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ABSTRACT Optimization is an imperative feature in almost all fields of Engineering, Economics,
and Sciences. Due to the advent of high-end computers and the gradual increase in the complexity of
optimization problems, algorithms for numerical optimization have been developed. Numerous existing
numerical optimization algorithms suffer from premature convergence, poor local/global search abilities,
and high computational complexity. A chaotic optimization algorithm and a chaotic map could help
overcome most of these setbacks. This paper offers a detailed study and analysis of five chaotic maps
used for global Optimization, namely Chebyshev, Cubic, ICMIC, Neuron, and Sine maps. This work also
proposes a pioneering global optimization method, Hybrid Chaotic Pattern Search Algorithm (HCPSA), for
finding the global minimum for multivariable unconstrained optimization problems. Numerical results over
12 benchmark functions and comparative results (comparison of accuracy and computational time) with
some popular algorithms evidence the effectiveness of the proposed algorithm for higher dimensional non-
linear functions. The efficient usage of chaotic maps has helped reduce the computational time to evaluate
the optimum for higher dimensional non-linear functions. To showcase the use of HCPSA in a real-world
problem, we have taken the problem of analyzing financial ratios for predicting bankruptcy. Banks predict
bankruptcy from the start of their businesses to determine their financial stability. In this work, we initially
perform Logistic Regression (LR) on the data obtained from the banks to get the reliability function with
financial ratios as decision variables. After this, the function is maximized using HCPSA and a Chebyshev
map. This methodology is beneficial for decision-makers within a bank to maximize the reliability of the
financial ratios and, most essential, to protect the bank from disasters. Comparative results of reliability
prediction using HCPSA and PSO and a non-parametric statistical test proves that the proposed algorithm
is better in terms of accuracy.

INDEX TERMS Global optimization, multi-variable optimization, chaotic maps, pattern search, reliability,
financial ratios, bankruptcy, logistic regression.

I. INTRODUCTION

Optimization techniques have received massive attention
recently due to the advancement in computer technologies,
especially the advent of high-speed processors and the acces-
sibility to user-friendly software [1], [2], [3], [4], [5], [6], [7],
[8], [9]. The classical optimization algorithms, in general,
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need to be more flexible to accommodate all optimiza-
tion problems as they do not offer a general approach to
solving problems with different types of variables (inte-
ger or real), objectives (linear/non-linear), and constraints
(constrained or unconstrained) at the same time. Literature
gives details of deterministic optimization algorithms and
non-deterministic/stochastic optimization algorithms. This
classification is based on using randomness in the initial val-
ues taken. Further, there are various stochastic computational
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search algorithms, including biology-based, chemical-based,
physics-based, music based, swarm-based, etc., as given
in [10], [11], [12], [13], [14], [15], and [16].

Most of these optimization algorithms could successfully
obtain a local optimum solution. They were popular, too,
in problems where the optimum was sought in an interval
that mostly had a single optimum. However, many such
algorithms botched for problems that specifically demanded
a global solution. Chaotic Optimization Algorithms (COAs)
that use chaotic numbers (numbers generated using chaotic
maps) in place of random numbers can easily escape the
local minima than the classic stochastic optimization algo-
rithms [13], [17], [18], [19], [20], [21], [22], [23], [24],
[25]. Pseudo-randomness, regularity, sensitivity, and ergodic-
ity are the properties of chaotic numbers that help the COAs
avoid the searching process getting trapped into local optima,
reduce the computational complexity, and sustain the conver-
gence criteria. These properties make COAs appropriate for
global optimization problems.

Chaotic sequences that are used in COAs are generated
using different chaotic maps. In terms of global search capa-
bilities and optimization efficiency, these chaotic sequences
from different maps have different probability distributions
and search speeds. The chaotic behavior of a map can be
studied in detail using its Lyapunov exponent, histogram,
probability distribution, etc. This paper is initially devoted
to a detailed analysis of five chaotic maps- the Chebyshev
map, Cubic map, ICMIC map, Neuron map, and Sine map.
Later these maps are used in a global optimization algorithm
proposed in this work to search for an optimum for a set of
higher dimensional benchmark functions.

The speed at which a chaos optimization algorithm takes
the search to a neighborhood of the global optimum is very
fast. However, once it reaches the neighborhood, it takes more
computational effort to obtain the global optimum solution by
examining several points [21]. This search leads to additional
CPU time, thus increasing the computational cost. Consider-
ing this fact, we propose an optimization algorithm, a hybrid
COA that has the benefit of the accuracy of the global solution
and is computationally less expensive.

The proposed algorithm in this paper uses chaotic maps in
one stage to reach the neighborhood of the global minimum
and a unique pattern search in another stage to reach the
global minimum.

As a practical application of the proposed algorithm,
we considered the problem of maximizing a bank’s reliability
function, which is a function of the bank’s financial ratios.
The solution to this problem could help prevent the banks
from getting bankrupt.

Banks and firms’ bankruptcy is detrimental to any coun-
try’s economy. Altman [40] made the first Bankruptcy pre-
dictions. Numerous methods have been developed to extend
machine learning to soft computing to forecast bankruptcy
in recent years. Recently, some exciting results have been
published regarding bankruptcy forecasts. The bankruptcy
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FIGURE 1. Doughnut chart for the reliability of a bank.

TABLE 1. Contributions and Research gaps in few related works.

Ref. No. Contributions Research gaps

[1-9, 29, These papers introduce a few | Most of these algorithms fail when

39] algorithms for unconstrained | the objective is: non-convex,
non-linear optimization | higher dimensional.
problems. A global solution is not always
Some of these algorithms work | obtained as the algorithm gets
well for lower dimensional and | trapped in a local solution.
convex problems.

[17-21, These papers explain some of | A complete analysis of the maps

34-38] the chaotic optimization | concerning fixed points, Lyapunov
algorithms. exponents, etc., is missing.

[26] Logistic Regression along with | The methodology fails to give a
Particle Swarm Optimization is | global solution for some of the
used to optimize the reliability | banking variables (ratios) while
of a bank. maximizing the reliability since

PSO sometimes gets trapped in a
local solution.

[29] Hooke Jeeves pattern search | The algorithm fails to obtain a
algorithm is described that helps | global solution.
in finding a solution for higher
dimensional optimization
problems.

[38] An algorithm by name CGSS is | This paper uses only two
introduced in the paper. | commonly used chaotic maps-
Computational ~ results ~ for | Logistic and Chebyshev.
benchmark functions are given | CGSS fails to find a global
along with a comparative study | optimum for the Rosen Brock
to demonstrate that the results | function (Fs).
using CGSS are better than | Analysis of which map is better for
many other heuristic algorithms. | which benchmark function is not

present.

prediction on unbalanced datasets has been documented
in [27]. A convolutional neural network was used on the
imaged financial ratios data to forecast bankruptcy [28].
In order to define a bank’s reliability, three connotations are
made in [26]: (i) the reliability of its service levels, (ii) the
reliability of its network, and (iii) the financial health of the
bank, as demonstrated by financial ratios, such as solvency
ratios, liquidity ratios, and profitability ratios (Figurel).

The first aspect is handled by a practical and holistic imple-
mentation of customer relationship management based on
analytics. Second, the bank’s communication network facil-
itates transactions in the shortest possible time by applying
optimized algorithms. A bank’s liquidity, capital adequacy,
efficiency, solvency, profitability ratios, etc., are measured in
the third facet. This paper concerns the third facet, where very
little research has been conducted.

A detailed literature survey on few related works is cap-
tured in tablel.
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Section two gives preliminary information needed to
understand the paper, which includes an understanding of
the Lyapunov Exponent and its role in fixing the param-
eters of chaotic maps, and details regarding fixed points
that help to use chaotic maps for global optimization prob-
lems effectively. This section also describes the Pattern
Search Algorithm given by Hooke and Jeeves [29] and the
Logistic regression methodology [30]. Section three provides
a detailed analytical study of five chaotic maps, namely
Chebyshev, Cubic, ICMIC, Neuron, and Sine maps. This
section also explains how the selection of parameters for each
of the five maps based on the LE and scatter diagram can be
done. The list of fixed points for each map is also given here
to avoid runtime errors while executing the algorithm. The
proposed hybrid algorithm (HCPSA) is available in section
four. Section five provides the results obtained using HCPSA
on twelve benchmark functions [31] (eight higher dimen-
sional - up to 1000 dimensions and four two-dimensional
functions) using each of the five chaotic maps. Suitable maps
for some benchmark functions and a discussion on reasons
for the strength of the proposed algorithm are also given
here.

As an application to HCPSA, we have considered the
problem of finding financial ratios for banks to obtain maxi-
mum reliability using the data from three banks. Section six
describes how Logistic regression (LR) is used to obtain the
parameters of the reliability function, which is then maxi-
mized using HCPSA with the Chebyshev map. The details
and results of this application are also discussed here, and
finally, the paper is concluded with a mention of future scope
in section seven.

The contributions of this paper are:

(1) A detailed analysis of five chaotic maps that shall help
researchers to select which map to be used and how to
use them to solve optimization problems.

(2) A general algorithm, HCPSA to solve non-linear
unconstrained optimization problems.

(3) A technique to find the best parameters that maximize
the reliability of a bank using HCPSA.

Il. PRELIMINARIES

A. LYAPUNOV EXPONENT AND SCATTER DIAGRAM
Lyapunov Exponent (LE) [32], [33] is the average rate of
exponential divergence or convergence of nearby trajectories.
Itis a quantitative measure of the predictability and sensitivity
of a system to changes in the initial conditions. Thus, the
LE helps in the study of the chaotic nature of a sequence
produced by a map x;+1 = f(x;). A negative LE value
indicates that adjacent points may finally move very close
and merge into only one point. In such a case, the sequence
will not have chaotic behavior. If LE is greater than zero,
then even if the initial distance between two trajectories is
minimal, the points may eventually separate, causing chaos
in the sequence. As LE increases, the chaotic nature of the
sequence increases.

VOLUME 11, 2023

The Lyapunov exponent, commonly denoted as A is evalu-
ated numerically using the formula:

A= ;Z?len I (x| )

where x;,i = 1,2,...,n is the sequence and f'(x;) is the
first derivative of the map f(x) at x;. In the next section, the
Lyapunov exponent A is numerically evaluated and presented
in a graph for each of the five maps discussed in this paper.

A scatter diagram shows the distribution of points obtained
by a sequence. Scatter diagrams for the five chaotic maps with
different parameter values are also shown in section three,
which gives a clear indication that the distribution of points
is better when the Lyapunov exponent is high. Based on the
LE value and scatter diagram for each map, the best parameter
value is decided for the parameters of each map that will make
the chaotic map best suitable for the proposed COA.

B. FIXED POINT

A fixed point [32] is a point that gets repeated in the sequence.
i.e., points wherex; = f(x;). If a fixed point appears in a
sequence, the sequence will converge to that point, and chaos
will vanish, thus making the map inappropriate for global
optimization problems. Hence it is essential to ensure that
the starting value for the optimization algorithm is not a
fixed point, and also, if in between the sequence, a fixed
point appears, the value needs to be changed to x; + (0.01) r
where re(0, 1).

Geometrically the fixed point of a map x;11 = f (x;) is
the point where the line y = x intersects the curvey = f(x).
Numerically, it can be evaluated by solving the equation x =
f(x). The fixed points and their geometrical representation for
five maps are also specified in section III.

C. PATTERN SEARCH ALGORITHM

Pattern Search Algorithm is a direct search method that
searches for a minimum of a non-linear unconstrained mul-
tivariable function. Among the direct search algorithms for
unconstrained non-linear optimization problems, Hooke and
Jeeve’s pattern search method [29] stands out as a simple
and effective optimization method, especially for higher-
dimension functions.

1) ALGORITHM
Step 1: Choose a starting point Xg = [x, X2, .. .x,)T, vari-
able increments Ax; (fori = 1,2, .. .,n), coordinate directions

u;(fori = 1,2, ..., n)and atermination parameter, €. Setk =
0.Seti =1, Yg,;—1 = X, compute f; = f(¥Yg,;—1) and go
to Step 2.

Step 2: (Exploratory move with base pointY ;_1):
Evaluate: f = f (Yr,i—1) ./ " =f (Yr,i—1 + (Ax))u;)
andf~ =f (Yi,i—1 — (Ax))u;)

Yii—1 + (Ax)u;, if f* < min (f,f7)
Yi,i—1 — (Axp)u;, if f~ < min (£, f)
Yk,i—].’ if f < min (f+,f_)

Yii=
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Lyapunov exponent of Chebyshev map

Lyapunov exponent

[¢] 1 2 3 a 5 6 7 8 9 10
Parameter

FIGURE 2. Lyapunov exponent of the Chebyshev map.

Set i=i+1, evaluate f, f* and f~ for the base point Y ;and
repeat this procedure till we getY,, If f(Yy ) < f(Yk,0)
then Xx41 = Yk, and go to step 4, Else go to step 3.

Step 3: Is ||(Axy, Axa, ..., Axy,)|| < e If yes, terminate
and mention Xycq is the minimum; Else set Ax; = % for
i=1,2,...,n and go to step 2.

Step 4: (Pattern move) Set k=k+1. Perform the pattern
move: Yii10=2Xg —Xr—1

Step 5: Perform another exploratory move using Y41 ¢ as
the base point (Step 2). Let the result be Xx1.

Step 6: Is f (Xk+1) < f(Xk))? If yes, go to Step 4; Else go
to Step3.

D. LOGISTIC REGRESSION

A logistic regression model is the most standard method
for estimating the probability of a binary reply based on
the values of various features. Numerous fields, including
the social sciences, economics, and health sciences, utilize
it extensively. The Logistic regression model is given in
eqn. (2).

1
= 1+e—(b0+b1x1+...+bNxN)

@

y=p&1,x2,...xN)

where X= (x1,x2,...xy) € RN,y € {0, 1} and by, b1, . .. by
are the parameters of the logistic regression. These parame-
ters can be obtained using maximum likelihood estimation
and the Newton-Raphson method. Logistic regression [30]
is the most straightforward, relatively accurate, and non-
parametric discriminative classifier.

lll. CHAOTIC MAPS

Chaotic maps are the ones that generate pseudo-random
chaotic numbers [34], [35], [36], [37], [38], [39]. Though
literature provides the definitions for various chaotic maps,
a complete analysis of the maps concerning fixed points, Lya-
punov exponents, etc., needs to be included. In this section,
we will provide an analysis of five maps that helps in making
them suitable for global optimization.
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FIGURE 4. Histogram and pdf of Chebyshev map for o= 8.

Return map of Chebyshev map with parameter is & Fixed points of chebyshev map with parameter is 8

FIGURE 5. Return map and fixed points of the Chebyshev map for «= 8.

A. CHEBYSHEV MAP

Chebyshev map, defined in eqn.3, is a chaotic map that
generates chaotic sequences in the interval (—1, 1) for any
parameter value «.

Xp41 = €OS (ozcof1 (x,,)) 3)

The best value for « is chosen based on the Lyapunov Expo-
nent graph.

The fixed points of the Chebyshev map are —0.9397,

— 0.9010, —0.5, — 0.2225,0.1736, 0.6235, 0.7660 and 1.

The Chebyshev map’s return map and fixed points are shown
in Figure 5.
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Lyapunov exponent of cubic map
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FIGURE 6. Lyapunov Exponent graph of the Cubic map.
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FIGURE 7. Histogram and pdf of the Cubic map with parameter g =2.59.

Return map of cubic map with parameter is 2.59 Fixed point of cubic map with parameter is 2.59

FIGURE 8. Return map and fixed point of the Cubic map with parameter
is 2.59.

The Lyapunov Exponent A for different parameter values
is calculated numerically and is shown in Figure 2.

The scatter diagrams for various « values are shown in
Figure 3. For o =1 eqn.3 converges to a line; hence, no chaos
is shown in Figure 3. The simulation results show that « =
8 can obtain the best chaotic sequence.

The distribution of the histogram and the probability den-
sity function of the chaotic sequences generated by the
Chebyshev map in 500 iterations is depicted in Figure 4.

B. CUBIC MAP

A Cubic map is a chaotic map that generates sequences in
the interval (0, 1). This map is defined as follows with the
parameter f3.

51 = B (1-27) 5,0, ) @

The best value for 8 is chosen based on the Lyapunov Expo-
nent graph which is given in Figure 6 for different values of
B. The scatter diagrams are given in Figure 9. The graphs
of scatter diagrams show that 8 = 2.59 can obtain best
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FIGURE 9. Scatter diagrams of the Cubic map for different parameters.
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FIGURE 11. Histogram and pdf of the ICMIC map for a= 3.

Lo L

chaotic sequence in the interval(0, 1). The distribution of the
histogram and the probability density function(pdf) of the
chaotic sequences generated by the cubic map in 500 itera-
tions is shown in Figure 7.

The fixed point is obtained 0.7835 for the cubic map. The
return map and the fixed point of the cubic map are visible in
Figure 8.

C. ICMIC (ITERATIVE CHAOTIC MAP WITH INFINITE
COLLAPSES) MAP

The one-dimensional ICMIC map is defined as:

x,,+1=sin(i), ae 0,00, me(=1,1) (5

Xn
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FIGURE 12. Scatter diagrams of the ICMIC map with different parameters.

Return map of ICMIC map with parameter s 3 Fixed point of ICMIC map
i Nicvall

FIGURE 13. Return map and fixed point of the ICMIC map for a= 3.

The best value for the parameter a is chosen based on the
Lyapunov exponent shown in Figure 10. It can be seen from
the graph that, for some values of a Lyapunov exponent is
negative hence the ICMIC map cannot generate a proper
chaotic sequence at those points.

Figure 11 shows the distribution of chaotic numbers with a
value as 1.5, 2.5, 3 and 4. For a = 2.5, 3 Lyapunov exponent
is positive hence the ICMIC map can generate a chaotic
sequence.

The fixed points of the ICMIC map are: £0.0952,
£0.1065, £0.1188, +0.1373, £0.1578, +0.1934, £0.2343,
+0.3301, +0.4448 and there are infinite number of fixed
points in (—0.1, 0.1). The histogram and the probability den-
sity function of the ICMIC map are shown in Figure 12 and
the return map is shown in Figure 13.

D. NEURON MAP

The neuron map [39] is defined in eqn.6 as a chaotic map.
With the attenuation factor o and proportionality factor 8 as
the parameters.

Xpil = o — 2 tanh (B) e 6)

According to [37], the proportionality factor B should
be taken as five. The Lyapunov exponent and scatter
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FIGURE 14. Lyapunov exponent of the Neuron map.
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FIGURE 15. Scatter diagram for the Neuron map with
« =0.4,0.5,0.6,0.7,0.8 and 0.9.

diagrams for the neuron map with § = 5, are given in
Figures 14 and 15.

The best values for parameter « is chosen based on them.
Fora = 0.5, A is positive and the neuron map produces a
chaotic sequence in (—1.5, 0.5) (Figure 15), thus reducing
the sequence to:

Xps1 = 0.5 — 2 tanh (5) e~ 7

For o = 0.8, A is positive, the neuron map produces a chaotic
sequence in (—1.2, 0.8) thus making the sequence as

Xps1 = 0.8 — 2 tanh (5) e~ 8)

For « = 0.9, A is positive, the neuron map produces
a chaotic sequence in (— 1.1,0.9) (Figure 15) and the
sequence will then be

Xpe1 = 0.9 — 2 tanh (5) e )

For 500 iterations, Figure 15 shows scatter diagrams of neu-
ron maps for @ = 0.4, 0.5, 0.6 and 0.9.

For o = 0.4, 0.6 the Lyapunov exponent A is negative and
hence no chaos can be seen.
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FIGURE 16. Neuron map at o= 0.5with histogram and pdf.
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FIGURE 17. Neuron map at = 0.9with histogram and pdf.
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FIGURE 18. Return map and fixed point of the Neuron map for « = 0.9.
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FIGURE 19. Lyapunov exponent of the sine map.

Figure 16 shows the histogram and pdfs of the neuron map
for « = 0.5 and B = 5. In Figure 17, the histogram, and pdfs
of the neuron maps at « = 0.9 and 8 = 5 are shown.

Return map of neuron map in eqn. (9) (for ¢ =0.9) is given
in Figure 18. The fixed point of the Neuron map in eqn. (9)
is - 0.3842 (Figure 18).

E. SINE MAP
The sine map is a unimodal chaotic map defined by eqn. (10)
with parameter .

Xag1 = %sin(nxn), X €0, 1) (10)
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FIGURE 21. Scatter diagrams of the sine map with different parameters.
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FIGURE 22. Return map and fixed point of the sine map.

The Lyapunov exponent (1) graph for the same is shown
in Figure 19. The histogram and pdfs for « = 4 is given in
Figure 20. For @ = 4, A is positive and the sine map produces
a chaotic sequence in (0, 1) (Figure 2).

Fixed point of the sine map with « = 4is numerically
evaluated and found to be 0.7365(Figure 22).

IV. HYBRID CHAOTIC PATTERN SEARCH

ALGORITHM (HCPSA)

Chaotic search always helps to get to the neighbourhood of
the global solution in a few iterations, and pattern search is
a well-known technique to obtain the optimum for higher
dimensional problems. Here we propose the Hybrid Chaotic
Pattern Search (HCPSA) algorithm that ensures the global
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solution for higher dimensional optimization problems at a
minimal computational cost. The algorithm has two stages
and is as follows:

Stage I:

Stepl: Input the objective function f, the lower bound
L and upper bound U. Choose the number of iterations
for stage I as N. Set k = 1, initialize the dimension and
choose fimin = +o0.

Step2: Choose a random number as the initial point for the
chaotic variable cX. This initial value is same for all dimension
to reduce the functional evaluations and computational time.
The initial value should be selected from the defined interval
for each chaotic map and should not be any of the fixed points
of the respective chaotic maps.

Step3: Map the chaotic variable ¢* to the variable Xl-(k)i =

1,2, ..., nby using one of the following equations.
1.5U 4+ 0.5L U-L
X,.(")z( ;r >+( 5 )ck,i=1,2,...,n(11)

This equation maps variables in (-1.5, 0.5) to the optimiza-
tion variables in (L, U). Transformation (13) is used for the
Neuron map.

Similarly, the transformation in eqn. (12) is suitable for the
Logistic and the Cubic map.

xP=L+w-0)ri=1,2,....n (12)

For the Chebyshev map and ICMIC map, we use transforma-
tion in eqn.(13).

U+L U-L
xi<’<>=( : )+( . )cki=1,2,...,n (13)

Step4: Compute the function value f(X®) = f
(x{. X0, xb).

1t £ (X®) < fminthen fimin = f(X®) and the optimal
solution isXmin = X ()

Step 5: Generate the next chaotic variable ¢ !by applying
the chaotic map.

Step 6:1fk < Nthenk = k + 1, go to step 3, else go to The
output of stage I is Xmin, which is in the neighbourhood of
global optima

Stage II:

Step7: Choose Xmin as the initial point of stage II.

Step8: Use Pattern Search Algorithm to find the global
optimum.

V. RESULTS AND DISCUSSIONS
The MATLAB R2017b and Python3 simulation of the algo-
rithms with which we got all the results presented in this work
was carried out in an Intel i5 6GB machine.

HCPSA is tested on twelve benchmark functions [31],
eight of them (F1 to F8) up to 1000 dimensions and four
standard two-dimensional functions (F9 to F12) using all the
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TABLE 2. Details of the benchmark functions.

Search Space Nature Global Minimum point Global Minimum
function value
F, | [-500,500]"| U (1,2...,n) 0
F, | [-5.12,5.12] M (0,0...,0) 0
F; | [-600,600]" | M (0,0...,0) 0
F, [-11]" U 0,0...,0) -1
Fs | [-2.04,2.04]" M (1, 1...,1) 0
Fs | [-100,100]"| M (0,0...,0) 0
F, [-11]" M 0,0...,0) 0
Fg | [-500,500]"| M WLV, o) 0
Fy [—2m, 2m] M (4.70104, 3.15294) -106.764537
and (-1.58214, -3.13024)
Fio| [-500, 500] M (3,2), (-2.8051, 3.2831), | 0
(-3.7793, -3.2831) and
(3.5844,-1.8481)
Fy,| [-10,10] U ) 0
Fy,| [-10,10] M (ig_ 0) —10.872300

five chaotic maps discussed in section III.

Fi = ShiftedSphere = > . ROELS
=

n
F> = Rastrigin = Z (xi2 — 10cos 2mx;) + 10)
i=1

. 1 = 2 z Xi
F3 =Gr1ewank=(m ;xi ) - (H cos (\7) +1
n
F4 = Exponential = — exp (—0.5 lez)
i=1

n—1
Fs = Rosenbrock = > [100(xi11 — x7)° + (x; — 1]
i=1

F¢ = Salamon = 1 — cos(Zn‘/zr,l 1)cl.z) +O.1,/Z{1 1xi2
= 1=

_ I N P )
F7 = Csendes = Zi:l x;(2 4+ sin (Xi))
. n 2
Fg = Qing = zi:O (xl-2 —1)
F9 = Bird = sin (x1) e=cost)? | cog (x2) e(=sin(x)?

+ (x1 —x2)?

Fio = Himmelblau = (12 + x5 — 11)° + (x; +22 —7)
Fi1 = Cube =100(x — x3)° + (1 — x1)2

200

xf+ay )
Fp = TesttubeHolder = —4(sin (x1) cos (x2) eCOS( )

The bounds for these standard functions [31], the modal-
ity of these functions-Unimodal (U) or Multimodal(M), the
global minimum point, and the global minimum value of
these functions are given in Table 2. Figure 23 presents a
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TABLE 3. Best, Worst and Standard deviation of the minimum function
value obtained for the functions using the Chebyshev, the Cubic and the
ICMIC (B: Best; W: Worst; SD=Standard deviation).

Chebyshev Cubic ICMIC
B W SD B w SD B w SD

F| o 0 0 0 0 0 0 0 0
F, |0 0 0 0 0 0 0 0 0
F |0 0 0 0 0 0 0 0 0
F -1 -1 1.41E- -1 -1 8.00E- -1 -1 7.10E-

4

15 16 16

|0 674E- | 4776- | 154E- | 5.6AE- | 38SE- | 3.08E- | 277B- | 196E-

5 28 28 29 28 28 30 27 27
Fe | 0 0 0 0 0 0 0 0 0
F, | © 0 0 0 0 0 0 0 0
F. | 1206~ | 120E- | 0 T20E- | 120E- | 0 T20E- | 120E- | 0

8 | 28 28 28 28 28 28

TABLE 4. Best, Worst and SD of the minimum function value obtained for
the functions using the Neuron and the Sine maps (B : Best; W : Worst;
SD : Standard deviation).

Neuron map Sine map
B w SD B W SD
F |0 0 0 0 0 0
F, | © 0 0 0 0 0
F |0 0 0 0 0 0
F | 1 1.39E-15 1 Bl T41E-15
Fy | 127ED 233E27 1.63E-27 0 4.56E-28 3.22E28
F, | © 0 0 0 0 0
F, | © 0 0 0 0 0
Fg | 120E28 120E-28 0 120E-28 120E-28 0

TABLE 5. Minimum point and minimum value obtained in stage 1 and
stage 2 of the proposed algorithm (HCPSA) using neuron map.

Stagel Stage2
Minimum Point Minimum | Global Minimum Global
value Point Minimum
value

F, (1.2388, 1.2388) 0.6363 (1.2) 0
F, (0.0043, 0.0043) 0.0077 [-9.54e-10, -9.54e-10] 0
Fy (0.0918, 0.0918) 0.0063 [9.56e-09, 9.56e-09] 0
F, (0.0011,0.0011) 20.9999 [3.25¢-09, 7.72¢-04] ]
Fy (0.9960, 0.9960) 0.0015 [1.000,1.000] 4.93¢-32
F (-0.0549, -0.0549) 0.1245 [0,0] 0
F. (-7.8046¢-04, -7.8046¢-04) 1.1128¢-18 [-6.52¢-55, -6.52¢-55] 0
Fy (-0.4951, -0.4951) 3.6495 [-1-1.41] 1.97e-31
Fy (:2.3552, -2.3552) 2607 [-1.58,-3.13] -106.7645
Fj | (26195,26195) 8.4640 (3,2) 0
Fy, | (08180,08180) 73564 [1.00,1.00] 1.7749¢-30
F, (0.7789,0.7789) 5.4360 [1.57,6.23¢-09] ~10.87230

two-dimensional plot of each of these 12 test functions to
illustrate the modality and nature of the minimum points.
The code for the proposed algorithm with 1000 itera-
tions was run 50 times to find the global minimum of
eight 30-dimensional benchmark functions (F1 to F8). The
best, worst, and standard deviation of the minimum function
value thus obtained by the five chaotic maps are revealed in
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FIGURE 23. Plots of two-dimensional benchmark functions.

tables 3 and 4. The average time to execute the code was less
than two seconds for each function.

24505



IEEE Access

G. S. Rani et al.: Analysis of Chaotic Maps for Global Optimization and a HCPSA for Optimizing the Reliability of a Bank

TABLE 6. Comparison of proposed algorithm with six other algorithms

for finding minimum of five 30-dimensional functions.

TABLE 8. Comparison of accuracy and the computational time while

finding minimum of 2D Rosen Brock function (F;).

Computational Global
time (seconds) minimum
value
Genetic 45.027 0.00012
Algorithm
Differential 35.38 2.7e-05
Evolution
HCPSA 0.8 2.6e-29

TABLE 9. Best parameters of five maps.

Functions Algorithms Best Worst Mean Std.

Fy Harmony Search 1.8E+00 1.2E+01 5.41E+00 2.79E+00
Improved harmony search 1.9 2.0E+01 6.68E+00 3.42E+00
Global-best harmony 3.8E+08 8.41E-02 1.23E-02 1.97E-02
search
Self-adaptive global-best 3.06E-10 3.64E-09 1.62E-09 8.69E-10
harmony search
Novel global harmony 5.15E-16 5.83E-13 3.69E-14 1.05E-13
search
Chaotic Golden section 0 0 0 0
search Algorithm
HCPSA(Proposed) 0 0 0 0

F, Harmony Search 1.1E+00 1.1E+01 4.6E+00 2.1E+00
Improved harmony search 2.3E+00 1.2E+01 7.0E+00 2.2E+00
Global-best harmony 7.63E-07 1.76E-01 2.79E-02 4.81E-02
search
Self-adaptive global-best 9.11E-08 9.95E-01 1.68E-01 3.76E-01
harmony search
Novel global harmony 2.30E-14 9.9E+01 1.3E+01 3.4E+01
search
Chaotic Golden section 0 0 0 0
search Algorithm
HCPSA(Proposed) 0 0 0 0

Fy Harmony Search 1.0E+00 1.1E+00 1.0OE+00 2.78E-02
Improved harmony search 1.0E+00 1.1E+00 1.0E+00 2.21E-02
Global-best harmony 1.82E-08 2.99E-01 3.50E-02 7.30E-02
search
Self-adaptive global-best 4.37E-04 1.62E-01 6.54E-02 4.00E-02
harmony search
Novel global harmony 0 2.61E-01 0 5.85E-02
search
Chaotic Golden section 0 0 0 0
search Algorithm
HCPSA(Proposed) 0 0 0 0

Fs Harmony Search 5.2E+02 1.2E+04 3.1E+03 2.9E+03
Improved harmony search 9.9E+02 1.3E+04 4.7E+03 2.9E+03
Global-best harmony 1.06E-01 7.5E+03 3.4E+02 1.3E+03
search
Self-adaptive global-best 1.1E-01 8.7E+03 5.8E+02 1.8E+03
harmony search
Novel global harmony 7.3E-04 7.9E+03 7.2E+02 1.7E+03
search
Chaotic Golden section 2.8E+01 2.8E+01 2.8E+01 3.64E-15
search Algorithm
HCPSA(Proposed) 2.2E-30 1.2E-28 6.21E-29 8.45E-29

TABLE 7. Test results on eight benchmark functions of 100, 500 and
1000 dimensions (M: Minimum value, E: Execution time (s), N: No.
of function calls.

D=100 D=500 D=1000
M E N M E N M E N
AK 336 27919 | 0 207 | 95435 | 0 96.400 1506265
F,| 0 325 114185 | 0 242 | 558575 | 0 86347 1123582
A 256 115697 | 188 | 415 | 564185 | Ge- 151.40 1117629
3
e1s 16
AR 230 120672 | -1 233 | 562575 | A1 82937 1107568
F.| 340 | 38 262810 | 756 | 777 | 1928188 | le | 62092 §737268
5| e2s 28 28
Fe| © 252 122622 | 0 254 | 586600 | 0 92,440 1216623
F| 0 325 220556 | 0 199. | 1101760 | 0 76524 2177741
6
F.| 432 | 248 125950 | 486 | 274 | 639392 | 3e- 97.600 1330676
8| 27 25 24

In order to showcase the effectiveness of the hybrid search
with the chaotic search in the first stage, the minimum
obtained in both stages is separately tabulated while searching
for the global minimum of all 12 benchmark functions, using
the proposed algorithm in 1000 iterations. Table 5 presents
these results. The computational strength of the algorithm is
established with the test results on eight benchmark functions
of 100, 500, and 1000 dimensions provided in table 7. The
minimum function value obtained, the execution time, as well
as the number of function calls while running the algorithm
with a neuron map are given in this table.

Chaotic golden section search (CGSS) is presented in the
paper [38] in which the comparative results of CGSS with
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Map Best parameters
Chebyshev map a=38

Cubic map B =259

ICMIC map a=3

Neuron map B =5a=0.50r09
Sine map a=4

TABLE 10. Result for the Rosen brock function for different number of
iterations.

For 30 For 500 For 1000 For 2000
D iterations iterations iterations
Fy 8.45E-15 8.45E-21 8.45E-30

Harmony search, Improved harmony search, Global-best
harmony search, Self-adaptive global-best harmony search,
Novel global harmony search with CGSS are presented to
demonstrate the superiority of CGSS over other algorithms.

In Table 6, we provide the comparative results of our
proposed algorithm with the algorithms in [38] and the CGSS
algorithm. Most algorithms fail to get the global minimum of
the Rosen brock function among the twelve benchmark func-
tions. The computational time and the global minimum point
obtained for using the most popular algorithms- Genetic algo-
rithm (with population size 10000) and Differential evolution
(with population size 10000) are compared with HCPSA in
Table 8. The parameters of different chaotic maps are given
in Table 9.

To showcase how the results of HCPSA vary with respect
to the number of iterations, we are showing in table 10 the
optimum value obtained for the Rosen brock function in
500,1000 and 2000 iterations of HCPSA with the Neuron
map.

A. RESULT ANALYSIS
Tables 3 and 4 show that the proposed algorithm is one of
the best to find the global minimum for all types of functions
using any of the mentioned five chaotic sequences. Among
the different chaotic maps, we had worked on, we found that
these five maps provided sequences that work exceptionally
well for global optimization problems. Among these five
maps, the Cubic map and ICMIC were found to be best for the
exponential function, F4. Sine map and neuron map would be
suggested for functions with trigonometric terms.

The proposed algorithm uses the same chaotic sequence
for all dimensions to reduce the function evaluations and,
thus, the computational time. Due to this reason, the stage
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Logistic Regression

y = 1| Healthy bank

Input the N N Obtainthe
labelleddata  — 5 coefficients
by, by, ..., by
y = OFailedbank X H
Outputs the Maximize the fitness function
Optimal financial _ 1
ratiosx;, X, ..., Xy y= 1 + g ~(Botbyx; +-tbyy)
and the /:I
corresponding ' where by, ... by are the values obtained
Reliability from the previous step using LR

FIGURE 24. Basic framework of the proposed methodology.

one search significantly impacts the search (Table 5), unlike
other chaotic/stochastic searches. Stage two search refines the
search and gives the exact optimum point.

Due to the usage of pattern search in stage 2 of HCPSA,
it is the most appropriate algorithm for higher dimensional
functions. Unlike the other heuristic algorithms, HCPSA can
preserve the accuracy of even 1000-dimensional functions
(Table 5).

From Table 6, it can be noted that our proposed algorithm
(HCPSA) works better than all six algorithms. Particularly
for the Rosen Brock function (F5), even CGSS fails to find
a global optimum, but HCPSA could find it in lesser compu-
tations. The results of two-dimensional F5, given in Table 8§,
prove that the computational time for HCPSA is much lesser
than the most widely used GA and DE. For higher dimen-
sional F5, GA and DE could not even reach the neighborhood
of the global solution.

VI. RELIABILITY OF A BANK

A dramatic increase in of data reported on enterprises’
bankruptcy has occurred nationally and internationally in
recent years. Many large companies, as well as entry-level
firms, have been filing for bankruptcy.

Financial services do not meet the definition of reliability
in its strict sense. Thus, to bridge this gap, the financial ratios
are used in this paper to measure a bank’s reliability.

Here in this section, we analyse the financial ratios for
predicting bankruptcy and thus determine a bank’s financial
stability.

The financial ratios of a bank are under control when a
bank has high reliability. Applying Logistic Regression (LR)
to the previous data from the bank, the reliability function
is obtained, which is then maximized using the proposed
HCPSA. The steps for this are as follows:

Step 1: Estimate the parameters of the reliability function
based on a logistic regression model over the entire data set
and save the results (predictive analytics).

Step 2: The reliability function obtained in stage one with
financial ratios as decision variables is maximized using
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HCPSA (explained in section IV). In each continuous deci-
sion variable, the minimum and maximum values for each
financial ratio in the data are used as lower and upper bounds,
respectively.

The outcome of the proposed algorithm is the optimum
financial ratios that will help the bank to remain healthy by
having maximum reliability.

The basic framework of the proposed methodology is given
in Figure 24.

A. DESCRIPTION OF THE DATA SET

Different banks have different financial ratios. Data from
banks in Spanish, the United Kingdom, and Turkey were
studied for the study. It was found that Spanish banks [26]
suffered the most severe crisis between 1977 and 1985, which
resulted in a loss of twelve billion dollars. This data set
holds 66 banks and their nine financial ratios. Among these
66 banks, 37 went bankrupt, and 29 stayed strong. The nine
financial ratios taken in Spanish bank’s data are

(i) Current Assets/Total Assets

(ii) Current Assets-Cash/Total Assets

(iii) Current Assets/Loans

(iv) Reserves/Loans

(v) Net Income/Total Assets

(vi) Net Income/Total Equity Capital

(vii) Net Income/Loans

(viii) Cost of Sales/Sales

(ix) Cash Flow/Loans.

The UK banks’ data set [26], [42] consists of 60 samples,
30 in good health and 30 in financial trouble. The 12 financial
ratios in the UK banks data set are

(i) Sales

(ii) Profit before tax/capital employed (%)

(iii) Funds flow/Total liabilities

(iv) (Current liabilities + longterm debit)/total assets

(y) Current liabilities/total assets

(vi) Current assets/current liabilities

(vii) Current assets-stock/Current liabilities

(viii) Current assets-current liabilities/total assets

(ix) LAG (Number of days between account year end

and the date of annual report

(x) Age

(xi) changed auditor or not in previous three years

(xii) Has company auditor or not

The Turkish Banks [26], [41], [42] Association posts
49 financial ratios on its website, the ratios and the data
relating to the ratios were attained from the location
http://www.tbb.org.tr/english/bulten/yillik/2000/ratios.xls.
After applying a univariate analysis of variance (ANOVA)
test to those 49 ratios, 12 ratios were calculated and are
given in [41]. The data for these 12 ratios were used for our
experiment. According to thisdata set, 22 banks are healthy,
and 18 went bankrupt. The 12 financial ratios in the Turkish
banks data set are

(i) Interest Expenses/Average Profitable Assets

(ii) Interest Expenses/Average Non-Profitable Assets
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TABLE 11. The financial ratios for the highest reliability obtained.

Dat

Stagel-Logistic

Stage2-Chaotic Chebyshev Pattern search

a Regression algorithm
set
Parameters of Logistic Optimal financial Reliabi Reliability
Regression ratios lity by by PSO
HCPS
A
Spa 9 by = 191382716, X=1[0.7671, 90.9% 89.5%
nish b= 008344141, 0.0883009521484375,
by = — 010437725, 0.807, 0.299, 0.0226,
by = 0.01294489, 0.8109, 0.0278,
by= 016643533, 0.34780146484375,
bs = 0.03124887, 0.183]
bg = 0.70735078,
b, = 0.03303706,
bg = — 093331710,
by = 0.12311964
UK 12 by = —0.1419174800, X = [2857, 99.9% 92%
b, = —0.0000100560, —37.3497,
b, = —0.0275541492, —0.328300, 3.53360,
by = —0.0954533044, 1.48650,0.497400,
by = —0.2471175740, 0.284700, —0.747000
bs = 0.1576719500, 421.000,2,1,0]
be = —0.7797706210,
b; = —0.6952260380,
bg = —0.2455640520,
by = 0.0127544142,
byo = —0.0306457180,
by, = 0.2615038010,
by, = —0.9216310370
Tur 12 by = 0.04950322, X = [2.37964244, 100% 87%
kish b; = —0.04283653, 16.65571138,
b, = 0.70069470, 47.2343231,
zx = —ggéggzég‘; 122.79766497,
b: 009983753, —124.32272136,
b= 028806351, 25.65666827,
b, = —0.43970000, —215.14912132,
bg= 0.25428222, 14.61005686,
by = —0.25383226, 105.41581001,
byp = 032204017, 29.94747963,
byy = 050599222, 57.67638068,
by, = —0.57339864 6.67199326]

(iii) (Share Holders’ Equity+ Total Income)/
(Deposits + Non-Deposit Funds)

(iv) Interest Income/Interest Expenses
(v) (Share Holders’ Equity + Total Income)/Total
Assets
(vi) (Share Holders’ Equity + Total Income)/ (Total

Assets + Contingencies & Commitments)

(vii) Networking Capital/Total Assets
(viii) (Salary- and Employees ' Benefits + Reserve for
Retirement)/No. Of Personnel,
(ix) Liquid Assets/ (Deposits + Non-Deposit Funds)
(x) Interest Expenses/Total Expenses
(xi) LiquidAssets/Total Assets

(xii) Standard Capital Ratio.

The data from each of the banks were used to model
a reliability function using logistic regression, which was
then optimized using HCPSA with a Chebyshev map. The
regression coefficients thus obtained and the optimum val-
ues for the financial ratios for each bank are tabulated in
Table 11.

B. RESULT ANALYSIS

Logistic regression is a simple and reasonably accurate
nonparametric classifier without user-defined parameters or
hyperparameters. That is why our work considers logistic
regression for the approximation of reliability. The compara-
tive results of Table 11 give us another evidence for affirming
the superiority of HCPSA over PSO.
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HCPSA and PSO were run 100 times to obtain the reliabil-
ity value (in percentage). The financial ratios for the highest
reliability obtained are tabulated in Table 11.

Statistical analysis with hundred outputs (reliability val-
ues) of HCPSA and PSO was carried out to statistically
ascertain that the reliability obtained using HCPSA is better
than PSO. The test that was conducted was Mann-Whitney U
Test, with

Hy: Accuracy of PSO > Accuracy of HCPSA

Hj: Accuracy of PSO < Accuracy of HCPSA

The statistical values obtained for the Spanish, UK, and
Turkish banks are -6.069, -4.034, and -3.217. Since the
statistic value in each case lies in the critical region, the
null hypothesis is rejected, and the alternate hypothesis is
accepted, thus giving us evidence for our claim that HCPSA
gives better reliability than PSO.

If the banks keep the optimal financial ratios obtained using
HCPSA as targets, they will be able to achieve high reliability
and stay healthy.

VII. CONCLUSION AND FUTURE RESEARCH
The paper discusses five chaotic maps - Chebyshev, Cubic,

ICMIC, Neuron, and Sine. The Lyapunov exponent value,
a measure of the predictability, sensitivity, and, thus, the
system’s chaos, is evaluated numerically for all these five
maps. The best parameter for the maps is then found based
on the Lyapunov exponent. These parameter values can make
the chaotic map suitable for chaotic optimization algorithms.
The scatter diagram, histogram, probability density function,
and return map for the chosen parameter value of each of the
five maps are also illustrated in the paper. The fixed points for
each map are found and specified in the paper, which could
ascertain the global solution while using the maps in chaotic
optimization algorithms.

A hybrid chaos pattern search algorithm is proposed that
can be used to find the global minimum of a function
using different chaotic maps. Chaotic variables are trans-
formed as optimization variables in the algorithm to search
for the global minimum in the desired interval. Due to
the usage of the same chaotic sequence for all dimensions,
the functional evaluations and computational time is dras-
tically reduced, which makes the proposed algorithm com-
putationally intense. To test the numerical performance of
the proposed algorithm with different chaotic maps, twelve
benchmark functions, some of which are convex and some
non-convex, are tested in this paper. The simulation results
show that the proposed algorithm is highly competent with
good speed too. Also, the comparative results depict that its
performance is better than many other popular algorithms.

The proposed algorithm is a general one. We can get
different algorithms by selecting different chaotic maps in
stage one. Using the Cubic map and the ICMIC map in
stage one of HCPSA gave good results for functions with
exponential terms. Similarly, the Sine map and the neuron
map in stage one gave optimum results for functions with
trigonometric terms. So, a suitable chaotic map needs to be
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chosen based on the optimization function to get the best
results.

A sensitivity analysis is also done with respect to the
number of iterations used in the algorithm.

Later in work, an advanced study of bankruptcy research is
done by combining both predictive and prescriptive analytics.
We employ logistic regression and the proposed HCPSA
algorithm for maximizing bank reliability concerning the
given ratios to define and estimate the bank’s reliability with
a given set of financial ratios. The proposed methodology
is demonstrated to be effective on three well-known bank
datasets. The study recommends the ideal healthy bank sce-
nario, where maximum reliability can be assured if the pre-
scribed financial ratios are targeted and achieved. Maximum
reliability sometimes involves financial ratios reaching the
upper or lower bounds, making the recommendation mathe-
matically meaningful. Comparative results of reliability pre-
diction using HCPSA and PSO are tabulated in the work
along with a non-parametric statistical test to establish that
the proposed algorithm is better in terms of accuracy.

A. LIMITATIONS AND FUTURE SCOPE

Though the proposed chaotic algorithm works well for higher
dimensional functions, every chaotic map may not be suit-
able for every function that has to be optimized. Using the
numerical results that we obtained, we are broadly giving
a conclusion. However, more detailed research is needed to
analyze which map to be used for which function.

Chaotic optimization algorithms for constrained opti-
mization problems are studied very little. Also, currently,
we are using one-dimensional chaotic maps only for
solving two-dimensional optimization problems. Using
two or higher-dimensional chaotic maps for solving
higher-dimensional problems needs to be ventured.

The usage of chaotic optimization for facet two definitions
of the reliability of banks is also a future scope.
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