC 3.0830 3.0842 3.0834 0.0011 407.39
HSA 3.3961 3.4325 3.4143 0.0257 12.36

Case study 4: Minimizing emission pollution

IBSA 0.20484 0.20484 0.20484 0 917.85
BSA 0.20739 0.20745 0.20742 4.24 x 107° 636.43
DE 0.20482 0.20482 0.20482 0 344.40
PSO 0.20488 0.20492 0.20489 1.41 x 107° 826.19
ABC 0.20483 0.20490 0.20488 7.07 x 107° 488.22
HSA 0.20681 0.20720 0.20701 0.0003 10.84

TABLE 12. IEEE-57 bus test system - fuel cost and emission
coefficients [14].

Fuel cost coefficients

Energy source  Bus no. a b c d €
G1 1 0 20 0.07758 18 0.037
G2 2 0 40 0.01 16 0.038
G3 3 0 20 0.25 13.5 0.041
Ge 6 0 40 0.01 18 0.037
Gy 8 0 20 0.02222 14 0.04
Gy 9 0 40 0.01 15 0.039
Gi2 12 0 20 0.03226 12 0.045
Emission coefficients
Energy source  Bus no. « B o w %
G1 1 4.091 -5.554 6.49 0.0002  0.286
Go 2 2.543 -6.047 5.638 0.0005 0.333
G3 3 6.131 -5.555 5.151 0.00001  0.667
Ge 6 3.491 -5.754 6.39 0.0003 0.266
Gs 8 4.258 -5.094 4.586 0.000001 0.8
Gy 9 2.754 -5.847 5.238 0.00040  0.288
Gi2 12 5.326 -3.555 3.380 0.002000 0.200

providing feasible or best mean feasible solutions in all the
case studies. In case of the execution time for a single run,
it is evident that IBSA spends more execution time than the
original BSA and other algorithms. The IBSA demonstrated
faster convergence in case studies 1, 3, and 4. The load buses
voltage magnitude profiles shown in Figure 4 are measured
during performance evaluation of proposed IBSA approach
in above four case studies.

B. IEEE-57 BUS TEST SYSTEM

The standard IEEE-57 bus test system has capacity of
1250.8 MW (12.508 p.u.) active power demand and
336.4 MVAr (3.364 p.u.) reactive power demand. It is utilized
for simulation purposes and its detailed characteristics can
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be found in Table 7. There are 33 control variables including
6 energy sources, active power output (except swing bus), all
7 load buses voltage magnitude, 3 shunt compensators, and
17 transformer taps. The voltage magnitude of generators and
load buses are kept in range [0.94 1.06] p.u. and [0.95 1.1]
p-u., respectively. In case studies (i.e. case study 5 to case
study 8), the optimizing features of the proposed IBSA are
measured on the IEEE-57 bus system to solve OPF problems.

1) CASE STUDY 5: MINIMIZING QUADRATIC FUEL COST

In this case study, the objective function f; of the OPF
problem defined in (13) was under consideration for
electricity generation cost reduction in the power system.
The fossil fuel cost coefficients related to energy sources
for calculating power generation cost are specified in
Table 12. To accomplish active load demand in the power
system, minimum power generation cost or fossil fuel cost
41663.5500 $/h was achieved by applying the proposed
IBSA. The simulation results including values of the power
generation cost, control variables, state variables, and other
parameters obtained using all optimization approaches in
case study 5 are specified in Table 13, while minimum power
generation cost or fossil fuel cost is shown in boldface.

2) CASE STUDY 6: MINIMIZING VALVE-POINT LOADING
EFFECTS QUADRATIC FUEL COST

In this case study, we have included the valve-point loading
effect cost factor in the regular quadratic fuel cost curve
for measuring the power output cost. The OPF problem’s
objective function f> defined in (14) was studied to reduce
the power output cost. In Table 12, cost coefficients of
fossil fuel related to IEEE-57 bus system energy sources for
calculating power generation cost are specified. To fulfill
active load demand in the power system, power generation
cost 41737.8360 $/h was obtained from the IBSA approach,
which is close to optimal total power generation cost
41736.8566 $/h achieved using the DE algorithm. However,
IBSA performed better than the original BSA. In Table 13,
simulation results for case study 6 are specified.

3) CASE STUDY 7: MINIMIZING ACTIVE POWER LOSS

The OPF problem’s objective function f3 defined in (15) is
studied for evaluating performance of the proposed IBSA
approach. The OPF objective function f> defined in (14)
was considered for calculating the power output fuel cost.
In this study the objective is to reduce total active (real) power
loss in the power system. A comparison is made between
simulation results achieved using the proposed IBSA, original
BSA, and other metaheuristic approaches to solve the OPF
problems. The DE optimization approach was performed
better as compared to all other algorithms and power loss
9.9041 MW was achieved. Total power loss 10.1426 MW was
obtained from proposed IBSA and its performance was better
than original BSA, PSO, and HSA. The simulation results for
case study 7 are available in Table 14.
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TABLE 13. Simulation results of case studies 5 and 6 on IEEE-57 bus test system.

Case study 5: Minimizing fuel cost Case study 6: Minimizing fuel cost with valve-point effect
Control variables Range IBSA BSA DE PSO ABC HSA IBSA BSA DE PSO ABC HSA
Paa (MW) [30 100] 90.0565 853753  90.9992 641733 _ 88.6093 938473 100 846215  99.8173 419816 100 79.9001
Pgs (MW) [40 140] 44.9974 454740  44.8451 443100 450385  47.7317  43.5888 440133 434434 40 435492 52765
Pae (MW) [30100] 70.6406 853638 704918 593306 724884 734751 514055  84.8159 521103 100 520012 70.3484
Pgg (MW) [100550] 460.6991 470.1719 459.8015 449.2528 460.8800 5222746 4643496 471.0809 462769 4327485 464.1679 459.677
Pgo (MW) [30100] 964542 859428  98.0141 100 945041 817758 100 86.3928 100 100 100 82.6784
Pa1a (MW) [100410] 359.9466 3512972 359.0412 410 360.8654 3264927 362.5797 3525116  363.6357 410 3623473 3832611
Vi (pu) [0951.1] 1.0709  1.0658 10710 095 10713 1.0311 10728 1.0530  1.0749 09549  1.0669  1.0013
Va (pu.) [0.951.1] 1.0885 10635 10864  0.95 10741 09827 1.1 10553 1.0878 0.5 1.0666 10013
Vs (pu.) [0951.1] 1.0613 10649 10610 1.1 10615 09793 10927 10522 10629 1.1 1.0568  1.0866
Vs (pu.) [0.951.1] 1.0651 10652 1.0409 095 0.95 10372 10155 10522 09927 095 10617  1.0934
Vs (pu.) [0.951.1] 1.0808 10655 10811 10088 10805 10751 10812 10524 10811 10114 10798 10147
Vo (pu.) [0951.1] 1.0770  1.0682  1.0845 1.1 1.1 10667 10609 10512 1.1 11 1.1 0.9613
Viz (pu) [0951.1] 1.0561 10667 10558 09644 10570 10509 10577 10967 10585 09657 10508 10513
Qe1s (MVAT) [020] 83299 171618 97575 20 86704 157035 00004  17.3082 64877 20 111897 10.9046
Qe2s (MVAr) [020] 133913  17.1469  12.6434 20 146934 73462 13.1664 172032 142887 127418  15.6066  5.8359
Qes3 (MVAT) [020] 120776  8.9803  11.8204 137043 120694 163140  12.0443 50598 115656 20 123021 04821
Tho (p.u.) [091.1] 1.0457 10099 10895 L1 10388 09638  1.0927  1.0049 09194 1.1 09816  1.0222
Tao (p.u.) [091.1] 09543 10087 09572 09 09609 10765 09 10017 1.0605 09 1.0091 1.0256
T31 (pu) [091.1] 10099 10122 10235 10430 10095 09644 10091 09995 10137  1.0404  1.0094 09432
Tis (p.u.) [091.1] 10146 10047 09991 10079 09719 09327 10217 09870 10280 0.9 09775 09092
Ts6 (p.u.) [091.1] 10139 10030 10195 11 10850  1.0066  1.0009 09932 10169 L1 10952  1.0738
Ts7 (p.u.) [091.1] 10323 09995 10285 10013 10330 10080  1.0288  1.0061 10319 10029 10297  1.0635
Ta1 (p.u.) [091.1] 09996 10037 09980 09322 09998 10002 09994 09933 09991 09377 09989 09341
Tas (pu.) [091.1] 0.9631 1.0045 09636 0.9 09633 09263 09612 09932 09546 09 09617 09243
Tss (p.u.) [091.1] 09173 10073 09163 09 09179 10181 09192 09943 09194 09 0927 0.9471
Tss (p.u.) [091.1] 09847 10081 09856 0.9 09852 09249 09883 09981 09874 09 09815 09223
Tso (p.u.) [091.1] 0.9701 10209 09673 09 09711 09305 09730 09998 09737 09 09629 09134
Tes (p.u.) [091.1] 09802 09995 09797 09 09807  1.0351 09819 09984 09828 09 09764 0978
Tes (p.u.) [091.1] 09430 09998 09426 09 09438 1.0105 09453 09931 09480 0.9 09375 09001
Tr1 (pu) [091.1] 09787 10085 09809 0.9 09790 09658 09807  1.0014 09847 09 0972 0.9943
Trs (p.u.) [091.1] 09929  1.0041 09916 09957 09926 09819 09924 09842 09941 09965 09964  1.0904
Tre (p.u.) [091.1] 09664 10094 09608 09705 09665 09419 09660  1.0024 09679 09700 0979 0.9806
Tso (p.u.) [091.1] 10061 10047 10055 09193 10067 10531 10052 09931 10027 09292 09997 09517
State variables
and parameters
Po1 (MW) [0575.88] 142.75453 14381046 142.27938 130.00814 143.14905 127.19649 14359106 145.05535 143.64386 14140456 14337331 139.85680
Qa1 (MVAD) [-140 200] 44.55473 2523516 4545106 -4.1525 4421742 929805  35.63403 -6.51829 47.74854  15.63567 4431363 -13.8731
Qa2 (MVAD [-1750] 50 4017199 50 41.08236 50 -17.0000 50 50 50 2875933 50 39.53958
Qa3 (MVAD [-1060] 34.14049 47.00451 33.33201 60 3322103 -10 60 3452854 3545944 60 20.09894 60
Qae (MVAD) [-825] -8 165751 -8 -8 -8 -8 -3 2.136 -8 -8 -6.94961 25
Qas (MVAD [-140 200] 51.80449 1339149  52.90497 8273297 50.11582 79.91493 50.6939  -2.50846 51.64197 78.02735 56544  17.83341
Qao (MVAD 391 9 9 9 9 9 9 9 9 9 9 9 3
Qa2 (MVAD) [-150 155] 55.91166  96.48863  55.65756 64.18258 57.21871 122.08419 53.06243 155 5404049 60.89133 5026178 155
Pp (MW) 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508  1250.8
Pg (MW) 1265.5490 12674354 12655623 1266.1648 1265.5439 12727936 1265.5146 1268.4913 12654195 1266.1347 1265.5289 1268.4869
Ploss (MW) 147490 16.6354 147623 153648 147439 219936 147146  17.6913 146195 153347 147289  17.6869
Voltage deviation (p.u.) 178007 145812 172444 155136 178893  1.01438  1.80284 134429 177513 148578 178545  1.20028
Emission (ton/h) 135663 137572 1.35226 141498 135889  1.51474 137951 138305 137587 137821 137812  1.38986
Fuel cost ($/h) 41663.5500 41719.4923 41664.3488 41869.6251 41663.6177 41836.2382 41737.8271 41845.7873 41736.8566 41974.8183 41737.1023 41913.2283
TABLE 14. Simulation results of case studies 7 and 8 on IEEE-57 bus test of the proposed IBSA. The main objective is to control the
system. emission of harmful gases into the environment. In Table 12,
Case study 7: Minimizing active power loss emission coefficients of thermal generators (energy sources)
Algorithm P, Pc  Fuelcost  Emission  Voltage deviation are given for the IEEE-57 bus test system [14]. The valve-
MW) MW) __($h) (ton/h) (p-u.) point loading effects are included in the regular quadratic
TBSA 10.1363  1260.9426 44742.0963  1.10525 63161 . : .
BSA 115261 12623261 43041.1637  1.14382 1.45101 fuel cost for calculating the power generation cost. In this
DE 9.9041  1260.7041 446632282  1.10502 1.70723
PSO 129319 1263.7319 451043684  1.10465 1.37874 case study the DE approach was performed well as compared
ABC 9.9287  1260.7287 44593.4956  1.10888 1.69280 to all algorithms and minimum emission pollution 0.95672
HSA 15.1188 12653334 42100.1793  1.31747 1.19726 . .
ton/h was achieved from the DE approach. The optimal
Case study 8: Minimizing emission pollution values of objective function - emission pollution, active
IBSA 13.4650  1264.2650 45230.9964  0.95797 1.52220 power loss Py, fossil fuel cost, active power output
BSA 13.6564 12644564 45554.3101  0.97984 1.28967 .. .
DE 12.8727  1263.6727 452312729  0.95672 1.60878 Pg, and voltage deviation for case study 8 are given
PSO 163345 1267.1345 45353.8787  0.96382 1.59944 in Table 14.
ABC 133469 1264.1469 45217.7225  0.95773 1.07599 . . . .
HSA 163431 1267.1431 42746.7988  1.13636 1.06975 A comparison is made between simulation results achieved

using the proposed IBSA, original BSA, and other meta-
heuristic approaches to solve the OPF problems. In Figure 5,
4) CASE STUDY 8: MINIMIZING EMISSION POLLUTION algorithms’ convergence profiles of the IEEE-57 bus system
In this case study, we have used the objective function  for case studies 5, 6, 7, and 8 are shown. The better
fa defined in (16) for verifying the optimization performance convergence property of IBSA is shown in Figure 5, in which
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FIGURE 5. Algorithms’ convergence properties on IEEE-57 bus test system.
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FIGURE 6. Load buses’ voltage magnitude profile for IBSA on IEEE-57 bus
test system.

IBSA demonstrates to be more robust. In Figure 6, load buses’
voltage magnitude profiles on IEEE-57 bus system for every
case study achieved using the proposed IBSA approach are
plotted.
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In the IEEE-57 bus test system, each case study (i.e. case
study 5 to case study 8) was executed 30 times independently
to calculate statistical results for the proposed IBSA, original
BSA and other approaches. The comparison of statistical
analysis is given in Table 15, where the min, max, average,
standard deviation (o), and execution time for a single run are
given and the best result is shown in boldface. In case study 5,
minimum fossil fuel cost (power generation cost) 41663.5500
$/h, was achieved, with maximum fuel cost 41663.5510 $/h,
average fuel cost 41663.5510 $/h, and standard deviation
0.0007, by applying the proposed IBSA as compared to
original BSA and other optimization approaches. It is
observed that IBSA takes more execution time for single run
as compared to original BSA and other approaches for finding
objective function minimum value (i.e. power generation
cost) in each case study on IEEE-57 bus test system.

C. IEEE-118 BUS TEST SYSTEM
The last two case studies 9 and 10 were conducted for
measuring optimization performance of the proposed IBSA
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TABLE 15. Statistical summary on IEEE-57 bus test system.

Case study 5: Minimization of fuel cost

Algorithm  Min($/h)  Max($/h) Average($/h) Standard Time (s)
deviation(o)
IBSA 41663.5500 41663.5510 41663.5510 0.0007 1943.06
BSA 41719.4923  41719.5683  41719.5300 0.0537 565.96
DE 41664.3488  41664.3500  41664.3490 0.0008 961.01
PSO 41869.6251  41869.6251  41869.6251 0 982.70
ABC 41663.6177  41663.6200 41663.6190 0.0016 1617.68
HSA 41836.2382  41836.2396  41836.2390 0.0010 19.10
Case study 6: Minimization of fuel cost with valve-point effect
IBSA 41737.8271  41737.8360  41737.8320 0.0063 2105.15
BSA 41845.7873  41845.8912  41845.8390 0.0735 865.88
DE 41736.8566  41736.8600 41736.8580 0.0024 912.83
PSO 41974.8183  41974.8183  41974.8183 0 874.52
ABC 41737.1023  14737.1200  14737.1110 0.0125 1170.86
HSA 41913.2283  41913.2283  41913.2283 0 19.08
Case study 7: Minimizing active power loss
IBSA 10.1363 10.1427 10.1395 0.0045 2006.76
BSA 11.5261 11.5301 11.5281 0.0028 936.42
DE 09.9041 09.9041 09.9041 0 1031.45
PSO 12.9319 12.9319 12.9319 0 885.23
ABC 09.9287 09.9293 09.9290 0.0004 1180.90
HSA 15.1188 15.1188 15.1188 0 19.51
Case study 8: Minimizing emission pollution
IBSA 0.95797 0.95800 0.95799 2.83 x 107°  2141.90
BSA 0.97984 0.97990 0.97987 4.24 x 107° 934.00
DE 0.95672 0.95672 0.95672 0 1037.57
PSO 0.96382 0.96394 0.96388 8.48 x 107° 1035.34
ABC 0.95773 0.95781 0.95777 5.66 x 107° 1250.01
HSA 1.13636 1.13648 1.13642 8.48 x 10~° 19.63

approach for finding feasible solutions to OPF problems.
The IEEE-118 bus system has been utilized for simulation
purposes. It has active power 4242 MW (42.42 p.u.) demand
and 1439 MVAr (14.39 p.u.) reactive power demand and
consists of 130 control variables. In these control variables
53 thermal generators or energy sources’ active power output
(except energy source attached at swing bus), all 54 load
buses voltage magnitudes, 9 transformer taps setting, and
14 shunt compensators are included. The voltage magnitude
boundary limits of thermal generators (energy sources)
and load buses are kept in range of [0.94 1.06] p.u. and
[0.95 1.1] p.u., respectively. Furthermore, details about data
and characteristics are presented in Table 7.

1) CASE STUDY 9: MINIMIZING QUADRATIC FUEL COST

The OPF problem’s primary objective based on the regular
quadratic cost function f; (13) to reduce power generation
cost is considered for verifying optimization performance
and effectiveness of the proposed IBSA approach, in this
case study. All thermal power generation units (energy
sources) fossil fuel cost coefficients are taken from (Power
System Test Case Archive: http://labs.ece.uw.edu/pstca/) for
calculating the power generation cost based on a regular
quadratic cost curve. The proposed IBSA’s performance was
best as compared to all other algorithms and minimum total
power generation cost 134941.0367 $/h was achieved from
the IBSA approach to fulfill active load demand of the system.
The simulation results including optimal values of objective
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TABLE 16. Simulation results of case studies 9 and 10 on IEEE-118 bus
test system.

Case study 9: Minimizing fuel cost

Algorithm Pioss Pg (MW)  Fuel cost ($/h) Voltage deviation
MW) (p.u.)
IBSA 57.9943 4299.9943 134941.0367 3.22819
BSA 52.8279 4294.8279 141294.5253 2.90292
DE 61.8903 4303.8903 135232.2459 2.22564
PSO 80.3896 4322.3896 142609.1263 3.20931
ABC 58.9133 4300.9133 135156.6378 1.87756
HSA 73.6520 4315.6520 143410.0286 1.46383
Case study 10: Minimizing active power loss
IBSA 16.2869 4258.2869 155404.2608 3.26716
BSA 41.2285 4283.2285 146486.3203 2.22604
DE 20.6849 4262.9649 151637.4021 0.64632
PSO 41.9524 4283.9524 153664.5997 2.62945
ABC 18.9356 4260.9356 152069.2884 1.59156
HSA 52.0965 4294.0965 157936.0445 1.33972

TABLE 17. Statistical summary on IEEE-118 bus test system.

Case study 9: Minimization of fuel cost

Algorithm  Min ($/h) Max ($/h) Average Standard  Time (s)
($/h) deviation(o)
IBSA 134941.0367 134941.0367 134941.0367 0 18613.52
BSA 141294.5253 141294.5541 141294.5400 0.0204 5177.34
DE 135232.2459 135232.3041 135232.2800 0.0411 8852.61
PSO 142609.1263 142609.2048 142609.1700 0.0555 7473.17
ABC 135156.6378  135157.0154  135156.8300 0.2670 12662.19
HSA 143410.0286 143410.8142  143410.4200 0.5555 194.32
Case study 10: Minimizing active power loss
IBSA 16.2869 16.2872 16.2871 0.0002 22614.27
BSA 41.2285 41.2299 41.2292 0.0010 5285.99
DE 20.6849 20.6852 20.6851 0.0003 8513.02
PSO 41.9524 41.9530 41.9529 0.0007 7834.16
ABC 18.9356 18.9370 18.9360 0.0010 11599.18
HSA 52.0965 52.0981 52.0970 0.0011 287.74

function, total power generation Pg, active power loss Pjygs,
and voltage deviation for all algorithms in case study 9 are
given in Table 16, while minimum electricity generation cost
is shown in boldface.

2) CASE STUDY 10: MINIMIZING ACTIVE POWER LOSS

The OPF problem objective function - reducing active
power loss f3 defined in (15) was taken for measuring
optimization performance of the IBSA, in this case study.
The regular quadratic cost function f; (13) was utilized
for calculating the power generation cost. The proposed
IBSA has performed better than the original BSA and other
metaheuristic approaches, in this case study. The minimum
total active power loss Pj,s in transmission lines 16.2869
MW was achieved from the IBSA approach. In Table 16,
simulation results including optimal values of objective
function P, total power output Pg, fuel cost, and voltage
deviation obtained from all algorithms are given.

The optimization results for case study 9 and 10 were
obtained from IBSA, original BSA, and other metaheuristic
approaches and a comparison was made between these
results for evaluating the performance of IBSA approach.
Figure 7 shows convergence characteristics of IBSA, original
BSA, and other metaheuristic approaches for approaching
optimal values of the OPF problems’ objective functions.
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FIGURE 8. Load buses’ voltage magnitude profile for IBSA on IEEE-118
bus test system.

The proposed IBSA approach demonstrated more robust
and faster convergence than the original BSA and all
other approaches. The Figure 8 shows load buses voltage
magnitude profiles for case studies 9 and 10 obtained from
the IBSA approach on the IEEE-118 bus test system.
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In case studies 9 and 10 simulations were run 30 times
independently for the proposed IBSA, original BSA, and
other approaches on the IEEE-118 bus system, in order to
obtain statistical results. The comparison of statistical results
are given in Table 17, where the min, max, average, standard
deviation (o), and execution time for a single run are given
and the best result is shown in boldface.

The statistical results of case studies 9 and 10 indicate
that the proposed IBSA shows good performance on the best,
worst, mean, and standard deviation (o), when compared with
original BSA and other algorithms. In case study 9, the objec-
tive function best value (minimum fuel cost) 134941.0367
$/h, worst value (maximum fuel cost) 134941.0367 $/h,
and mean value (average fuel cost) 134941.0367 $/h, with
standard deviation (o) 0, were obtained by applying the
proposed IBSA. The objective function best value (minimum
active power loss) 16.2869 MW, worst value (maximum
active power loss) 16.2872 MW, and mean value (average
active power loss) 16.2871 MW, with standard deviation
(o) 0.0002, were obtained in proposed IBSA. It is evident
that IBSA spends more execution time for single run as
compared to original BSA and other approaches for finding
objective function minimum or best value in each case
study on IEEE-118 bus test system. The proposed IBSA
approach takes longer execution time than the original
BSA and other metaheuristic approaches, because OL
strategy is implemented at each iteration for predicting
the optimal solution vector based on improving the ability
of exploitation. We used the same parameter settings and
the number of iterations (maximum iterations = 1000)
in each case study for the proposed IBSA and other
algorithms.

V. CONCLUSION

In this research work, we have adopted a search technique
based on OL strategy to improve BSA. The OL strategy has
significant features to find an optimal solution, in which few
experimental test cases are conducted instead of exhaustive
experimental test cases for predicting the best combination
of decision parameters’ values in two candidate solution
vectors. We have proposed IBSA to tackle the nonconvex,
nonlinear, and quadratic nature of large-scale OPF problems
in power systems. In which, to reduce power output cost,
emission pollution, and active power loss were set as
objectives to address OPF problems. We have utilized IEEE-
30 bus test system, IEEE-57 bus test system, and IEEE-
118 bus test system, in order to identify improvement due
to OL strategy and verifying the stability, optimization
performance, and effectiveness of the proposed IBSA.
On these standard IEEE test systems simulation and statistical
results are measured and a comparison is made to examine
optimizing features of the proposed IBSA. By addressing
OPF problems in power systems, it has been observed that
lowest electricity generation cost 800.3975$/h on IEEE-
30 bus system, 41663.5500$/h on IEEE-57 bus system,
and 134941.0367$/h on IEEE-118 bus system have been
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achieved using proposed IBSA. To address the OPF problem
on the IEEE 118-bus system, minimum active power loss
16.2869MW in transmission lines of the power system has
been achieved by applying the proposed IBSA approach.
In order to draw convincing conclusions, statistical results
indicate that no single approach is capable of finding the
best feasible solution of the OPF problem in all case studies.
However, statistical and simulation results of most case
studies have presented that the IBSA has best efficiency,
robustness, and convergence properties as compared to
original BSA and other heuristic approaches.

The application of the proposed IBSA may be extended
to solve other optimization problems in large-scale thermal
power systems including transient stability-constrained OPF,
chance-constrained OPF, and unit commitment etc. in future.
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