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ABSTRACT A dominant statistical method, in which the best combination of factors’ levels are predicted
by analyzing a few representative combinations of factors’ levels, named as orthogonal experimental design
(OED). The OED is an effective approach for analyzing the effect of multi-levels factors simultaneously
and it works on orthogonal learning (OL) strategy. An evolutionary programming based heuristic method
has two contradictory features–exploration and exploitation, balancing in these features have significant
impact on its optimization performance. We have applied an OED based auxiliary search strategy for
enhancing performance of the bird swarm algorithm (BSA) by improving its exploitation search ability.
It is a challenging task to keep balance among two contradictory features–exploration and exploitation
of a heuristic approach, while addressing optimal power flow (OPF) problems in power systems. In this
research study, we have proposed improved BSA (IBSA) for solving the OPF problems in thermal power
systems. We have conducted a study of the OPF problems with objective functions-reducing electricity
generation cost, emission pollution, and active power loss to measure the efficiency of proposed IBSA.
In this work, we have utilized five benchmark functions and solved OPF problems using three IEEE test
systems including IEEE-30 bus system, IEEE-57 bus system, and IEEE-118 bus system to verify stability,
effectiveness, and performance of proposed IBSA. The statistical and simulation results have indicated that
the proposed IBSA has better convergence, efficiency, and robustness features than the original BSA as well
as other heuristic approaches. It is observed that lowest electricity generation cost 800.3975$/h on IEEE-30
bus system, 41663.5500$/h on IEEE-57 bus system, and 134941.0367$/h on IEEE-118 bus system have
been achieved using proposed IBSA to address the OPF problems. Furthermore, in transmission lines of the
power system network minimum active power loss 16.2869MW has been observed by conducting a case
study on the IEEE 118-bus system based on the proposed IBSA approach.

INDEX TERMS Orthogonal learning, bird swarm algorithm, optimal power flow, smart power grid.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
In 1962, Carpentier first introduced the optimal power
flow (OPF) problem as an extension of the economic
dispatch problem in the power system [1]. The OPF problem
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is a nonlinear, nonconvex, and quadratic nature large-
scale optimization problem. Initially, a numerous traditional
mathematical approaches [2], [3], [4], [5], [6], [7], [8], [9]
are employed to address OPF problems. These mathematical
methods include simplified gradient method [2], interior
point method [3], mixed integer nonlinear programming
(MINLP), [4], nonlinear programming [5], generalized
benders decomposition (GBD) [6], newton method [7],
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linear programming [8], and linear/quadratic programming
[9]. The OPF problem objective function and its imposed
constraints are nonlinear in nature and the traditional
mathematical methods could not solve it directly due to their
linear approach [10]. Due to these limitations ofmathematical
methods, the OPF problem’s nonlinear constraints and
objective function are normally transformed into linear form.
The conversion from nonlinear to linear form may result
in the loss of accuracy and stability of the power system
planning and operations.

In the last few decades (since 1980s), numerous meta-
heuristic approaches have also been employed to handle
OPF problems in networks of power systems. Simulated
annealing (SA) [11] and tabu search algorithm (TSA) [12] are
single-solution based approaches which focus on improving
and modifying a single solution. In literature, various
population-based solutions metaheuristic approaches includ-
ing bird swarm algorithm (BSA) [13], differential evolution
(DE) [14], moth swarm algorithm (MSA) [15], differential
search algorithm (DSA) [16], and harmony search algorithm
(HSA) [17] have also been proposed to address OPF
problems.

A metaheuristic approach has two contradictory features
– exploration and exploitation, balancing in these features
have significant impact on its efficiency and optimization
performance. In the exploitation process, a large set of
local optima of the problem is evaluated so that a local
optimum is found in a local search region. The exploitation
also looks away from the current search region, in another
dimension of search space for a best local optimal solution.
The exploration means finding a global optimum solution
to the problem by exploring the search space on a large
scale. In the optimization problem, the number of decision
variables defines the size of the problem or search space
dimension. Intuitively, a large-scale OPF problem’s search
space in a power system may contain more than one feasible
or optimal solution or exponentially enormous local optima.
The tuning of decision parameters and finding the most
appropriate settings of operating points in the power system
is a challenging task. It is also a challenging task to keep
balance among two contradictory features – exploration and
exploitation of a heuristic approach, while addressing an
optimization problem [18]. A better balance in exploration
and exploitation may lead to improving search efficiency of
a metaheuristic algorithm.

In research literature, various techniques have been
proposed for balancing these two features of a metaheuristic
algorithm [19], [20], [21]. In study [19], authors have
proposed a new search strategy based on crossover and space
expanding (SE) strategy – a leader selection to improve
optimizing features of the PSO. In this strategy, crossover
plays a significant role to keep stability of optimized
solutions and enhance convergence by exploiting the problem
search space. The SE strategy guides particles to explore
the problem’s objective search space rapidly. In study [20],
authors have introduced a new approach based on exploration

TABLE 1. Abbreviations.

and exploitation for the PSO to address many objectives of
the optimization problem simultaneously more efficiently.
The authors named this approach a hybrid global leader
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selection (GLS) strategy. A framework based on joint
heuristic approaches has been proposed for optimizing the
index tracking problem [21]. In literature, these techniques
or strategies are broadly classified into: 1) integrating a
new search approach into basic heuristic algorithm, 2)
heuristic algorithm’s variants – adjusting the parameters,
3) neighborhood topologies based enhancement and multi-
swarm strategies.

In 1920, R.A. Fisher first introduced a dominant statistical
method, orthogonal experimental design (OED) for studying
factors’ levels combinations. In this method, the best combi-
nation of factors’ levels has been predicted by analyzing a few
representative combinations of factors’ levels (experimental
test cases) [22]. The OED is an efficient approach for
studying the effect of multi-levels factors simultaneously
that works on orthogonal learning (OL) strategy. In an
optimization problem, the factors are decision or control
variables that affect to find feasible value of its objective
function. Assigning different values to a factor is considered
as levels of a factor. The OED is briefly explained in section
III. A wide range of improved metaheuristic approaches also
have been designed for efficiently solving OPF problems,
in addition to original metaheuristic algorithms. However,
an efficient and efficient optimization algorithm is always
needed for solving OPF problems.

B. LITERATURE REVIEW
In the last five decades, numerous studies [1], [14], [15],
[16], [17], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36] based on original metaheuristic
approaches have been documented to find feasible solutions
to OPF problems. In these studies different population-
based original metaheuristic algorithms including binary
backtracking search (BTS) algorithm [1], DE [14], grav-
itational search algorithm (GSA) [23], glowworm swarm
optimization (GWSO) [24], stud krill herd (SKH) [25],
tree-seed algorithm [26], biogeography based optimiza-
tion (BBO) [27], symbiotic organisms search (SOS) [28],
semidefinite programming (SDP) [29], salp swarm algo-
rithm (SSA) [30], lightning attachment procedure optimiza-
tion (LAPO) [31], harris hawk optimization (HHO) [32],
multi-objective backtracking search (BTS) algorithm [33],
gradient-based optimizer (GBO) [34], slime mould algorithm
(SMA) [35], and marine predator algorithm (MPA) [36] have
been applied to find feasible solutions of OPF problems.

In Table 1, abbreviations of various methods to find
feasible solutions of OPF problems are specified.

Summaries of original algorithms based studies are given
in Table 2. In all these studies, OPF problem’s objective
function - to minimize electricity generation cost (fuel cost)
ξq based on regular quadratic fuel cost has been studied.
In most studies, objectives including minimizing power
output cost ξqvp based on valve-point effect quadratic fuel
cost, active power loss Ploss, and emission pollution Ep
have also been studied. In these studies, one or more IEEE

TABLE 2. Summaries of Studies with Original Algorithms.

test systems have been utilized for evaluating performance
of proposed approaches. The standard IEEE-30 bus system
has been utilized to evaluate performance of employed
heuristic approaches except in studies [26], [30]. The IEEE-
57 bus system has been utilized for measuring optimization
performance of applied heuristic algorithms in 11 studies.
The scalability and optimization performance of heuristic
algorithms are tested on the IEEE-118 bus test system in
8 studies.

In literature, it is observed that the majority of heuristic
approaches due to scalability issues and the premature
convergence property do not perform well to solve the
OPF problem in a large-scale power system network such
as IEEE-118 bus system. The limitations of some studies
are mentioned here. The metaheuristic approach PSO traps
in local optima and shows prematurity to find global
optimum solution of the optimization problem [23]. In case
of addressing large-scale optimization problems, the well-
known heuristic approach GA also traps in local optima
due to the scalability issue and premature convergence
property [37]. The DE has premature and slow convergence
characteristics and poorly performs to find a feasible solution
of the OPF problem in a large-scale power system [38].
In case of solving the OPF problem in a large-scale power
system (i.e. IEEE-118 bus system), the ACO does not find
a best feasible solution [39]. In recent literature, numerous
improved heuristic and metaheuristic approaches have been
documented for finding feasible solutions of OPF problems.

In research literature, to solve OPF problems numerous
studies have been conducted by applying various improved
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heuristic and metaheuristic approaches such as enhanced
ACO (EACO) [39], forced initialized DE (FI-DE) [38],
improved strength pareto EA (ISP-EA) [10], improved ABC
(IABC) [40], improved CBO (ICBO) [41], AGSO [42],
GA-MPC [43], improved GA (IGA) [44], enhanced GA
(EGA) [37], modified sine-cosine algorithm (MSCA) [45],
FOPSO-EE [46], improved EP (IEP) [47], modified shuffle
frog leaping (MSFL) [48], improved PSO (IPSO) [49],
improvedHSA (IHSA) [50], chaotic self-adaptive differential
harmony search (CSA-DHS) [51], Fuzzy HSA [52], multi-
Objective EA based decomposition (MOEA/D) [53], efficient
EA (EEA) [54], improved BBO (IBBO) [55], developed
grey wolf optimizer (DGWO) [56], improved krill herd
(IKH) [57], enhanced self-adaptive DE (ESA-DE) [58], mod-
ified DE (MDE) [59], cooperative ABC (CABC) [60], mod-
ified pigeon-inspired optimization (MPIO) [61], improved
SSO (ISSO) [62], improved MFO (IMFO) [63], modified
grasshopper optimization (MGO) [64], improved CEFO
(ICEFO) [65], and adaptive MFO (AMFO) [66].

Summaries of studies based on improved or enhanced
metaheuristic algorithms are available in Table 3. In all
studies, the OPF objective – reducing power generation cost
ξq based on a regular quadratic fuel curve is considered for
examining optimization performance of applied approaches.
In most studies to evaluate the performance of employed
approaches, reducing power generation cost ξqvp based on
a valve-point effect quadratic fuel curve, emission pollution
Ep, and active (real) power loss Ploss objectives also have
been considered. As specified in Table 3, for evaluating
scalability and performance of proposed approaches one
or more standard IEEE-N bus test systems were utilized.
In all these studies, scalability and performance of proposed
approaches were measured on the standard IEEE-30 bus
system except [59], [66]. In some studies, IEEE-57 bus
and IEEE-118 bus test systems were utilized to measure
performance and scalability of proposed approaches.

Although numerous research studies based on original and
improved or enhanced metaheuristic approaches are con-
ducted for addressing OPF problems. However, an effective
and efficient optimization approach to address the large-scale
OPF problem is always needed.

C. CONTRIBUTION AND PAPER ORGANIZATION
The bird swarm algorithm (BSA) [67] is a new stochastic
swarm intelligence approach. The working model of stochas-
tic bio-inspired BSA based on the birds’ social behaviours.
The foraging and vigilance behaviours of birds exploit the
search space for finding a local optimum. The optimization
problem’s search space is explored on a global scale by flight
behaviour of birds for finding a best feasible solution (global
optimum). Due to the stochastic decision for exploiting the
optimization problem, the original BSA is trapped in local
optima due to premature convergence property [67], [68].

In this research work, we have applied an OED based
auxiliary search strategy for enhancing the optimization

TABLE 3. Summaries of studies with improved algorithms.

performance of the BSA by exploiting search ability.We have
proposed improved BSA (IBSA) to find feasible solutions to
OPF problems. To the best of our knowledge, application of
proposed IBSA for solving the OPF problems has not been
documented in research literature. This is a main contribution
of our research study. The knowledge contributions of our
research study are the following:

• We have developed a novel IBSA based on OL strategy
by improving the optimization performance of the bio-
inspired BSA.

• We have proposed IBSA to find feasible solutions of
OPF problems in power systems.

In this study, OPF problem objective functions – reducing
electricity generation cost (i.e. regular quadratic fuel cost
and valve-point loading effects quadratic fuel cost), emission
pollution, and active power loss are studied. We have
utilized three transmission networks such as IEEE-30 bus
system, IEEE-57 bus system, and IEEE-118 bus system
for evaluating and verifying stability, convergence, and
optimization performance of the proposed IBSA. We also
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have conducted a comparative study with some modern
metaheuristic approaches including original BSA, ABC,
PSO, DE, and HSA.

The rest of this paper is structured as follows. In section II,
the OPF problem and its objective functions are formulated.
The details of proposed IBSA approach, original BSA, and
OL strategy are described in section III. The brief description
of case studies and the details of simulation and statistical
results are given in section IV. Finally in the last section V,
the conclusion and future work are presented.

II. OPF PROBLEM FORMULATION
The OPF problem is a nonlinear, nonconvex and quadratic
nature large-scale optimization problem due to its quadratic
nature primary objective function and imposed numerous
constraints. Under secure and stable settings of state and
control variables aka operating points, a certain objective has
been achieved in solving the OPF problem. Its mathematical
formulation can be described as [14]:

Minimize : f (x, u)

subjectto : g(x, u) = 0

h(x, u) ≤ 0 (1)

where, function f (x, u) represents theOPF problem objective,
x is a set of state or dependent variables that describes the state
of the power system network and u is a set of control variables
that controls the power flow in a power system. The term
g(x, u) represents equality constraints and h(x, u) represents
inequality constraints. All these constraints must be satisfied
in solving the OPF problem. Further details of variables and
constraints are given in sub-sections.

A. CONTROL OR INDEPENDENT VARIABLES
Control or independent variables play a significant role to
control the power flow in a power system. Active or real
power PG output from thermal energy sources excluding
at swing bus, voltage magnitude VG of energy sources,
shunt capacitors QC on selected buses, and transformers tap
T settings on selected branches are considered as control
variables. In the form of vector u, control variables can be
defined as [14]:

u =
[
PGi . . .PGNG ,VGi . . .VGNG ,QCj . . .QCNC ,Tk . . . TNT

]
(2)

wherePGi represents active power generation from the energy
source at bus i ∈ [1, 2, . . . ,NG] except the energy source
at the swing bus and NG is the number of energy sources.
The term VGi is voltage magnitude of generator at ith bus,
QCj represents shunt capacitor at j

th bus, and Tk represents
transformer tap at branch k . The term NC is shunt capacitors,
and NT represents the number of transformers tap.

B. STATE OR DEPENDENT VARIABLES
There is a need for dependent variables for describing the
state of a power system network. Active (real) power PG of

the swing bus energy source, reactive power QG of all energy
sources, all load buses voltagemagnitudeVL , and line load SL
of transmission lines are dependent or state variables. In the
form of vector x, state or dependent variables can be written
as [14]:

x =
[
PGi ,VLp . . .VLNL ,QGi . . .QGNG , SLq . . . SLNl

]
(3)

where PGi is the active (real) power output of an energy
source at swing ith bus. The term VLp is the voltage magnitude
of PQ or load buses, p = [1, 2, . . . , NL], and the term NL
represents PQ or load buses. The term QGi is reactive power
produced from an energy source at ith bus, SLq is line loading
of transmission line q, and Nl represents transmission lines.

C. CONSTRAINTS
In the OPF problem, finding the best fitness value of objective
is subject to satisfying equality and inequality constraints.
Active (real) power flow and reactive power flow equations
are named as equality constraints. Security constraints on
transmission lines, operating limits of equipment, and voltage
magnitude limits on load buses are named as inequality
constraints and their details are given below.

1) EQUALITY CONSTRAINTS
The active power PGi output from the thermal energy source
attached at bus ith should be equal to the sum of active
(real) power (i.e. load demand) and active power loss, ∀ i ∈

NB (number of buses). Similarly, reactive power QGi output
from the thermal energy source attached at bus ith would be
required to equal reactive power demand and reactive power
loss, ∀ i ∈ NB. The mathematically equality constraints can
be written as [14]:

PGi = PDi + Vi
NB∑
j=1

Vj
{
Gijcos(θij) + Bijsin(θij)

}
∀ i ∈ NB

(4)

QGi = QDi + Vi
NB∑
j=1

Vj
{
Gijsin(θij) − Bijcos(θij)

}
∀ i ∈ NB

(5)

where the terms PGi and QGi represent active and reactive
power generation from an energy source connected at ith bus.
The terms PDi and QDi are active and reactive load demand
at ith bus. The terms Vi and Vj are voltage magnitude at ith

bus and jth bus. The term θij = θi − θj is voltage angle
difference. The term Bij represents transfer susceptance and
Gij is conductance between ith bus and jth bus.

2) INEQUALITY CONSTRAINTS
In power systems, stable and secure physical settings of
equipment and operational boundary limits are reflected by
inequality constraints. The operating limits of generators,
shunt capacitors, transformers tap settings, security con-
straints on transmission lines, and voltage magnitude limits
of load buses are referred to as inequality constraints. These
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constraints ensure security of power system and categorized
as follows:

a: GENERATORS’ CONSTRAINTS

PminGi ≤ PGi ≤ PmaxGi ∀ i ∈ NG (6)

QminGi ≤ QGi ≤ QmaxGi ∀ i ∈ NG (7)

Vmin
Gi ≤ VGi ≤ Vmax

Gi ∀ i ∈ NG (8)

where superscripts ‘‘min’’ and ‘‘max’’ are boundary limits of
PGi, QGi, and VGi variables.

b: SHUNT CAPACITOR (COMPENSATOR) CONSTRAINTS

QminCj ≤ QCj ≤ QmaxCj ∀ j ∈ NC (9)

where term QCj is volt-ampere reactive (VAR) injected by
jth shunt capacitor (compensator) and QminCj and QmaxCj are
boundary limits of jth shunt compensator. NC represents the
total number of the shunt compensators.

c: TRANSFORMER TAP CONSTRAINTS

Tmink ≤ Tk ≤ Tmaxk ∀ k ∈ NT (10)

where Tk indicates transformer tap setting located at bus k
and Tmink and Tmaxk are boundary limits. NT represents the
total number of transformers.

d: SECURITY CONSTRAINTS

Vmin
Lp ≤ VLp ≤ Vmax

Lp ∀ p ∈ NL (11)

SLq ≤ SmaxLq ∀ q ∈ Nl (12)

where VLp represents voltage magnitude on load bus p and
terms Vmin

Lp and Vmax
Lp are boundary limits imposed on voltage

magnitude. The term NL shows the total number of PQ or
load buses. The term SLq represents line flow of transmission
line q and SmaxLq is maximum line flow on q transmission line.
Nl represents transmission lines.

D. OBJECTIVE FUNCTIONS
We have conducted a study on OPF problems with four
objective functions in thermal energy-based small-scale to
large-scale power systems. Generating electrical power using
fossil fuels like coal, oil, and natural gas in thermal generators
are primary sources of harmful gases or green gases emission
into the atmosphere. The electricity generation cost of
a thermal energy source can be formulated as a regular
quadratic cost curve and its three different forms; 1) piecewise
quadratic cost curve, 2) prohibited operating zones quadratic
cost curve, and 3) valve-point loading effect quadratic cost
curve. We have made an assumption in this research work
that the same fuel is used in all thermal energy sources for
electricity generation. We have applied the proposed IBSA to
solve OPF problems, considering four objectives:

1) Minimizing electricity generation cost based on regular
quadratic fuel cost).

2) Minimizing electricity generation cost based on valve-
point loading effects quadratic fuel cost.

3) Minimizing active power loss in transmission lines of
power system.

4) Minimizing carbon emission pollution into the atmo-
sphere due to burn of fossil fuels in thermal power
plants.

1) QUADRATIC FUEL COST
In a thermal energy-based power system, fossil fuel cost ($/h)
has a quadratic relationship with power output (MW) from
energy source (i.e. generator) [14]:

f1(x, u) =

NG∑
i=1

ai + biPGi + ciP2Gi (13)

where terms ai, bi, and ci represent cost coefficients and term
PGi is active power generation from thermal energy source
(generator) connected at ith bus.

2) VALVE-POINT LOADING EFFECTS QUADRATIC FUEL COST
A steam turbine has multi-valve that exhibit a large variation
in fossil fuel consumption in the thermal generator. There-
fore, in this study for realistic and precise modeling of power
generation cost of thermal power plants, we have included
valve-point loading effects in calculating fuel cost. It can be
formulated as a sinusoidal function to measure fuel cost [14]:

f2(x, u) =

NG∑
i=1

ai + biPGi + ciP2Gi

+

∣∣∣∣di × sin
(
ei × (PminGi − PGi )

)∣∣∣∣ (14)

where terms ai, bi, and ci represent fossil fuel cost coefficients
and terms di and ei are cost coefficients based on valve-point
loading effects of energy source connected at ith bus. PminGi
indicates the minimum active power generation capacity of
an energy source at ith bus. PGi is active (real) power output
from a thermal energy source connected at ith bus.

3) ACTIVE POWER LOSS
The active (real) power loss is unavoidable in a power system
because of inherent reactance and resistance in transmission
lines. Reducing active power loss has significant effects on
operations and planning of the power system and control or
independent variables are also optimized for this purpose.
The mathematically active power loss (MW) is written as
[14]:

f3(x, u) =

Nl∑
q=1

Gq(ij)
{
V 2
i + V 2

j − 2ViVjcos(θij)
}

(15)

where term Nl indicates number of transmission lines and
term Gq(ij) represents transfer conductance of transmission
line q connecting ith bus and jth bus. The terms Vi and Vj
represent voltage magnitude at ith and jth buses. The term θij
= θi − θj, is voltage angle difference among ith bus and jth

bus.

23664 VOLUME 11, 2023



M. Ahmad et al.: Orthogonal Learning Bird Swarm Algorithm for Optimal Power Flow Problems

4) EMISSION POLLUTION
It is well known that primary source of harmful gases such
as carbon monoxide (CO), NOx , COx , and SOx emission into
the atmosphere is burning of fossil fuels in thermal power
plants. It has become necessary with climate changes and
global environmental concerns, to regulate thermal energy
based power systems by reducing emission pollution. The
harmful gases emission (ton/h) into atmosphere during power
generation from thermal energy source has been measured as
follows [14]:

f4(x, u) =

NG∑
i=1

{
(αi + βiPGi + γiP2Gi ) × 0.01 + ωie(µiPGi )

}
(16)

where terms αi, βi, γi, ωi, and µi represent emission
coefficient for energy source connected at ith bus.

III. ORTHOGONAL LEARNING BIRD SWARM ALGORITHM
In addition to the traditional mathematical methods,
numerous nature-inspired and bio-inspired metaheuristic
approaches have been proposed for solving optimization
problems in research literature [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], [36]. The
bird swarm algorithm (BSA) [67] is a new population-
based stochastic swarm intelligence approach. The original
BSA has premature convergence and poor capability to
escape from local optima due to the stochastic decision for
exploitation of search space of high dimensional optimization
problems [67], [68].We have applied an OED based auxiliary
search strategy to enhance optimizing features of the BSA
by efficiently exploiting local regions of search space in this
research work. We have proposed the improved BSA (IBSA)
for solving OPF problems.

A. ORIGINAL BIRD SWARM ALGORITHM
In the BSA [67], swarm intelligence, based on birds’ social
behaviours, has been employed for solving the optimization
problem. In BSA, four search approaches including vigilance,
foraging, scrounger, and producer are efficiently regulated to
explore and exploit the optimization problem search space.
A bird’s interactions in swarm and social behaviours can be
easily understood based on following five well-defined rules:

1) In this rule, a stochastic decision based on bird’s for-
aging behaviour probability P. Every bird in the swarm
may have foraging behaviour or vigilance behaviour.
If probability P is greater than the stochastically
selected value from rand

(
0, 1

)
, the bird swaps into

foraging behaviour, otherwise the bird has vigilance
behaviour.

2) In this rule, every bird in a swarm updates its fitness
to search for food items based on social behaviour and
the swarm’s best experience. This information such as
the swarm’s best experience and bird’s social behaviour
are shared in the bird’s swarm immediately. It can be

mathematically modeled as [67]:

x t+1
i,j = x ti,j +

(
pi,j − x ti,j

)
× δ × rand

(
0, 1

)
+

(
gj − x ti,j

)
× τ × rand

(
0, 1

)
(17)

where i ∈ {1, 2, . . . ,N } indicates ith bird in N birds
and j ∈ {1, 2, . . . ,D} represents the jth dimension of
D dimensions of optimization problem search space.
The term x ti,j represents the ith bird’s position in the
jth dimension of search space for possible flight of
birds at time t and these birds may have foraging
or vigilance behaviour. δ is cognitive accelerated
positive coefficient and τ is social accelerated positive
coefficient. The term pi,j represents the previous best
position of the ith bird in the swarm. The term gj
represents the best previous position (global optimal)
shared by the swarm. The term rand(0, 1) is a function
of uniform distribution.

3) Every bird in the swarmwishes to move in the direction
of the swarm’s center due to its vigilance behaviour.
This movement of each bird towards the center of the
swarm may be affected by competition among birds
to reach the swarm’s center. According to this rule,
birds could not move in the direction of the swarm’s
center directly. The vigilance behaviour of bird can be
modeled as [67]:

x t+1
i,j = x ti,j + ϒ1

(
meanj − x ti,j

)
× rand

(
0, 1

)
+ ϒ2

(
pk,j − x ti,j

)
× rand

(
− 1, 1

)
(18)

ϒ1 = υ1 × exp
(

−
pFiti

sumFit + ε
× N

)
(19)

ϒ2 = υ2 × exp
{(

pFiti − pFitk
|pFitk − pFiti| + ε

)
N × pFitk
sumFit + ε

}
(20)

where term meanj is the jth bird mean position in the
swarm. k ∈ {1, 2, . . . ,N } and k(k ̸= i) is a randomly
selected positive integer. The terms υ1 and υ2 represent
two positive constants within range [0,2]. The term
pFiti indicates ith bird’s best fitness value. The term
sumFit indicates swarm total fitness value (or sum of
each bird’s best fitness in the swarm). ε represents the
very small positive constant to prevent the error of zero
division.
Every bird in the swarm moves towards the center of
the swarm due to direct and indirect effects. The force
induced by birds’ social behaviours and environments
affects the swarm’s mean fitness and it is calculated
as an indirect effect. Other force induced by specific
interference is calculated as direct effect and ϒ2 is
applied for simulating it. The scenarioϒ2 > υ2 occurs,
if k th(k ̸= i) bird has a better fitness value than ith

bird. It means the k th bird may suffer from a smaller
interference force than the ith bird. On the basis of
unpredictability and some randomness, k th bird would
be more likely to travel in the direction of the swarm’s
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TABLE 4. Experimental design for chemical reaction.

center than ith bird. Theminimumfitness value of a bird
in a swarm defines the global optimum or best feasible
value for solving the minimal optimization problem.

4) In the swarm, birds switch to flight behaviour by flying
from one site to another site in any direction and
this flight behaviour may be due to birds’ foraging
behaviour, predation threat or any other circumstances.
After arriving on a new site, birds often swapped into
two groups of birds such as scrounger and producer
during foraging for food patches. The birds’ behaviours
including producer and scrounger mathematically can
be formulated as [67]:

x t+1
i,j = x ti,j + randn

(
0, 1

)
× x ti,j (21)

x t+1
i,j = x ti,j +

(
x tk,j − x ti,j

)
× FL × rand

(
0, 1

)
(22)

where, k ∈ {1, 2, . . . ,N } and k(k ̸= i), indicates
a positive integer. FL(FL ∈ {0, 2}) means that
for searching food patches, the producer would be
followed by scrounger.

5) After arriving on a new site, food patches are explored
actively by producers and scroungers randomly follow
producers for searching food patches.

B. ORTHOGONAL EXPERIMENTAL DESIGN
In order to present the concept of OED method and how
to use it, a simple example is considered based on a
chemical reaction experiment [69]. In this chemical reaction
experiment, the chemical conversion rate depends on three
quantities such as temperature (oC), amount of oxygen (cm3),
and water percentage (%), which are respectively interpreted
as A, B, and C factors of the experiment. In Table 4, there are
three different values of each factor denoted as levels L1, L2,
and L3. For example, the amount of oxygen can be 90, 120,
or 150 cm3. In this example, a total 33 = 27 combinations of
factors’ levels are possible and so 27 experimental test cases
have been derived for finding the best chemical conversion
rate. In general, the possible combinations of factors’ levels
can be calculated as QN , where N represents factors and
Q represents levels per factor. It may be impractical to
conduct a large number of experimental test cases QN to
find the best combination of levels for chemical conversion
rate when Q and N are very large. In such a case to
reduce experimental testing cost, it is required to use small
representative combinations of factor’s levels instead of all
combinations of factor’s levels. The OED plays a significant
role in predicting a small set of representative combinations
based on ‘‘fractional factorial’’ experiments. For a better

TABLE 5. Best combinations using OED and factors analysis.

understanding of the OL strategy, the important terms are
described herein.

1) ORTHOGONAL ARRAY
The array is termed as orthogonal because all factors in
an orthogonal array (OA) can be independently evaluated.
In which the core effect of one multi-levels factor on response
variables (results or objectives) does not influence to measure
the effect of another multi-levels factor. By OA, nominated
combinations of factors’ levels are uniformly distributed over
the all possible combinations of levels which guarantees a
secure and stable comparison of individual factor’s levels.
In OA, an individual row indicates the factors’ levels in
every combination, while an individual column indicates a
particular factor that may be altered from every combination.

Let’s consider N factors and each factor consists of three
different levels. For a complete experiment, a total 3N number
of experimental test cases or combinations of levels are
required. The notation LM (QN ) is used to represent an array
for N factors with Q levels of each factor, where L represents
an array and M represents number of rows and each row
is a combination of levels. In such case to construct an
OA = LM (3N ) with M rows for N factors, an integer M =

3⌈[⌉
]
log3(2N+1), where ⌈[⌉

]
is a ceiling function. Based on a

chemical reaction experiment specified in Table 4, an array is
defined that contains 9 representative combinations of levels
for 3 factors in which each factor has 3 levels, as follows:

L9(33) =



1 1 1
1 2 2
1 3 3
2 1 2
2 2 3
2 3 1
3 1 3
3 2 1
3 3 2


(23)

An array [ai,j]M×N has index t and strength λ on 0 ≤ λ ≤ Q
is defined as OAwhen every sub-array [ai,j]M×λ of A consists
of all representative combinations of ordered λ−tuple exactly
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t times as a row. An example of [ai,j]9×3 OAwhich has index
t = 1 and strength λ = 2 specified in Eq. 23. It consists
of ordered 2-tuples or ordered pairs (1, 1), (1, 2), (1, 3), (2,
1), (2, 2), (2, 3), (3, 1), (3, 2), and (3, 3) that occur only one
time in any two columns. As stated above, few experimental
test cases are conducted based on OED for finding the best
representative combination of levels. Based on OED, the total
nine experimental test cases identified by L9(33) are specified
in Table 5. For example, the first representative experimental
test case is first combination of levels (C1) and represents
the first row [1 1 1] in OA. In this experimental test case,
factor A (temperature oC), factor B (amount of oxygen cm3),
and factor C (water percentage) have been designed to the
initial level of each factor such as 80 oC , 90 cm3, and 5%,
respectively. Similarly, the second experimental test case is
the second combination of levels (C2) and represents the
second row [1 2 2] in OA, and so on.

2) FACTOR ANALYSIS
A systematic technique to find the best factors’ levels
combination for evaluating the influence of every factor’s
levels on experimental outcomes is named as factor analysis.
It has been conducted on experimental outcomes of all known
M test cases of OA for finding the best factors’ levels
combination. This process is explained herein.

Let fm is the response variable or experimental test case
result of mth combination of levels, where 1 ≤ m ≤ M . The
Hnq represents the average effect of the qth level of the nth

factor, where 1 ≤ q ≤ Q and 1 ≤ n ≤ N . The average
effectHnq for a chemical reaction experiment is calculated as
follows [70]:

Hnq =

9∑
m=1

fm × Zmnq

9∑
m=1

Zmnq

(24)

where Zmnq = 1, if the mth combination (m = 1, 2, 3, . . . , 9)
is with the qth level (q = 1, 2, 3) of the nth factor (n =

A,B,C), otherwise Zmnq = 0.
For instance, measured effect of L1 on factor A (temper-

ature oC), represented by A1. By inspecting 2nd column of
Table 4, we observe that combinations of levels C1, C2 and
C3 contain all the experimental test cases of L1 for factor A.
The corresponding combination results are f1 = 31, f2 =

54 and f3 = 38 and the mean effect is HA1 = 41. After
measuring mean effects Hnq of all levels for every factor,
the best combination of factor’s levels of every factor can be
obtained by choosing Hnq with higher value for each factor
in case of maximization problem. The factor analysis base
results for a chemical reaction experiment are specified in
Table 5 and the details of factor analysis are explained in [69].
From Table 5, the best combination of factors’ levels for a
chemical reaction experiment discovered by factor analysis
is A3, B2 and C2. Although this combination temperature
90oC , amount of oxygen 120cm3, and water 6% is not

FIGURE 1. Improved BSA working model.

included in the nine experimental test cases (combinations
of levels). We have implemented OL strategy in order to
improve BSA optimization performance for finding optimal
solutions efficiently based on OED.

C. ORTHOGONAL LEARNING BIRD SWARM ALGORITHM
An evolutionary programming based heuristic method has
two contradictory features such as exploration and exploita-
tion, balancing in these features have significant impact on
its search efficiency and optimization performance. As men-
tioned before, the original BSA has premature convergence
and poor capability to avoid trap into local optima due to
a stochastic decision for exploitation of the search space of
high dimensional optimization problems. Therefore, we have
proposed OL strategy to enhance optimization performance
of original BSA by improving the ability of exploitation of
search space dimensions. The number of decision or control
variables are referred to as a search space dimension or a
solution vector dimension. For instance, if the optimization
problem contains 10 control variables, it is interpreted as a
10-dimensional search space optimization problem.

In IBSA, optimization process starts by initializing param-
eters, control variables Xmax = [x1max , x

2
max , . . . , x

D
max],

Xmin = [x1min, x
2
min, . . . , x

D
min] and N solutions uniformly

distributed amongst [Xmax ,Xmin]. The fitness of the initial
solution vector is evaluated in the next step, before exploring
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TABLE 6. Benchmark functions.

and exploiting search space. Procedure of searching optimal
solution switched into exploring or exploiting search space
based on birds’ flight behaviours frequency FQ. The foraging
and vigilance behaviours of birds exploit the search space
for finding a local optimum and flight behaviour of birds
explores the search space to find global optimum solution.
During exploration of the search space, birds often swapped
into two groups of birds such as scrounger and producer
during foraging for food patches based on their food
reserves.

The procedure of applying OL strategy to determine best
exploitation of original BSA is explained onward. Initially,
a random integer (index) r is selected. In next step whenever
the current candidate solution index i is not equal to randomly
selected index r (i ̸= r), a stochastic decision based on
bird’s foraging behaviour probability P. Every bird in the
swarm may have foraging behaviour or vigilance behaviour.
If the stochastically selected value from rand

(
0, 1

)
is greater

than probability P, the bird swaps into vigilance behaviour,
otherwise the bird has foraging behaviour. In other case,
whenever the current candidate solution index i is equal to
randomly selected index r (i == r), a new transmission
solution vector Tr mathematically formed as:

Tr = Xj + rand(0, 1) × (Xbest − Xj), j ̸= r ∈ [1,N ]
(25)

where Xbest represents an optimal solution based on best
fitness value in current iteration, Xj represents the jth solution
of N optimal solutions which is not the same as current
solution Xr .
In the current iteration, the OL strategy is applied

for predicting an optimal solution vector Or by merging
transmission solution vector Tr and current solution vector
Xr with few experimental test cases based on OED. To reduce
computational cost, OL strategy is used once at each iteration
when randomly selected index r is equal to current index i
(i == r). The detailed working model (flowchart) of the
IBSA is shown in Figure 1.
The goal of utilizing OL strategy is to obtain an optimal

solution. In this strategy the OED has been applied to
conduct few experimental test cases instead of exhaustive

experimental test cases for predicting the best combination
of every dimension of two candidate solution vectors. The
process to obtain a solution vector Or by OL strategy is
described as following steps:

1) Construct a two-level OA LM (2D) of D factors, with

M = 2⌈[⌉
]
log2(D+1), where M represents number of

combinations or rows in OA, D is the number of
columns in OA or dimension of problem and ⌈[⌉

]
is a ceiling function. The reason behind constructing
two-level OA is that in our case, there are two
solution vectors such as transmission solution vector
Tr and current solution vector Xr used for OL strategy.
A procedure for constructing a two-level OA for D
factors is written as follows [69]:
1: procedure Generate_OA(OA,D)

2: M := 2⌈[⌉
]
log2(D+1)

;

3: for i := 1 : M do
4: for j := 1 : D do
5: level := 0;
6: k := j;
7: mask := M/2;
8: while k > 0 do
9: BAnd := bitwiseAnd(i− 1,mask);

10: ▷ // where mask = 2m−1 and
11: ▷ // bitwiseAnd(α,mask)
12: ▷ // returns mth least significant bit of α

13: if (kmod2) & (BAnd ̸= 0) then
14: level := (level + 1)mod2;
15: endif
16: k := ⌊k/2⌋;
17: mask := mask/2;
18: OA[i][j] := level + 1;
19: endwhile
20: endfor
21: endfor
22: endprocedure

2) The two-level OA LM (2D) for D factors (control
variables of problem) is filled by choosing ’1’ for the
values of transmission vector Tr and ’2’ for the values
of current solution vector Xr .
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FIGURE 2. Algorithms’ convergence properties on benchmark functions.

3) Obtain M experimental test results fm(1 ≤ m ≤ M )
based on corresponding value of transmission vector Tr
(25) and current solution vector Xr according to a two-
level OA LM (2D) for D factors.

4) Using factor analysis each experimental test result
fm(1 ≤ m ≤ M ) is evaluated based on fitness value
and the average effect of experimental results (com-
bination of factors’ levels) Hb is measured according
to (24).

5) Using factor analysis the best combination of levels
for every factor (control variable) is obtained. Based
on these best levels, the best combination of factors’

levels Hp is predicted and Hp is evaluated with fitness
values.

6) If Hp has the best fitness value as compared to Hb, it is
selected as solution vector Or .

IV. SIMULATION RESULTS AND CASE STUDIES
In this section, we have evaluated the optimization perfor-
mance and efficiency of proposed IBSA, in order to verify the
effect of the OED auxiliary search strategy. We have utilized
five benchmark functions, IEEE-30 bus test system, IEEE-57
bus test system, and IEEE-118 bus test system for verifying
stability, effectiveness, and optimization performance of
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TABLE 7. IEEE test systems characteristics [1].

proposed IBSA. We have used MATLAB R2017a for
implementing IBSA, original BSA and other approaches such
as ABC, PSO, DE, and HSA. The MATPOWER 6.0 software
package integrated with MATLAB R2017a was utilized for
power flow calculation. The simulation and statistical results
were measured and a comparison was made with original
BSA and other metaheuristic approaches such as DE, PSO,
ABC, and HSA. Laptop has Intel(R) CoreTM i7-5500U
CPU @ 2.40GHz 2.40 GHz and installed RAM @8.00 GB
and Microsoft Windows 10 64-bits has been used for the
simulation purpose.

In order to measure the optimization performance of
proposed IBSA, we have evaluated it on five benchmark
functions of different characteristics. The benchmark func-
tions are listed in Table 6 and dimension value is set to be
200 in each function. To verify the efficiency and effective-
ness of proposed IBSA on benchmark functions, we have
selected the original BSA for comparison. In Figure 2, the
simulation results are reported for algorithms’ convergence
properties on selected benchmark functions. The proposed
IBSA has exhibited competitive performance on Griewank ,
Rosenbrock , and Sphere functions to find global optimum
value. It is observed that the proposed IBSA has better
convergence, efficiency, and robustness features than the
original BSA.

We have conducted ten case studies for measuring stability
and performance of the proposed IBSA to solve OPF
problems in small-scale to large-scale thermal energy-based
power systems. In these case studies, we have considered
four objective functions - minimizing electricity generation
cost (i.e. regular quadratic fuel cost and valve-point loading
effects fuel cost), emission pollution, and active (real) power
loss in thermal power systems. Experimental results and
statistical analysis of 10 case studies on three standard IEEE
test systems are given in the following section.

TABLE 8. IEEE-30 bus test system - fuel cost and emission
coefficients [14].

A. IEEE-30 BUS TEST SYSTEM
In initial four case studies (i.e. case study 1 to case study
4), the standard IEEE-30 bus test system has been utilized
for verifying the performance accuracy and effectiveness
of IBSA in a small-scale power system. It has active
power 283.4 MW (2.834 p.u.) demand and reactive power
126.2 MVAr (1.262 p.u.) demand. Its data and characteristics
are specified in Table 7 and further details can be found in
study [1]. There are 24 control or decision variables including
5 generators active power output (except swing bus), all
6 generators’ voltage magnitude, 9 shunt compensators,
and 4 transformer taps. The voltage magnitude limits of
generators and load buses are kept in range [0.95 1.05] p.u.
and [0.95 1.1] p.u., respectively.

1) CASE STUDY 1: MINIMIZING QUADRATIC FUEL COST
The OPF problem’s primary objective is to minimize
generators’ fossil fuel cost ($/h) for producing the electricity
based on regular quadratic objective function f1 (13). Energy
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TABLE 9. Simulation results of case studies 1 and 2 on IEEE-30 bus test system.

TABLE 10. Simulation results of case studies 3 and 4 on IEEE-30 bus test
system.

sources or generators’ fuel cost coefficients are given in
Table 8, which are taken from study [14]. The minimum
electricity generation cost of fossil fuel energy sources
achieved from the proposed IBSA was 800.3975 $/h to fulfill
the active load demand, which was less than the fuel cost or
electricity generation cost obtained from original BSA and
all other algorithms. The optimal values of control variables,
state variables, and objective function’s parameters achieved
by all algorithms are specified in Table 9, while minimum
electricity generation cost is shown in boldface.

2) CASE STUDY 2: MINIMIZING VALVE-POINT LOADING
EFFECTS QUADRATIC FUEL COST
The OPF problem’s objective function - reducing electricity
generation cost ($/h) f2 defined in (14) was considered, in this
case study. In Table 8, cost coefficients of fossil fuel for
thermal energy sources are specified. To fulfill active load
demand in system, fossil fuel cost 832.1597 $/h to generate
electricity from thermal generators (energy sources) was
obtained from the proposed IBSA, which was less than the
power generation cost of original BSA and close to minimum
power generation cost 832.0568 $/h obtained from DE. The
optimization results are specified in Table 9 for this case
study.

3) CASE STUDY 3: MINIMIZING ACTIVE POWER LOSS
The objective function f3 of the OPF problem defined in
(15) was under consideration for the active power loss Ploss
reduction in the power system. In which fuel cost function
f2 defined in (14) was considered for calculating electricity
generation cost. The active power loss Ploss in the power
system for proposed IBSA approach was 3.0951 MW close
to minimum power loss 3.0828 MW obtained from DE.
The optimization results are given in Table 10 for this
case study.
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FIGURE 3. Algorithms’ convergence properties on IEEE-30 bus test system.

FIGURE 4. Load buses’ voltage magnitude profile for IBSA on IEEE-30 bus
test system.

4) CASE STUDY 4: MINIMIZING EMISSION POLLUTION
Based on the function f4 (16), the objective was set as
reduction of emission pollution in this case study. In Table 8,
the emission coefficients for thermal energy sources are
provided. The amount of emission pollution in case of

proposed IBSA was 0.20484 ton/h, which is close to
minimum emission 0.20482 ton/h polluted in case of DE
approach and less than in case of original BSA. In Table 10,
the simulation results of case study 4 are specified.

A comparison is made between simulation results achieved
using the proposed IBSA, original BSA, and other meta-
heuristic approaches to solve the OPF problems. In Figure 3,
algorithms’ convergence profiles are graphically plotted for
four case studies on the IEEE-30 bus test system.

The summary of statistical results for each case study
on IEEE-30 bus test system (i.e. case study 1 to case
study 4) conducted with IBSA, original BSA, and other
search algorithms is shown in Table 11. In each case study,
the columns min, max, and average indicate the objective
function values (i.e. best, worst, mean). The column time(s)
indicates the execution time in seconds for a single run is
taken to obtain the feasible solution (best result). In case
study 1, the best fuel cost (minimum) 800.3975 $/h is
obtained from IBSA, with the worst fuel cost (maximum)
800.3978 $/h, the mean 800.3976 $/h, and standard deviation
0.0001. It is observed that no single approach is capable of
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TABLE 11. Statistical summary on IEEE-30 bus test system.

TABLE 12. IEEE-57 bus test system - fuel cost and emission
coefficients [14].

providing feasible or best mean feasible solutions in all the
case studies. In case of the execution time for a single run,
it is evident that IBSA spends more execution time than the
original BSA and other algorithms. The IBSA demonstrated
faster convergence in case studies 1, 3, and 4. The load buses
voltage magnitude profiles shown in Figure 4 are measured
during performance evaluation of proposed IBSA approach
in above four case studies.

B. IEEE-57 BUS TEST SYSTEM
The standard IEEE-57 bus test system has capacity of
1250.8 MW (12.508 p.u.) active power demand and
336.4MVAr (3.364 p.u.) reactive power demand. It is utilized
for simulation purposes and its detailed characteristics can

be found in Table 7. There are 33 control variables including
6 energy sources, active power output (except swing bus), all
7 load buses voltage magnitude, 3 shunt compensators, and
17 transformer taps. The voltage magnitude of generators and
load buses are kept in range [0.94 1.06] p.u. and [0.95 1.1]
p.u., respectively. In case studies (i.e. case study 5 to case
study 8), the optimizing features of the proposed IBSA are
measured on the IEEE-57 bus system to solve OPF problems.

1) CASE STUDY 5: MINIMIZING QUADRATIC FUEL COST
In this case study, the objective function f1 of the OPF
problem defined in (13) was under consideration for
electricity generation cost reduction in the power system.
The fossil fuel cost coefficients related to energy sources
for calculating power generation cost are specified in
Table 12. To accomplish active load demand in the power
system, minimum power generation cost or fossil fuel cost
41663.5500 $/h was achieved by applying the proposed
IBSA. The simulation results including values of the power
generation cost, control variables, state variables, and other
parameters obtained using all optimization approaches in
case study 5 are specified in Table 13, while minimum power
generation cost or fossil fuel cost is shown in boldface.

2) CASE STUDY 6: MINIMIZING VALVE-POINT LOADING
EFFECTS QUADRATIC FUEL COST
In this case study, we have included the valve-point loading
effect cost factor in the regular quadratic fuel cost curve
for measuring the power output cost. The OPF problem’s
objective function f2 defined in (14) was studied to reduce
the power output cost. In Table 12, cost coefficients of
fossil fuel related to IEEE-57 bus system energy sources for
calculating power generation cost are specified. To fulfill
active load demand in the power system, power generation
cost 41737.8360 $/h was obtained from the IBSA approach,
which is close to optimal total power generation cost
41736.8566 $/h achieved using the DE algorithm. However,
IBSA performed better than the original BSA. In Table 13,
simulation results for case study 6 are specified.

3) CASE STUDY 7: MINIMIZING ACTIVE POWER LOSS
The OPF problem’s objective function f3 defined in (15) is
studied for evaluating performance of the proposed IBSA
approach. The OPF objective function f2 defined in (14)
was considered for calculating the power output fuel cost.
In this study the objective is to reduce total active (real) power
loss in the power system. A comparison is made between
simulation results achieved using the proposed IBSA, original
BSA, and other metaheuristic approaches to solve the OPF
problems. The DE optimization approach was performed
better as compared to all other algorithms and power loss
9.9041MWwas achieved. Total power loss 10.1426MWwas
obtained from proposed IBSA and its performance was better
than original BSA, PSO, and HSA. The simulation results for
case study 7 are available in Table 14.
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TABLE 13. Simulation results of case studies 5 and 6 on IEEE-57 bus test system.

TABLE 14. Simulation results of case studies 7 and 8 on IEEE-57 bus test
system.

4) CASE STUDY 8: MINIMIZING EMISSION POLLUTION
In this case study, we have used the objective function
f4 defined in (16) for verifying the optimization performance

of the proposed IBSA. The main objective is to control the
emission of harmful gases into the environment. In Table 12,
emission coefficients of thermal generators (energy sources)
are given for the IEEE-57 bus test system [14]. The valve-
point loading effects are included in the regular quadratic
fuel cost for calculating the power generation cost. In this
case study the DE approach was performed well as compared
to all algorithms and minimum emission pollution 0.95672
ton/h was achieved from the DE approach. The optimal
values of objective function - emission pollution, active
power loss Ploss fossil fuel cost, active power output
PG, and voltage deviation for case study 8 are given
in Table 14.
A comparison is made between simulation results achieved

using the proposed IBSA, original BSA, and other meta-
heuristic approaches to solve the OPF problems. In Figure 5,
algorithms’ convergence profiles of the IEEE-57 bus system
for case studies 5, 6, 7, and 8 are shown. The better
convergence property of IBSA is shown in Figure 5, in which
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FIGURE 5. Algorithms’ convergence properties on IEEE-57 bus test system.

FIGURE 6. Load buses’ voltage magnitude profile for IBSA on IEEE-57 bus
test system.

IBSA demonstrates to bemore robust. In Figure 6, load buses’
voltage magnitude profiles on IEEE-57 bus system for every
case study achieved using the proposed IBSA approach are
plotted.

In the IEEE-57 bus test system, each case study (i.e. case
study 5 to case study 8) was executed 30 times independently
to calculate statistical results for the proposed IBSA, original
BSA and other approaches. The comparison of statistical
analysis is given in Table 15, where the min, max, average,
standard deviation (σ ), and execution time for a single run are
given and the best result is shown in boldface. In case study 5,
minimum fossil fuel cost (power generation cost) 41663.5500
$/h, was achieved, with maximum fuel cost 41663.5510 $/h,
average fuel cost 41663.5510 $/h, and standard deviation
0.0007, by applying the proposed IBSA as compared to
original BSA and other optimization approaches. It is
observed that IBSA takes more execution time for single run
as compared to original BSA and other approaches for finding
objective function minimum value (i.e. power generation
cost) in each case study on IEEE-57 bus test system.

C. IEEE-118 BUS TEST SYSTEM
The last two case studies 9 and 10 were conducted for
measuring optimization performance of the proposed IBSA
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TABLE 15. Statistical summary on IEEE-57 bus test system.

approach for finding feasible solutions to OPF problems.
The IEEE-118 bus system has been utilized for simulation
purposes. It has active power 4242 MW (42.42 p.u.) demand
and 1439 MVAr (14.39 p.u.) reactive power demand and
consists of 130 control variables. In these control variables
53 thermal generators or energy sources’ active power output
(except energy source attached at swing bus), all 54 load
buses voltage magnitudes, 9 transformer taps setting, and
14 shunt compensators are included. The voltage magnitude
boundary limits of thermal generators (energy sources)
and load buses are kept in range of [0.94 1.06] p.u. and
[0.95 1.1] p.u., respectively. Furthermore, details about data
and characteristics are presented in Table 7.

1) CASE STUDY 9: MINIMIZING QUADRATIC FUEL COST
The OPF problem’s primary objective based on the regular
quadratic cost function f1 (13) to reduce power generation
cost is considered for verifying optimization performance
and effectiveness of the proposed IBSA approach, in this
case study. All thermal power generation units (energy
sources) fossil fuel cost coefficients are taken from (Power
System Test Case Archive: http://labs.ece.uw.edu/pstca/) for
calculating the power generation cost based on a regular
quadratic cost curve. The proposed IBSA’s performance was
best as compared to all other algorithms and minimum total
power generation cost 134941.0367 $/h was achieved from
the IBSA approach to fulfill active load demand of the system.
The simulation results including optimal values of objective

TABLE 16. Simulation results of case studies 9 and 10 on IEEE-118 bus
test system.

TABLE 17. Statistical summary on IEEE-118 bus test system.

function, total power generation PG, active power loss Ploss,
and voltage deviation for all algorithms in case study 9 are
given in Table 16, while minimum electricity generation cost
is shown in boldface.

2) CASE STUDY 10: MINIMIZING ACTIVE POWER LOSS
The OPF problem objective function - reducing active
power loss f3 defined in (15) was taken for measuring
optimization performance of the IBSA, in this case study.
The regular quadratic cost function f1 (13) was utilized
for calculating the power generation cost. The proposed
IBSA has performed better than the original BSA and other
metaheuristic approaches, in this case study. The minimum
total active power loss Ploss in transmission lines 16.2869
MW was achieved from the IBSA approach. In Table 16,
simulation results including optimal values of objective
function Ploss, total power output PG, fuel cost, and voltage
deviation obtained from all algorithms are given.

The optimization results for case study 9 and 10 were
obtained from IBSA, original BSA, and other metaheuristic
approaches and a comparison was made between these
results for evaluating the performance of IBSA approach.
Figure 7 shows convergence characteristics of IBSA, original
BSA, and other metaheuristic approaches for approaching
optimal values of the OPF problems’ objective functions.
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FIGURE 7. Algorithms’ convergence properties on IEEE-118 bus test
system.

FIGURE 8. Load buses’ voltage magnitude profile for IBSA on IEEE-118
bus test system.

The proposed IBSA approach demonstrated more robust
and faster convergence than the original BSA and all
other approaches. The Figure 8 shows load buses voltage
magnitude profiles for case studies 9 and 10 obtained from
the IBSA approach on the IEEE-118 bus test system.

In case studies 9 and 10 simulations were run 30 times
independently for the proposed IBSA, original BSA, and
other approaches on the IEEE-118 bus system, in order to
obtain statistical results. The comparison of statistical results
are given in Table 17, where the min, max, average, standard
deviation (σ ), and execution time for a single run are given
and the best result is shown in boldface.

The statistical results of case studies 9 and 10 indicate
that the proposed IBSA shows good performance on the best,
worst, mean, and standard deviation (σ ), when comparedwith
original BSA and other algorithms. In case study 9, the objec-
tive function best value (minimum fuel cost) 134941.0367
$/h, worst value (maximum fuel cost) 134941.0367 $/h,
and mean value (average fuel cost) 134941.0367 $/h, with
standard deviation (σ ) 0, were obtained by applying the
proposed IBSA. The objective function best value (minimum
active power loss) 16.2869 MW, worst value (maximum
active power loss) 16.2872 MW, and mean value (average
active power loss) 16.2871 MW, with standard deviation
(σ ) 0.0002, were obtained in proposed IBSA. It is evident
that IBSA spends more execution time for single run as
compared to original BSA and other approaches for finding
objective function minimum or best value in each case
study on IEEE-118 bus test system. The proposed IBSA
approach takes longer execution time than the original
BSA and other metaheuristic approaches, because OL
strategy is implemented at each iteration for predicting
the optimal solution vector based on improving the ability
of exploitation. We used the same parameter settings and
the number of iterations (maximum iterations = 1000)
in each case study for the proposed IBSA and other
algorithms.

V. CONCLUSION
In this research work, we have adopted a search technique
based on OL strategy to improve BSA. The OL strategy has
significant features to find an optimal solution, in which few
experimental test cases are conducted instead of exhaustive
experimental test cases for predicting the best combination
of decision parameters’ values in two candidate solution
vectors. We have proposed IBSA to tackle the nonconvex,
nonlinear, and quadratic nature of large-scale OPF problems
in power systems. In which, to reduce power output cost,
emission pollution, and active power loss were set as
objectives to address OPF problems. We have utilized IEEE-
30 bus test system, IEEE-57 bus test system, and IEEE-
118 bus test system, in order to identify improvement due
to OL strategy and verifying the stability, optimization
performance, and effectiveness of the proposed IBSA.
On these standard IEEE test systems simulation and statistical
results are measured and a comparison is made to examine
optimizing features of the proposed IBSA. By addressing
OPF problems in power systems, it has been observed that
lowest electricity generation cost 800.3975$/h on IEEE-
30 bus system, 41663.5500$/h on IEEE-57 bus system,
and 134941.0367$/h on IEEE-118 bus system have been
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achieved using proposed IBSA. To address the OPF problem
on the IEEE 118-bus system, minimum active power loss
16.2869MW in transmission lines of the power system has
been achieved by applying the proposed IBSA approach.
In order to draw convincing conclusions, statistical results
indicate that no single approach is capable of finding the
best feasible solution of the OPF problem in all case studies.
However, statistical and simulation results of most case
studies have presented that the IBSA has best efficiency,
robustness, and convergence properties as compared to
original BSA and other heuristic approaches.

The application of the proposed IBSA may be extended
to solve other optimization problems in large-scale thermal
power systems including transient stability-constrained OPF,
chance-constrained OPF, and unit commitment etc. in future.

REFERENCES
[1] A. E. Chaib, H. R. E. H. Bouchekara, R. Mehasni, and M. A. Abido,

‘‘Optimal power flow with emission and non-smooth cost functions using
backtracking search optimization algorithm,’’ Int. J. Elect. Power Energy
Syst., vol. 81, pp. 64–77, Oct. 2016.

[2] E. P. De Carvalho, A. Dos Santos, and T. F. Ma, ‘‘Reduced gradient
method combined with augmented Lagrangian and barrier for the optimal
power flow problem,’’ Appl. Math. Comput., vol. 200, no. 2, pp. 529–536,
Jul. 2008.

[3] F. Capitanescu and L. Wehenkel, ‘‘Experiments with the interior-point
method for solving large scale optimal power flow problems,’’ Electric
Power Syst. Res., vol. 95, pp. 276–283, Feb. 2013.

[4] M. Pourakbari-Kasmaei, M. Lehtonen, M. Fotuhi-Firuzabad,
M. Marzband, and J. R. S. Mantovani, ‘‘Optimal power flow problem
considering multiple-fuel options and disjoint operating zones: A solver-
friendly MINLP model,’’ Int. J. Electr. Power Energy Syst., vol. 113,
pp. 45–55, Dec. 2019.

[5] S. Tu, A. Wachter, and E. Wei, ‘‘A two-stage decomposition approach
for AC optimal power flow,’’ IEEE Trans. Power Syst., vol. 36, no. 1,
pp. 303–312, Jan. 2021.

[6] B. Liu, J. Li, H. Ma, and Y. Liu, ‘‘Generalized benders decomposition
based dynamic optimal power flow considering discrete and continuous
decision variables,’’ IEEE Access, vol. 8, pp. 194260–194268, 2020.

[7] H. Ambriz-Perez, E. Acha, and C. R. Fuerte-Esquivel, ‘‘Advanced SVC
models for Newton-Raphson load flow and Newton optimal power flow
studies,’’ IEEE Trans. Power Syst., vol. 15, no. 1, pp. 129–136, Feb. 2000.

[8] K. Zehar and S. Sayah, ‘‘Optimal power flow with environmental con-
straint using a fast successive linear programming algorithm: Application
to the Algerian power system,’’ Energy Convers. Manag., vol. 49, no. 11,
pp. 3362–3366, Nov. 2008.

[9] P. Fortenbacher and T. Demiray, ‘‘Linear/quadratic programming-based
optimal power flow using linear power flow and absolute loss approxima-
tions,’’ Int. J. Electr. Power Energy Syst., vol. 107, pp. 680–689,May 2019.

[10] X. Yuan, B. Zhang, P. Wang, J. Liang, Y. Yuan, Y. Huang, and X. Lei,
‘‘Multi-objective optimal power flow based on improved strength Pareto
evolutionary algorithm,’’ Energy, vol. 122, pp. 70–82, Mar. 2017.

[11] T. Sousa, J. Soares, Z. A. Vale, H. Morais, and P. Faria, ‘‘Simulated
annealing metaheuristic to solve the optimal power flow,’’ in Proc. IEEE
Power Energy Soc. Gen. Meeting, Detroit, MI, USA, Jul. 2011, pp. 1–8.

[12] M. A. Abido, ‘‘Optimal power flow using Tabu search algorithm,’’ Electr.
Power Compon. Syst., vol. 30, no. 5, pp. 469–483, 2010.

[13] M. Ahmad, N. Javaid, I. A. Niaz, A. Almogren, and A. Radwan, ‘‘A bio-
inspired heuristic algorithm for solving optimal power flow problem in
hybrid power system,’’ IEEE Access, vol. 9, pp. 159809–159826, 2021.

[14] P. P. Biswas, P. N. Suganthan, R. Mallipeddi, and G. A. J. Amaratunga,
‘‘Optimal power flow solutions using differential evolution algorithm
integrated with effective constraint handling techniques,’’ Eng. Appl. Artif.
Intell., vol. 68, pp. 81–100, Feb. 2018.

[15] A.-A. A. Mohamed, Y. S. Mohamed, A. A. M. El-Gaafary, and
A. M. Hemeida, ‘‘Optimal power flow using moth swarm algorithm,’’
Electr. Power Syst. Res., vol. 142, pp. 190–206, Jan. 2017.

[16] K. Abaci and V. Yamacli, ‘‘Differential search algorithm for solving multi-
objective optimal power flow problem,’’ Int. J. Electr. Power Energy Syst.,
vol. 79, pp. 1–10, Jul. 2016.

[17] S. Sivasubramani and K. S. Swarup, ‘‘Multi-objective harmony search
algorithm for optimal power flow problem,’’ Int. J. Electr. Power Energy
Syst., vol. 33, no. 3, pp. 745–752, Mar. 2011.

[18] S. Duman, ‘‘A modified moth swarm algorithm based on an arithmetic
crossover for constrained optimization and optimal power flow problems,’’
IEEE Access, vol. 6, pp. 45394–45416, 2018.

[19] M.-F. Leung, S.-C. Ng, C.-C. Cheung, and A. K. Lui, ‘‘A new
algorithm based on PSO for multi-objective optimization,’’ in Proc.
IEEE Congr. Evol. Comput. (CEC), Sendai, Japan, May 2015,
pp. 3156–3162.

[20] M.-F. Leung, C. A. C. Coello, C.-C. Cheung, S.-C. Ng, and A. K.-F. Lui,
‘‘A hybrid leader selection strategy for many-objective particle swarm
optimization,’’ IEEE Access, vol. 8, pp. 189527–189545, 2020.

[21] M.-C. Yuen, S.-C. Ng, M.-F. Leung, and H. Che, ‘‘A Metaheuristic-based
framework for index tracking with practical constraints,’’ Complex Intell.
Syst., vol. 8, no. 6, pp. 4571–4586, Dec. 2022.

[22] W.-F. Gao, S.-Y. Liu, and L.-L. Huang, ‘‘A novel artificial bee
colony algorithm based on modified search equation and orthogo-
nal learning,’’ IEEE Trans. Cybern., vol. 43, no. 3, pp. 1011–1024,
Jun. 2013.

[23] A. R. Bhowmik and A. K. Chakraborty, ‘‘Solution of optimal power
flow using non dominated sorting multi objective opposition based
gravitational search algorithm,’’ Int. J. Electr. Power Energy Syst., vol. 64,
pp. 1237–1250, Jan. 2015.

[24] S. S. Reddy and C. S. Rathnam, ‘‘Optimal power flow using glow-
worm swarm optimization,’’ Int. J. Elect. Power Energy Syst., vol. 80,
pp. 128–139, Sep. 2016.

[25] H. Pulluri, R. Naresh, and V. Sharma, ‘‘A solution network based on stud
krill herd algorithm for optimal power flow problems,’’ Soft Comput.,
vol. 22, no. 1, pp. 159–176, Jan. 2018.

[26] A. A. El-Fergany and H. M. Hasanien, ‘‘Tree-seed algorithm for solving
optimal power flow problem in large-scale power systems incorporating
validations and comparisons,’’ Appl. Soft Comput., vol. 64, pp. 307–316,
Mar. 2018.

[27] A. Bhattacharya and P. K. Chattopadhyay, ‘‘Application of
biogeography-based optimisation to solve different optimal power
flow problems,’’ IET Gener., Transmiss. Distrib., vol. 5, no. 1, pp. 70–80,
Jan. 2011.

[28] S. Duman, ‘‘Symbiotic organisms search algorithm for optimal power
flow problem based on valve-point effect and prohibited zones,’’ Neural
Comput. Appl., vol. 28, no. 11, pp. 3571–3585, Nov. 2017.

[29] E. Davoodi, E. Babaei, B. Mohammadi-Ivatloo, M. Shafie-Khah, and
J. P. S. Catalao, ‘‘Multiobjective optimal power flow using a semidefinite
programming-based model,’’ IEEE Syst. J., vol. 15, no. 1, pp. 158–169,
Mar. 2021, doi: 10.1109/JSYST.2020.2971838.

[30] A. A. El-Fergany and H. M. Hasanien, ‘‘Salp swarm optimizer to solve
optimal power flow comprising voltage stability analysis,’’ Neural Com-
put. Appl., vol. 32, no. 9, pp. 5267–5283, May 2020, doi: 10.1007/s00521-
019-04029-8.

[31] M. A. Taher, S. Kamel, F. Jurado, and M. Ebeed, ‘‘Optimal power
flow solution incorporating a simplified UPFC model using lightning
attachment procedure optimization,’’ Int. Trans. Electr. Energy Syst.,
vol. 30, no. 1, Jan. 2020, Art. no. e12170, doi: 10.1002/2050-7038.12170.

[32] M. Z. Islam, N. I. A. Wahab, V. Veerasamy, H. Hizam, N. F. Mailah, J.
M. Guerrero, and M. N. Mohd Nasir, ‘‘A Harris hawks optimization based
single- and multi-objective optimal power flow considering environmental
emission,’’ Sustainability, vol. 12, no. 13, p. 5248, Jun. 2020, doi:
10.3390/su12135248.

[33] F. Daqaq,M. Ouassaid, and R. Ellaia, ‘‘A newmeta-heuristic programming
for multi-objective optimal power flow,’’ Electr. Eng., vol. 103, no. 2,
pp. 1217–1237, Jan. 2021, doi: 10.1007/s00202-020-01173-6.

[34] M. Premkumar, P. Jangir, R. Sowmya, and R. M. Elavarasan, ‘‘Many-
objective gradient-based optimizer to solve optimal power flow problems:
Analysis and validations,’’ Eng. Appl. Artif. Intell., vol. 106, Nov. 2021,
Art. no. 104479, doi: 10.1016/j.engappai.2021.104479.

[35] S. Khunkitti, A. Siritaratiwat, and S. Premrudeepreechacharn, ‘‘Multi-
objective optimal power flow problems based on slime mould algo-
rithm,’’ Sustainability, vol. 13, no. 13, p. 7448, Jul. 2021, doi:
10.3390/su13137448.

23678 VOLUME 11, 2023

http://dx.doi.org/10.1109/JSYST.2020.2971838
http://dx.doi.org/10.1007/s00521-019-04029-8
http://dx.doi.org/10.1007/s00521-019-04029-8
http://dx.doi.org/10.1002/2050-7038.12170
http://dx.doi.org/10.3390/su12135248
http://dx.doi.org/10.1007/s00202-020-01173-6
http://dx.doi.org/10.1016/j.engappai.2021.104479
http://dx.doi.org/10.3390/su13137448


M. Ahmad et al.: Orthogonal Learning Bird Swarm Algorithm for Optimal Power Flow Problems

[36] M. Z. Islam, M. L. Othman, N. I. A. Wahab, V. Veerasamy, S. R.
Opu, A. Inbamani, and V. Annamalai, ‘‘Marine predators algorithm for
solving single-objective optimal power flow,’’ PLoS ONE, vol. 16, no. 8,
Aug. 2021, Art. no. e0256050, doi: 10.1371/journal.pone.0256050.

[37] M. S. Kumari and S. Maheswarapu, ‘‘Enhanced genetic algorithm
based computation technique for multi-objective optimal power flow
solution,’’ Int. J. Elect. Power Energy Syst., vol. 32, no. 6, pp. 736–742,
Jul. 2010.

[38] A. M. Shaheen, R. A. El-Sehiemy, and S. M. Farrag, ‘‘Solving multi-
objective optimal power flow problem via forced initialised differential
evolution algorithm,’’ IET Gener., Transmiss. Distrib., vol. 10, no. 7,
pp. 1634–1647, May 2016.

[39] V. Raviprabakaran and R. C. Subramanian, ‘‘Enhanced ant colony
optimization to solve the optimal power flow with ecological emis-
sion,’’ Int. J. Syst. Assurance Eng. Manag., vol. 9, no. 1, pp. 58–65,
Feb. 2018.

[40] W. Bai, I. Eke, and K. Y. Lee, ‘‘An improved artificial bee colony
optimization algorithm based on orthogonal learning for optimal
power flow problem,’’ Control Eng. Pract., vol. 61, pp. 163–172,
Apr. 2017.

[41] H. R. E. H. Bouchekara, A. E. Chaib, M. A. Abido, and R. A. El-Sehiemy,
‘‘Optimal power flow using an improved colliding bodies optimization
algorithm,’’ Appl. Soft Comput., vol. 42, pp. 119–131, May 2016.

[42] N. Daryani, M. T. Hagh, and S. Teimourzadeh, ‘‘Adaptive group search
optimization algorithm for multi-objective optimal power flow problem,’’
Appl. Soft Comput., vol. 38, pp. 1012–1024, Jan. 2016.

[43] H. R. E. H. Bouchekara, A. E. Chaib, and M. A. Abido, ‘‘Optimal power
flow using GA with a new multi-parent crossover considering: Prohibited
zones, valve-point effect, multi-fuels and emission,’’ Electr. Eng., vol. 100,
no. 1, pp. 151–165, Mar. 2018.

[44] S. S. Reddy and P. R. Bijwe, ‘‘Efficiency improvements in meta-heuristic
algorithms to solve the optimal power flow problem,’’ Int. J. Elect. Power
Energy Syst., vol. 82, pp. 288–302, Nov. 2016.

[45] A. F. Attia, R. A. El Sehiemy, and H. M. Hasanien, ‘‘Optimal power flow
solution in power systems using a novel sine-cosine algorithm,’’ Int. J.
Electr. Power Energy Syst., vol. 99, pp. 331–343, Jun. 2018.

[46] Y. Muhammad, R. Khan, M. A. Z. Raja, F. Ullah, N. I. Chaudhary,
and Y. He, ‘‘Design of fractional swarm intelligent computing with
entropy evolution for optimal power flow problems,’’ IEEE Access, vol. 8,
pp. 111401–111419, 2020.

[47] W. Ongsakul and T. Tantimaporn, ‘‘Optimal power flow by improved
evolutionary programming,’’ Electric Power Compon. Syst., vol. 34, no. 1,
pp. 79–95, Jan. 2006.

[48] T. Niknam,M. R. Narimani,M. Jabbari, andA. R.Malekpour, ‘‘Amodified
shuffle frog leaping algorithm for multi-objective optimal power flow,’’
Energy, vol. 36, no. 11, pp. 6420–6432, Nov. 2011.

[49] T. Niknam, M. R. Narimani, J. Aghaei, and R. Azizipanah-Abarghooee,
‘‘Improved particle swarm optimisation for multi-objective optimal power
flow considering the cost, loss, emission and voltage stability index,’’ IET
Gener., Transmiss. Distrib., vol. 6, no. 6, pp. 515–527, Jun. 2012.

[50] N. Sinsuphan, U. Leeton, and T. Kulworawanichpong, ‘‘Optimal power
flow solution using improved harmony search method,’’ Appl. Soft
Comput., vol. 13, no. 5, pp. 2364–2374, May 2013.

[51] R. Arul, G. Ravi, and S. Velusami, ‘‘Solving optimal power flow
problems using chaotic self-adaptive differential harmony search algo-
rithm,’’ Electric Power Compon. Syst., vol. 41, no. 8, pp. 782–805,
May 2013.

[52] K. Pandiarajan and C. K. Babulal, ‘‘Fuzzy harmony search algorithm based
optimal power flow for power system security enhancement,’’ Int. J. Electr.
Power Energy Syst., vol. 78, pp. 72–79, Jun. 2016.

[53] P. P. Biswas, P. N. Suganthan, R. Mallipeddi, and G. A. J. Amaratunga,
‘‘Multi-objective optimal power flow solutions using a constraint handling
technique of evolutionary algorithms,’’ Soft Comput., vol. 24, no. 4,
pp. 2999–3023, Feb. 2020.

[54] S. S. Reddy, P. R. Bijwe, and A. R. Abhyankar, ‘‘Faster evolutionary
algorithm based optimal power flow using incremental variables,’’ Int. J.
Elec. Power., vol. 54, pp. 198–210, Sep. 2014.

[55] J. C. Bansal and P. Farswan, ‘‘A novel disruption in biogeography-based
optimization with application to optimal power flow problem,’’ Int. J.
Speech Technol., vol. 46, no. 3, pp. 590–615, Apr. 2017.

[56] M. Abdo, S. Kamel, M. Ebeed, J. Yu, and F. Jurado, ‘‘Solving non-smooth
optimal power flow problems using a developed grey wolf optimizer,’’
Energies, vol. 11, no. 7, p. 1692, Jun. 2018.

[57] G. Chen, Z. Lu, and Z. Zhang, ‘‘Improved krill herd algorithm with novel
constraint handling method for solving optimal power flow problems,’’
Energies, vol. 11, no. 1, p. 76, Jan. 2018.

[58] H. Pulluri, R. Naresh, and V. Sharma, ‘‘An enhanced self-adaptive
differential evolution based solution methodology for multiobjective
optimal power flow,’’ Appl. Soft Comput., vol. 54, pp. 229–245,
May 2017.

[59] A. M. Shaheen, S. M. Farrag, and R. A. El-Sehiemy, ‘‘MOPF solution
methodology,’’ IETGener., Transmiss. Distrib., vol. 11, no. 2, pp. 570–581,
Jan. 2017.

[60] X. Zhou, A. Su, A. Liu, W. Cui, and W. Liu, ‘‘Cooperative approach to
artificial bee colony algorithm for optimal power flow,’’ Cluster Comput.,
vol. 22, pp. 8059–8067, Jul. 2019.

[61] G. Chen, J. Qian, Z. Zhang, and S. Li, ‘‘Application of modified pigeon-
inspired optimization algorithm and constraint-objective sorting rule on
multi-objective optimal power flow problem,’’ Appl. Soft Comput., vol. 92,
Jul. 2020, Art. no. 106321.

[62] T. T. Nguyen, ‘‘A high performance social spider optimization algorithm
for optimal power flow solution with single objective optimization,’’
Energy, vol. 171, pp. 218–240, Mar. 2019.

[63] M. A. Taher, S. Kamel, F. Jurado, and M. Ebeed, ‘‘An improved
moth-flame optimization algorithm for solving optimal power flow
problem,’’ Int. Trans. Electr. Energy Syst., vol. 29, no. 3, p. e2743,
Mar. 2019.

[64] M. A. Taher, S. Kamel, F. Jurado, and M. Ebeed, ‘‘Modified grasshopper
optimization framework for optimal power flow solution,’’ Elect. Eng.,
vol. 101, no. 1, pp. 121–148, Apr. 2019.

[65] H. Bouchekara, ‘‘Solution of the optimal power flow problem considering
security constraints using an improved chaotic electromagnetic field opti-
mization algorithm,’’Neural Comput. Appl., vol. 32, no. 7, pp. 2683–2703,
Apr. 2020.

[66] H. Buch and I. N. Trivedi, ‘‘An efficient adaptive moth flame optimization
algorithm for solving large-scale optimal power flow problem with POZ,
multifuel and valve-point loading effect,’’ Iranian J. Sci. Technol., Trans.
Electr. Eng., vol. 43, no. 4, pp. 1031–1051, Dec. 2019.

[67] X.-B. Meng, X. Z. Gao, L. Lu, Y. Liu, and H. Zhang, ‘‘A new bio-inspired
optimisation algorithm: Bird swarm algorithm,’’ J. Exp. Theor. Artif. Intell.,
vol. 28, pp. 673–687, Jun. 2015.

[68] X. Wang, Y. Deng, and H. Duan, ‘‘Edge-based target detection for
unmanned aerial vehicles using competitive bird swarm algorithm,’’
Aerosp. Sci. Technol., vol. 78, pp. 708–720, Jul. 2018.

[69] Z.-H. Zhan, J. Zhang, Y. Li, and Y.-H. Shi, ‘‘Orthogonal learning
particle swarm optimization,’’ IEEE Trans. Evol. Comput., vol. 15, no. 6,
pp. 832–847, Dec. 2011.

[70] Y.-W. Leung and Y. Wang, ‘‘An orthogonal genetic algorithm with
quantization for global numerical optimization,’’ IEEE Trans. Evol.
Comput., vol. 5, no. 1, pp. 41–53, Feb. 2001.

MANZOOR AHMAD received the M.Sc. degree
in computer science from Quaid-i-Azam Uni-
versity, Islamabad, Pakistan, the M.S. degree in
computer science from Mälardalens Högskola
Eskilstuna Västerås, Sweden, and the Ph.D. degree
in computer science from COMSATS University
Islamabad, Islamabad Campus, Pakistan, under
the supervision of Dr. Iftikhar Azim Niaz and
co-supervision of Dr. Nadeem Javaid. He has
been with COMSATS University Islamabad, since

2003. His research interests include artificial intelligence and optimal
power flow.

VOLUME 11, 2023 23679

http://dx.doi.org/10.1371/journal.pone.0256050


M. Ahmad et al.: Orthogonal Learning Bird Swarm Algorithm for Optimal Power Flow Problems

NADEEM JAVAID (Senior Member, IEEE)
received the bachelor’s degree in computer
science from Gomal University, Dera Ismail
Khan, Pakistan, in 1995, the master’s degree
in electronics from Quaid-i-Azam University,
Islamabad, Pakistan, in 1999, and the Ph.D.
degree from the University of Paris-Est, France,
in 2010. He is currently a tenured Professor and
the Founding Director of the Communications
Over Sensors (ComSens) Research Laboratory,

Department of Computer Science, COMSATS University Islamabad,
Islamabad Campus. He has supervised 158 master’s and 30 Ph.D.
theses. He has authored more than 900 papers in technical journals and
international conferences. His research interests include energy optimization
in smart/microgrids and wireless sensor networks using data analytics and
blockchain. He was a recipient of the Best University Teacher Award (BUTA
2016) from the Higher Education Commission (HEC), Pakistan, in 2016, and
the Research Productivity Award (RPA 2017) from the Pakistan Council for
Science and Technology (PCST), in 2017.

IFTIKHAR AZIM NIAZ (Senior Member, IEEE)
has been a Ph.D. Supervisor of the Higher Educa-
tion Commission (HEC), since 2007. Because of
his professional experience, expertise, and social
and communication skills, he has been on the
Expert Panel of the PECAccreditation Team, since
2009. He is currently a Professional Engineer,
an Assistant Professor, and the Ph.D. Coordinator
with the Department of Computer Science. He has
been coordinating with different government and

private sectors and organizations, improving the academic standard of
students. His research interests include wireless sensor networks, energy
optimization in smart grids, and software engineering. He is a member of
various national and international professional bodies and clubs which is one
of the necessary conditions for managing projects.

IJAZ AHMED received the M.Sc. degree in com-
puter sciences from the Queen Mary University
of London and the Ph.D. degree in computer
sciences from the University of Madeira, Portugal.
He is currently an Assistant Professor with the
University of Technology and Applied Sciences,
Ibri, Oman. Previously, he has worked as a Faculty
Member with COMSATS University Islamabad,
Pakistan. Besides this, he was also a Senior
Research Fellow with the Internet of Things and

Security Center, Greenwich University, London, and a Senior Scientist
with UNIST, South Korea. He has published numerous research papers in
conferences and journals of international repute.

MUHAMMAD ADNAN HASHMI received the
master’s degree in artificial intelligence from Uni-
versity Rene Descartes (currently the University of
Paris) and the Ph.D. degree in artificial intelligence
from Pierre and Marie Curie University (currently
SorbonneUniversity). He has beenwith theHigher
Colleges of Technology, United Arab Emirates,
since 2019. He has 15 years of teaching and
research experience. His research interests include
the development of agent-oriented programming

languages and multi-agent coordination mechanisms.

23680 VOLUME 11, 2023


