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ABSTRACT A code over Gaussian or Eisenstein integer residue ring is an additive group of vectors with
entries in this integer residue ring which is closed under the action of constant multiplication by the Gaussian
or Eisenstein integers. In this paper, we define the dual codes for the codes over the Gaussian and Eisenstein
integer residue rings, and consider the construction of the self-dual codes. Because, in the Gaussian and
Eisenstein integer rings, the uniqueness of the prime element decomposition holds in the same way as
the one-variable polynomial rings over finite fields and the rational integer ring, we provide an efficient
construction method for self-dual code generator matrices using that of moduli. As numerical examples, for
Gaussian and Eisenstein integer rings, we enumerate and construct the self-dual codes for the actual moduli
when the size of the generator matrices is two.

INDEX TERMS Codes over rings, dual codes, error-correcting codes, Euclidean domain.

I. INTRODUCTION
There are various studies on the codes over the rational integer
residue rings, summarized in [1]. In [8], the author consid-
ers the codes over quotient rings of Euclidean domains and
investigates the properties of their generator matrices. On the
other hand, in coding theory, the construction and search for
various types of self-dual codes have been studied [3]. In
[7], for codes over rational integer residue rings Z/mZ for
some m ∈ Z, where Z is the rational integer ring, the author
proposes amethod for efficiently obtaining a generatormatrix
for a self-dual code over Z/mZ from generator matrices for
self-dual codes over Z/peii Z, i = 1, · · · , t , according to
prime factorization m = pe11 · · · pett . Recently, new applica-
tions have been proposed for codes over the Gaussian and
Eisenstein integer residue rings in [2], [5], [11], [12], and
[13]. It is expected that the construction and search of a class
of codes according to the purposes become important for
codes over the Gaussian and Eisenstein integer residue rings.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zihuai Lin .

In particular, in the Gaussian and Eisenstein integer rings,
as in the rational integer ring, the uniqueness of the prime
element factorization holds, where a prime element means
an element whose quotient ring by the ideal it generates is
a finite field, and their ideals are principal [4]. However, until
now there has been no knownmethod of constructing a global
one from generator matrices of local self-dual codes, such as
codes over the rational integer residue rings.

In this paper, we propose a method for efficiently obtaining
generator matrices for self-dual codes over the Gaussian and
Eisenstein integer residue rings using prime element factor-
ization. From now on, we denote the Gaussian integer ring
Z
[√

−1
]
or Eisenstein integer ring Z

[
(−1 +

√
−3)/2

]
as

R. Unlike rational integers, because Gaussian and Eisenstein
integers have an involution from complex conjugate, the
prime element π of R is classified into two types, i.e., πR =

πR or gcd(π, π ) = 1, where, for z ∈ C, z means its complex
conjugate. Therefore, any m ∈ R \ {0} can be decomposed
into the product of prime elements uniquely except for the
difference of units R× as follows (cf. Remark 6), where
pi, qj, rk ∈ R are prime elements, ϵ ∈ R×, and ei, fj, gk are
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non-negative integers,

m = ϵ
∏

gcd(pi,pi)=1

peii
∏

qjR=qjR

q
fj
j

∏
gcd(rk ,rk )=1

rgkk rk
gk .

For simplicity, we assume ei = 0, which means that m satis-
fies mR = mR but does not mean that ϵm ∈ Z for some ϵ ∈

R×, e.g., 1 +
√

−1 = −
√

−1
(
1 +

√
−1
)
for 1+

√
−1 ̸∈ R×.

Then we show that the self-dual code over R/mR gives those
over R/q

fj
j R and over R/(rkrk )gkR for all j, k , and conversely,

the self-dual codes over R/q
fj
j R and over R/(rkrk )gkR for

all j, k give that over R/mR, and these correspondences are
inverses of each other. Using these correspondences, we can
efficiently construct and search the generator matrices of the
self-dual codes over R/mR according to the purposes.

The rest of the paper is organized as follows. In Section II,
as preliminaries we summarize facts about the Gaussian and
Eisenstein integer rings used in this paper. Subsection II-A
summarizes the residue rings of these rings and Subsec-
tion II-B summarizes the codes over these residue rings.
Section III defines self-orthogonal and self-dual codes and,
as their first property, describes the treatment of peii above
with ei ̸= 0. Section IV examines how the orthogonality
condition of the generator matrices changes with the modulus
and its decomposition. If a modulus m satisfies mR = mR
in Subsection IV-A, if m = m1m2 with gcd(m1,m2) = 1,
m1R = m1R, and m2R = m2R in Subsection IV-B, and if
m = ww with gcd(w,w) = 1 in Subsection IV-C, we derive
the properties of each generator matrix. Using these results,
we apply the prime element decomposition to self-orthogonal
and self-dual codes in Section V. In Section VI, as numerical
examples, when the size of the generator matrices is two, the
self-dual codes are actually obtained. Subsection VI-A gives
examples for Gaussian integer ring and Subsection VI-B for
Eisenstein integer ring.

II. PRELIMINARIES
A. GAUSSIAN AND EISENSTEIN INTEGERS
Let R = Z[i] = {a+ bi : a, b ∈ Z}, where i =

√
−1, or R =

Z[ω] = {a + bω : a, b ∈ Z}, where ω = (−1 +
√

−3)/2.
If we denote an element z = a+ bi ∈ C or z = a+ bω ∈ C,
then we suppose that a, b ∈ R and we denote ℜ(z) = a and
ℑ(z) = b. For m ∈ R \ {0}, let R/mR = {f + mR : f ∈ R}

denote the quotient ring by an ideal mR.
For anyw, x, y ∈ R and z ∈ Cwithℜ(z) = x and ℑ(z) = y,

let [[·]] : C → R be an arbitrary function satisfying [[f + z]] =

f + [[z]] for all f ∈ R. An example of [[·]] is [[z]] withℜ([[z]]) =

⌊x⌋ andℑ([[z]]) = ⌊y⌋, where ⌊w⌋ ∈ Zwithw−1 < ⌊w⌋ ≤ w.
Remark 1: Let f , g, h, k ∈ R and g ̸= 0.
1) If f = hg+ k , then h = [[f /g]] if and only if [[k/g]] = 0.
2) (f mod g) ∈ R is defined by (f mod g) = f − [[f /g]]g.

Then (f mod g) = (k mod g) if and only if (f −k)/g ∈ R.
The ‘if’ part is shown by, with f − k = hg, (f mod g) =

k + hg − [[(k + hg)/g]]g = (k mod g). We write f ≡

k mod g if (f mod g) = (k mod g). Moreover, we write
g | f if f ≡ 0mod g and g ∤ f if f ̸≡ 0mod g.

3) Two maps R/gR → {k ∈ R : [[k/g]] = 0}, f + gR 7→

(f mod g), and {k ∈ R : [[k/g]] = 0} → R/gR, k 7→ k +

gR, are inverse each other. Thus R/gR can be identified
with {k ∈ R : [[k/g]] = 0}.

Example 1: Let R = Z[i] and [[a + bi]] = ⌊a⌋ + ⌊b⌋i.
If g = 4, then {k ∈ R : [[k/g]] = 0} = {a + bi : a, b =

0, 1, 2, 3}. If g = 2 + i, then {k ∈ R : [[k/g]] = 0} =

{0, i, 2i, 1 + i, 1 + 2i}.
Remark 2 (Cf. [8]): Let R = Z[i], f , g ∈ R, and

g ̸= 0.
1) For an odd rational prime p ∈ Z, there exists a + bi ∈

R with p = |a + bi|2 = a2 + b2 if and only if
p ≡ 1mod 4.

2) |R/gR| = |g|2 by g = a+bi, gR = Z(a+bi)+Z(ai−b),(
a+ bi
ai− b

)
=

(
a b

−b a

)(
1
i

)
, and

∣∣∣∣ a b
−b a

∣∣∣∣ = |g|2.

3) For any w, x, y ∈ R and z = x + iy, define [[z]] ∈ R by
[[z]] = ⌊x + 0.5⌋ + ⌊y+ 0.5⌋i. Then [[f + z]] = f + [[z]].

4) If [[f /g]] = 0, then |ℜ(f /g)|, |ℑ(f /g)| ≤ 1/2 and |f |2 ≤

|g|2/2.
Because of 4 in Remark 2, if we choose [[·]] as 3 in

Remark 2, then {k ∈ R : [[k/g]] = 0} is equal not only to the
set of representatives of R/gR but also to all remainders of
Euclidean division by g, i.e., {k ∈ R : f , h ∈ R, f =

hg+ k, |k| < |g|}.
Example 2: In Example 1, k = 3+3i ∈ {k ∈ R : [[k/4]] =

0} and k = 1 + 2i ∈ {k ∈ R : [[k/(2 + i)]] = 0} do not
satisfy |k| < |4| and |k| < |2 + i|, respectively. If we adopt
[[z]] = ⌊x + 0.5⌋ + ⌊y + 0.5⌋i, then {k ∈ R : [[k/4]] = 0} =

{a+ bi : a, b = −2, −1, 0, 1}, {k ∈ R : [[k/(2 + i)]] = 0} =

{0, ±1, ±i}, and all k ∈ {k ∈ R : [[k/4]] = 0} and k ∈ {k ∈

R : [[k/(2 + i)]] = 0} satisfy |k| < |4| and |k| < |2 + i|,
respectively.
Remark 3 (Cf. [8]): Let R = Z[ω], f , g ∈ R, and g ̸= 0.
1) For a rational prime p ∈ Z, there exists a + bω ∈ R

with p = |a + bω|
2

= a2 − ab + b2 if and only if
p ≡ 1mod 3.

2) |R/gR| = |g|2 by g = a+bω, gR = Z(a+bω)+Z(−b+
(a−b)ω),

(
a+ bω

−b+ (a− b)ω

)
=

(
a b

−b a− b

)(
1
ω

)
, and∣∣∣∣ a b

−b a− b

∣∣∣∣ = |g|2.

3) For any w, x, y ∈ R and z = x + yω, define [[z]] ∈ R by
[[z]] = ⌊x+ 0.5⌋+⌊y+ 0.5⌋ω. Then [[f + z]] = f + [[z]].

4) If [[f /g]] = 0, then |ℜ(f /g)|, |ℑ(f /g)| ≤ 1/2 and |f |2 ≤

3|g|2/4.
5) It is shown in [8] that [[z]] = ⌊x⌋ + ⌊y⌋ω also deduces

|f |2 < |g|2. We adopt [[z]] = ⌊x + 0.5⌋ + ⌊y + 0.5⌋ω
because of our purpose in Remark 10.

Remark 4 (Chinese Remainder Theorem in R): For u1,
u2 ∈ R, if there exist v1, v2 ∈ R such that v1u1 +

v2u2 = 1, then we denote gcd(u1, u2) = 1. If
u1, u2, v1, v2 ∈ R and v1u1 + v2u2 = 1, then R/u1u2R =

v2u2(R/u1R) + v1u1(R/u2R) and (R/u1u2R)× =

v2u2(R/u1R)× + v1u1(R/u2R)×, where, e.g., (R/u1u2R)× =

{f ∈ R/u1u2R : gcd(f , u1u2) = 1}.
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B. CODES OVER QUOTIENT RINGS OF R
For a positive l ∈ Z, let L = Rl = {(c1, · · · , cl) :

c1, · · · , cl ∈ R} and, form ∈ R\{0}, let L/mL = (R/mR)l =

{(c1, · · · , cl) : c1, · · · , cl ∈ R/mR}.
For a subset C ⊂ L/mL, we say that C is a code

over a quotient ring modulo m of R if and only if C is an
R-submodule in L/mL. If C is a code over a quotient ring
modulo m of R, we call C ⊂ L/mL an R-module in short.
For positive k, l ∈ Z, letMk,l(R) denote a ring of all k-by-l

matrices with entries in R and let Ml(R) = Ml,l(R). For G ∈

Ml(R), we say that G is a generator matrix of an R-module
C ⊂ L/mL if and only if LG ⊃ mL and C = LG/mL.
Lemma 1: For any G1,G2 ∈ Ml(R), LG1 ⊂ LG2 if and

only if G1 = MG2 for some M ∈ Ml(R).
Proof: Let G1 =

(
g(1)r,s

)
. Then

LG1 ⊂ LG2

⇐⇒

(
g(1)r,1, · · · , g(1)r,l

)
= mrG2, ∃mr ∈ Rl, 1 ≤ ∀r ≤ l

⇐⇒ G1 = MG2, ∃M ∈ Ml(R). □

It follows from Lemma 1 that, for G ∈ Ml(R), G is a
generator matrix of some R-module in L/mL if and only if
LG ⊃ mL if and only if AG = mI for some A ∈ Ml(R),
where I ∈ Ml(R) is the identity matrix.

Let R×
= {±1, ±i} if R = Z[i] and R×

= {±1, ±ω, ±ω2
}

if R = Z[ω]. Let GLl(R) = {δ ∈ Ml(R) : det(δ) ∈

R×
}. It follows from Lemma 1 that, for G1,G2 ∈ Ml(R),

if LG1 = LG2 ⊃ mL, then G1 = δG2 for some δ ∈

GLl(R). Conversely, for G1,G2 ∈ Ml(R), if G1 = δG2 with
δ ∈ GLl(R), then LG1 = LG2. It is shown in [8] that, for a
generator matrix G ∈ Ml(R) of an R-module C = LG/mL,
among δG, δ ∈ GLl(R), we can choose G = (gr,s) ∈ Ml(R)
which satisfies the following three conditions.

a. G is upper triangular in the sense that gr,s = 0 for all
1 ≤ s < r ≤ l.

b. For all 1 ≤ r ≤ l, gr,r is chosen appropriately among
{ϵgr,r : ϵ ∈ R×

}, cf. Remarks 9 and 10.
c. |gr,s| < |gs,s| for all 1 ≤ r < s ≤ l.
For G ∈ Ml(R) with LG ⊃ mL, we say that G is reduced if
and only if G satisfies the above three conditions. It is also
shown in [8] that, for any R-module C ⊂ L/mL, there exists
uniquely a reduced generator matrix G ∈ Ml(R) with C =

LG/mL.
For m ∈ R \ {0}, let {G}m = {G ∈ Ml(R) :

LG ⊃ mI and G is reduced}, i.e., {G}m is the set of the
reduced generator matrices of all R-modules
in L/mL.
Theorem 1 (Cf. [9]): For m ∈ R \

(
{0} ∪ R×

)
, let m =

ϵ
∏t

x=1 mx , where ϵ ∈ R×, mx ∈ R \ R×, and gcd(mx ,my) =

1 for all 1 ≤ x ̸= y ≤ t . Then there exists a one-to-one and
onto map

α : {G}m →

t∏
x=1

{Gx}mx ,

where LG + mxL = LGx and LG =
⋂t

x=1 LGx . Moreover,

if α(G) = (Gx)1≤x≤t , G = (gr,s), and Gx =

(
g(x)r,s

)
, then

gr,r =
∏t

x=1 g
(x)
r,r for all 1 ≤ r ≤ l.

Remark 5: By Theorem 1, an algorithm which computes
G from (Gx)1≤x≤t is extracted as Algorithm 1 in [9]. If we
estimate the computational complexity of Algorithm 1 as the
total number of operations in R, it is evaluated approximately
asO

(
l3t log |m|

)
, which is the same order as that of multiply-

ing generator matrices in [8].
For G = (gr,s) ∈ Mk,l(R), let G†

= (gs,r ) = G
⊤
, where

a+ bi = a − bi ∈ Z[i] and a+ bω = a + bω2
∈ Z[ω]

are their complex conjugates and, for G = (gr,s) ∈ Mk,l(R),
G⊤

= (gs,r ) ∈ Ml,k (R) is its transposed matrix. We denote

Ĉ =

{
a ∈ L/mL : m |a(b†), ∀b ∈ C

}
=

{
a ∈ L/mL : m |a(G†)

}
,

where, for A = (ar,s) ∈ Mk,l(R), m |A means m | ar,s for all
1 ≤ r ≤ k and 1 ≤ s ≤ l. Then an R-module Ĉ is called the
dual R-module of C .
Lemma 2 (Cf. [10]): Consider a homomorphism of

R-modules

L/mL → L/mL , a 7→ a(G†).

Let C̃ = (mL + LG†)/mL, i.e., the image of this map. Then
there exists an exact sequence of R-modules

0 → Ĉ → L/mL → C̃ → 0

and an equality
∣∣Ĉ∣∣ ∣∣C̃∣∣ = |L/mL|.

Lemma 3 (Cf. [8]): For any A ∈ Ml(R) with det(A) ̸=

0, |L/LA| = | det(A)|2. In particular, if G ∈ Ml(R) is a
generator matrix of an R-module C ⊂ L/mL, then |C| =

|L/mL|/| det(G)|2 = |m|
2l/| det(G)|2.

III. SELF-ORTHOGONAL AND SELF-DUAL CODES
We say that an R-module C = LG/mL is self-orthogonal
if and only if C ⊂ Ĉ , which is equivalent to m | G(G†).
We denote {G}

†
m =

{
G ∈ {G}m : m |G(G†)

}
.

Remark 6: Any m ∈ R \ {0} can be decomposed into the
product of prime elements uniquely except for the difference
of units R× as follows, where pi, qj, rk ∈ R are prime
elements, ϵ ∈ R×, and ei, fj, gk are non-negative integers,

m = ϵ
∏

gcd(pi,pi)=1

peii
∏

qjR=qjR

q
fj
j

∏
gcd(rk ,rk )=1

rgkk rk
gk (1)

because the prime element π of R is classified into two types,
i.e., πR = πR or gcd(π, π ) = 1 and m can be factored as
follows.

• If gcd(π, π ) = 1, πh
|m, πh+1 ∤m, and π ∤m for positive

h ∈ Z, then peii = πh.
• If πR = πR, πh

| m, and πh+1 ∤ m for positive h ∈ Z,
then q

fj
j = πh.

• If gcd(π, π ) = 1, πh
|m, πh+1 ∤m, πh

|m, πh+1 ∤m for
positive h ∈ Z, then rgkk = πh.
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• If gcd(π, π ) = 1, πh
| m, πh+1 ∤ m, π l

| m, π l+1 ∤ m
for positive h, l ∈ Z with h < l, then rgkk = πh and
peii = π l−h.

Furthermore, any m ∈ R \ {0} satisfy m = uvww for
some u, v,w ∈ R with vR = vR and gcd(u, u) =

gcd(w,w) = gcd(u, vw) = gcd(v,m/v) = gcd(w,m/w) =

gcd(w,m/w) = 1 by u =
∏
peii , v =

∏
q
fj
j , and w =

∏
rgkk .

Proposition 1: Let m ∈ R \ {0} satisfy m = uvww as in
Remark 6. Then {G}

†
m =

{
uG′

: G′
∈ {G′

}
†
m/u

}
. In particular,

for u ∈ R \ {0} with gcd(u, u) = 1, {G}
†
u = {uI }.

Proof. Consider a map {G′
}
†
m/u → {G}

†
m, G′

7→ uG′. For

G′
∈ {G′

}
†
m/u, because A

′G′
= (m/u)I for some A′

∈ Ml(R)
and (m/u) | G′(G′†), A′uG′

= mI and m | uG′(uG′†). Thus
uG′

∈ {G}
†
m. Conversely, for G ∈ {G}

†
m, because AG = mI

for some A ∈ Ml(R) and m | G(G†), m | G(G†)(A†) = Gm
and u | Gu. It follows from gcd(u, u) = 1 that u | G. Then
A(G/u) = (m/u)I and (m/u) | (G/u)((G/u)†)u. It follows
from gcd(u, vw) = 1 that vw | (G/u)((G/u)†), which leads
(m/u) | (G/u)((G/u)†) and G/u ∈ {G′

}
†
m/u. □

Example 3: If l = 1, π = 2 + i, and m = ππ2, then
m = uvww with u = π , v = 1, and w = π . Then
{G′

}m/u = {1, π, π, 5} and {G′
}
†
m/u = {π, π, 5}. On the

other hand, {G}m = {1, π, π2, π, ππ, ππ2
} and {G}

†
m =

{π2, ππ, ππ2
}. Thus u{G′

}
†
m/u = {G}

†
m.

We say that C is self-dual if and only if C = Ĉ . We denote
{G}

‡
m =

{
G ∈ {G}

†
m : C = LG/mL = Ĉ

}
.

Remark 7: The self-dual version of Proposition 1 does not
hold in general. In Example 3, {G′

}
‡
m/u = {π, π} but {G}

‡
m =

{π2
} because, for G′

= π , uG′
= 5 and

Ĉ = {c ∈ R/5πR : 5π |c5 ⇔ π |c}

= πR/5πR = R/5R ⫌ C = Rππ/5πR = πR/5R,

for G′
= π , uG′

= π2 and

Ĉ = {c ∈ R/5πR : 5π |cπ2
⇔ π2

|c}

= π2R/5πR = R/πR = C = Rπ2/5πR = R/πR,

and, for G′
= 5, uG′

= π5 and

Ĉ = {c ∈ R/5πR : 5π |cπ5 ⇔ π |c}

= πR/5πR = R/5R ⫌ C = Rπ5/5πR = {0}.

However, if gcd(u, vww) = 1 in m = uvww, then u{G′
}
‡
m/u =

{G}
‡
m as shown in Corollary 1.
Lemma 4: Let the assumption be as in Proposition 1. Sup-

pose gcd(u,m/u) = 1. If G′
∈ {G′

}m/u, then Ĉ ′ → Ĉ ,
c′ 7→ uc′, is one to one and onto, where

Ĉ ′ =

{
c′ ∈ L/(m/u)L : (m/u) |c′(G′†)

}
,

Ĉ =

{
c ∈ L/mL : m |cu(G′†)

}
.

Proof: For c′ ∈ Ĉ ′, uc′ ∈ uL/mL ⊂ L/mL, (m/u) |

c′(G′†), and m | uc′(G′†) | uc′u(G′†) imply uc′ ∈ Ĉ .

Conversely, for c ∈ Ĉ , it follows from m | cu(G′†) and
gcd(u,m) = 1 that m | c(G′†). Then m | c(G′†)(A′†) = cm/u
implies u | c. If c′ = c/u, then c′ ∈ L/(m/u)L, m | c(G′†) =

uc′(G′†), (m/u) |c′(G′†), and c′ ∈ Ĉ ′. □
Corollary 1: Let the assumption be as in Proposi-

tion 1. Suppose gcd(u,m/u) = 1. Then {G}
‡
m ={

uG′
: G′

∈ {G′
}
‡
m/u

}
. In particular, for u ∈ R \ {0} with

gcd(u, u) = 1, {G}
‡
u = {uI }.

Proof: ForG′
∈ {G′

}
‡
m/u, becauseC

′
= LG′/(m/u)L →

LuG′/mL = C , c′ 7→ uc′, is one to one and onto, it fol-
lows from Lemma 4 that uG′

∈ {G}
‡
m. Conversely, for

G ∈ {G}
‡
m, it follows from Proposition 1 and Lemma 4 that

G/u ∈ {G′
}
‡
m/u. □

As shown in Proposition 1 and Corollary 1, under certain
conditions, u{G′

}
†
m/u = {G}

†
m and u{G′

}
‡
m/u = {G}

‡
m. Because

the decision of {G}
†
m and {G}

‡
m results in the decision of

{G}
†
m/u and {G}

‡
m/u, from now on we assume ei = 0 in (1),

in other words, mR = mR.

IV. PROPERTIES OF GENERATOR MATRICES
A. THE CASE OF mR = mR
Assumption 1: In this subsection, we assume that a fixed

m ∈ R\ {0} is conjugate-invariant, i.e., mR = mR, if and only
if m = ϵm for some ϵ ∈ R×.
Proposition 2: A generator matrix of C̃ is equal to G†,

in other words, C̃ = LG†/mL. In particular,
∣∣Ĉ∣∣ |C| =

|L/mL|.
Proof: It follows from AG = GA = mI that

G†A† = A†G†
= mI = ϵmI . Then C̃ = (mL + L

G†)/mL = LG†/mL. □
Remark 8: If mR ̸= mR, then

∣∣Ĉ∣∣ |C| ̸= |L/mL| in
general. For example, if l = 1 and G = 2 + i ∈ {G}2+i, then
LG/(2 + i)L = {0} ⊂ L/(2 + i)L = {0, ±1, ±i}. Moreover
Ĉ = {a ∈ L/(2 + i)L : (2 + i) | a(2 − i)} = {0}. Thus
1 =

∣∣Ĉ∣∣ |C| ̸= |L/mL| = 5.
Proposition 3: A generator matrix of Ĉ is equal to A†,

in other words, Ĉ = LA†/mL.
Proof: It follows from A†G†

= G†A† = ϵmI that (mL+

LA†)/mL = LA†/mL ⊂ Ĉ . On the other hand, it follows
from G†A† = ϵmI and Proposition 2 that

∣∣∣LA†/mL
∣∣∣ =∣∣∣det(G†)

∣∣∣2 = |det(G)|2 = |L/mL|/|C| =
∣∣Ĉ∣∣. Thus

LA†/mL = Ĉ . □
Proposition 4: Assume that m = p is a rational prime

and R/mR is a finite field, which occurs if and only if
p ≡ 3mod 4 if R = Z[i] and p ≡ 2mod 3 if
R = Z[ω]. If we identify R/mR = Fp2 , then, for
f ∈ R/mR, f = f p. In particular, if m satisfies the
assumptions, then Ĉ agrees with the Hermitian dual code
C⊥H =

{
c ∈

(
Fp2

)l
: c
(
(dp)⊤

)
= 0, ∀d ∈ C

}
of C as Fp2 -

linear codes, where c ∈
(
Fp2

)l is identified to the vec-
tor c = (c1, · · · , cl) ∈ L/mL = (R/mR)l and dp =

((d1)p, · · · , (dl)p) ∈
(
Fp2

)l .
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Proof: Because f 7→ f belongs to the Galois group of
R/mR = Fp2 over Fp which is generated by f 7→ f p and the
order of f 7→ f is equal to two, f = f p. □

B. THE CASE OF m = m1m2, m1R = m1R, m2R = m2R,
AND gcd(m1, m2) = 1
Assumption 2: In this subsection, we assume that a fixed

m ∈ R \ {0} satisfies m = m1m2 for some m1,m2 ∈ R with
m1R = m1R, m2R = m2R, and gcd(m1,m2) = 1.
Proposition 5: Suppose that G1 ∈ {G1}m1 , G2 ∈ {G2}m2 ,

and G ∈ {G}m satisfy LG = LG1 ∩ LG2. Then m |G(G†) if
and only if m1 |G1(G

†
1) and m2 |G2(G

†
2).

Proof:We first show the ‘if’ part. It follows from LG =

LG1 ∩ LG2 that G = BG1 = DG2 for some B,D ∈ Ml(R).
Then

m1 |G(G†) = (BG1)((G
†
1)(B

†))

m2 |G(G†) = (DG2)((G
†
2)(D

†)).

It follows from gcd(m1,m2) = 1 that m |G(G†).
We next show the ‘only if’ part. It follows from Theorem 1

that LG+ m1L = LG1, which implies BG+ m1D = G1 for
some B,D ∈ Ml(R). Then it follows from m |G(G†) that

m1 |G1(G
†
1) = (BG+ m1D)((G†)(B†) + m1(D†)). □

C. THE CASE OF m = ww AND gcd(w, w) = 1
Assumption 3: In this subsection, we assume that a fixed

m ∈ R \ {0} satisfies m = ww for some w ∈ R with
gcd(w,w) = 1.
Proposition 6: Suppose that G1 ∈ {G1}w, G2 ∈ {G2}w,

and G ∈ {G}m satisfy LG = LG1 ∩ LG2. Then m |G(G†) if
and only if w |G1(G

†
2).

Proof:We first show the ‘if’ part. It follows from LG =

LG1 ∩ LG2 that G = BG1 = DG2 for some B,D ∈ Ml(R).
Then

w |G(G†) = (BG1)((G
†
2)(D

†))

w |G(G†) = (DG2)((G
†
1)(B

†)).

It follows from gcd(w,w) = 1 that m |G(G†).
We next show the ‘only if’ part. It follows from Theorem 1

thatLG+wL = LG1, which impliesBG+wD = G1 for some
B,D ∈ Ml(R). It follows from Theorem 1 that LG + wL =

LG2, which implies EG+wF = G2 for some E,F ∈ Ml(R).
Then it follows from m |G(G†) that

w |G1(G
†
2) = (BG+ wD)((G†)(E†) + w(F†)). □

Corollary 2: Let the assumption be as in Proposition 6.
Suppose G1(G

†
2) = wM for some M ∈ Ml(R). Then

| det(M )| = 1 if and only if | det(G)|2 = |m|
l .

Proof: It follows from the assumption of Proposition 6
and Theorem 1 that det(G1) det(G2) = det(G), and moreover,

| det(M )| = 1 ⇐⇒ | det(G1)|
∣∣∣det(G†

2)
∣∣∣ = |w|

l

⇐⇒ | det(G)| = |w|
l
⇐⇒ | det(G)|2 = |m|

l . □

V. APPLICATION OF PRIME ELEMENT DECOMPOSITION
Theorem 2 (Cf. [9], [10]): For m ∈ R \ {0}, let m =∏t
x=1 vx

∏t+z
y=t+1 wywy, where vx ,wy ∈ R, gcd(vx ,m/vx) =

gcd(wy,m/wy) = gcd(wy,m/wy) = gcd(wy,wy) = 1, and
vxR = vxR for all 1 ≤ x ≤ t and t < y ≤ t + z. Then there
exists a one-to-one and onto map

β : {G}
†
m →

t∏
x=1

{Gx}†vx

×

t+z∏
y=t+1

{(
G(1)
y ,G(2)

y

) ∣∣∣∣∣G
(1)
y ∈ {G}wy ,G

(2)
y ∈ {G}wy ,

G(1)
y

(
G(2)†
y

)
≡ 0I modwy

}
,

(2)

where LG+ vxL = LGx , LG+wyL = LG(1)
y , LG+wyL =

LG(2)
y , and

LG =

(
t⋂

x=1

LGx

)
∩

 t+z⋂
y=t+1

(
LG(1)

y ∩ LG(2)
y

) .

Proof: Define β as α which is paired the factors of
{Gx}mx for mx = wy,wy in Theorem 1 if they are included.
Then it follows from Propositions 5,6 that the images of β

and β−1 are included in both sides of (2), respectively. □
For m ∈ R \ {0} with mR = mR and self-orthogonal C ,

because |C| ≤
∣∣Ĉ∣∣ and |C|

2
≤ |L/mL| by Proposition 2, C

is self-dual if and only if |C|
2

= |L/mL|, which is equivalent
to | det(G)|2 = |m|

l by Lemma 3. Thus, ifmR = mR, {G}
‡
m ={

G ∈ {G}
†
m : | det(G)|2 = |m|

l
}
.

Corollary 3 (Cf. [9], [10]): Let the assumption be as in
Theorem 2. Then there exists a one-to-one and onto map
γ : {G}

‡
m →

∏t
x=1{Gx}

‡
vx
∏t+z

y=t+1{Gy}wy , where LG +

vxL = LGx , LG + wyL = LGy, AyGy = wyI , and LG =(⋂t
x=1 LGx

)
∩

(⋂t+z
y=t+1

(
LGy ∩ LA†y

))
.

Proof: If G(1)
y

(
G(2)†
y

)
= wM for some M ∈ Ml(R)

with | det(M )| = 1, then it follows from G(1)
y A(1)y = wI that

G(2)
y = M†

(
A(1)†y

)
, which implies that, for anyG(1)

y ∈ {Gy}w,

G(2)
y is uniquely determined. Conversely, it similarly follows

from G(2)
y

(
G(1)†
y

)
= wM† that, for any G(2)

y ∈ {Gy}w,

G(1)
y is uniquely determined. Thus, if β is restricted to {G}

‡
m,

then
(
G(1)
y ,G(2)

y

)
=

(
G(1)
y ,M†

(
A(1)†y

))
, LG(1)

y ∩ LG(2)
y =

LG(1)
y ∩ LA(1)†y , and β can be identified with γ . □

VI. EXAMPLES
A. THE CASE OF R = Z[i ]
Remark 9 (Cf. b of the Definition of Reduced G): The

simplest method to decide ϵ ∈ R× of ϵgr,r uniquely in the
reduced generator matrixG = (gr,s) is to beℜ(ϵgr,r ) > 0 and
ℑ(ϵgr,r ) ≥ 0, which is not preserved, however, by multiplica-
tion, e.g., (1+ 2i)(2+ 3i) = −4+ 7i. A congruence equation
ϵgr,r ≡ 1mod t is often used for appropriate t ∈ R to decide
ϵ ∈ R×. In [4], t = (1 + i)3 is adopted.
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In this subsection, we adopt t = 2 + i to treat it similarly
in Z[ω]. Because {k ∈ R : [[k/(2+ i)]] = 0} = {0, ±1, ±i} =

{0} ∪ R×, it is shown that, for g ∈ R with (2 + i) ∤ g, there
exists a unique ϵ ∈ R× such that ϵg ≡ 1mod (2 + i), and
for g = ε(2 + i)e with ε ∈ R×, we choose ε−1g = (2 + i)e.
By the unique factorization in R, for g ∈ R \ {0}, there exists
a unique ϵ such that ϵg = (2 + i)e0ge11 · · · geaa with positive
e0, · · · , ea ∈ Z, where, for 1 ≤ b ≤ a, gb ≡ 1mod (2 + i)
andR/gbR is a finite field. For example, 1+2i ≡ −i, 2+3i ≡
1mod (2+ i) and i(1+2i)(2+3i) = −7−4i ≡ 1mod (2+ i).
Example 4: We determine the self-dual R-modules in

L/3L for l = 2. If C = LG1/3L is self-dual, then

| det(G1)| = 3. Thus G1 =

(
−3i 0
0 1

)
or G1 =

(
1 g
0 −3i

)
for some g ∈ R, but

(
−3i 0
0 1

)(
−3i 0
0 1

)†
̸≡ 0I mod 3. On the

other hand,

G1G
†
1 =

(
1 g
0 −3i

)(
1 0
g 3i

)
=

(
1 + |g|2 3ig
−3ig 9

)
≡ 0I mod 3

if and only if |g|2 ≡ 2mod 3. If we choose R/3R = {g1+g2i :
g1, g2 = 0, ±1} by 3 of Remark 1, |g|2 ≡ 2mod 3 if and only
if g = ±1 ± i and ±1 ∓ i. Thus there exist four self-dual
R-modules LG1/3L with

A1G1 =

(
3 ±1 ∓ i
0 i

)(
1 ±1 ± i
0 −3i

)
=

(
3 ∓1 ∓ i
0 i

)(
1 ±1 ∓ i
0 −3i

)
= 3I .

Example 5: We determine the self-dual R-modules in
L/5L for l = 2. Because 5 = (2 + i)(2 − i) with −(2 + i) +

(1 + i)(2 − i) = 1, we have to determine first all R-modules
in L/(2 + i)L and second the self-dual ones in L/5L by
Corollary 3. If we choose R/(2 + i)R = {0, ±1, ±i} by 3
of Remark 1, all R-modules in L/(2 + i)L are LG0/(2 + i)L
with

A0G0=

(
1 0
0 2 + i

)(
2 + i 0
0 1

)
=

(
2 + i 0
0 1

)(
1 0
0 2 + i

)
=

(
2 + i 0
0 2 + i

)(
1 0
0 1

)
=

(
1 0
0 1

)(
2 + i 0
0 2 + i

)
=

(
2 + i ∓1
0 1

)(
1 ±1
0 2 + i

)
=

(
2 + i ∓i
0 1

)(
1 ±i
0 2 + i

)
= (2 + i)I .

Consider G0 =

(
2 + i 0
0 1

)
. Then A†0 =

(
1 0
0 2 − i

)
and

LG2 = LG0 ∩ LA†0 with G2 =

(
2 + i 0
0 −2 + i

)
. Similarly,

if we consider G0 =

(
1 0
0 2 + i

)
, then G2 =

(
−2 + i 0

0 2 + i

)
.

If G0 =

(
1 0
0 1

)
, then G2 =

(
−2 + i 0

0 −2 + i

)
. If G0 =(

2 + i 0
0 2 + i

)
, then G2 =

(
2 + i 0
0 2 + i

)
.

Next, consider G0 =

(
1 ±1
0 2 + i

)
. Then A†0 =

(
2 − i 0
∓1 1

)
=(

2 − i ∓1
∓1 0

)(
1 ∓1
0 −2 + i

)
. If LG2 = LG0 ∩ LA†0, i.e.,(

1 g
0 −5

)
=

(
1 a
0 −2 + i

)(
1 ±1
0 2 + i

)
=

(
1 b
0 2 + i

)(
1 ∓1
0 −2 + i

)
,

then g = ±1 + a(2 + i) = ∓1 + b(−2 + i), i.e., ±2i =

±1+ (±i)(2+ i) = ∓1+ (∓i)(−2+ i). ThusG2 =

(
1 ±2i
0 −5

)
.

Finally, consider G0 =

(
1 ±i
0 2 + i

)
. Then A†0 =(

2 − i 0
±i 1

)
=

(
2 − i ∓i
±i 0

)(
1 ∓i
0 −2 + i

)
. If LG2 = LG0 ∩

LA†0, i.e., (
1 g
0 −5

)
=

(
1 a
0 −2 + i

)(
1 ±i
0 2 + i

)
=

(
1 b
0 2 + i

)(
1 ∓i
0 −2 + i

)
,

then g = ±i + a(2 + i) = ∓i + b(−2 + i), i.e., ∓2 = ±i +

(∓1)(2+ i) = ∓i+ (±1)(−2+ i). Thus G2 =

(
1 ∓2
0 −5

)
. Thus

there exist eight self-dual R-modules LG2/5L with

A2G2 =

(
±2 − i 0

0 ∓2 − i

)(
±2 + i 0

0 ∓2 + i

)
=

(
±2 − i 0

0 ±2 − i

)(
±2 + i 0

0 ±2 + i

)
=

(
5 ±2i
0 −1

)(
1 ±2i
0 −5

)
=

(
5 ±2
0 −1

)(
1 ±2
0 −5

)
= 5I .

Example 6: Because 15 = 3(2 + i)(2 − 1), all self-dual
R-modules LG/15L are derived from self-dual R-modules
LG1/3L and LG2/5L by LG = LG1 ∩ LG2. We compute

G with G1 =

(
1 1 + i
0 −3i

)
and G2 =

(
1 2
0 −5

)
. If LG =

LG1 ∩ LG2, i.e.,(
1 g
0 15i

)
=

(
1 a
0 −5

)(
1 1 + i
0 −3i

)
=

(
1 b
0 −3i

)(
1 2
0 −5

)
,

then g = 1+i−a3i = 2−b5, i.e., 7−5i = 1+i−(2+2i)3i =

2 − (−1 + i)5. Thus G =

(
1 7 − 5i
0 15i

)
and

AG =

(
15 5 + 7i
0 −i

)(
1 7 − 5i
0 15i

)
= 15I .

B. THE CASE OF R = Z[ω]
Remark 10 (Cf. b of the Definition of Reduced G): In [4],

a congruence equation ϵg ≡ 2mod 3 is used to decide ϵ ∈ R×

of ϵg uniquely for g ∈ R with gcd(g, 3) = 1.
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In this subsection, if gcd(gr,r , 3 + ω) = 1, we adopt
ϵgr,r ≡ 1mod (3 + ω) to decide ϵ ∈ R× of ϵgr,r uniquely in
the reduced generator matrix G = (gr,s). Because {k ∈ R :

[[k/(3+ω)]] = 0} = {0, ±1, ±ω, ±(1 + ω)} = {0}∪R×, it is
shown that, for g ∈ R with (3 + ω) ∤ g, there exists a unique
ϵ ∈ R× such that ϵg ≡ 1mod (3+ ω), and for g = ε(3+ ω)e

with ε ∈ R×, we choose ε−1g = (3 + ω)e. By the unique
factorization in R, for g ∈ R\{0}, there exists a unique ϵ such
that ϵg = (3 + ω)e0ge11 · · · geaa with positive e0, · · · , ea ∈ Z,
where, for 1 ≤ b ≤ a, gb ≡ 1mod (3 + ω) and R/gbR is a
finite field.
Example 7: We determine the self-dual R-modules in

L/2L for l = 2. If C = LG1/2L is self-dual, then

| det(G1)| = 2. Thus G1 =

(
2ω 0
0 1

)
or G1 =

(
1 g
0 2ω

)
for

some g ∈ R, but
(
2ω 0
0 1

)(
2ω 0
0 1

)†
̸≡ 0I mod 2. On the other

hand,

G1G
†
1 =

(
1 g
0 2ω

)(
1 0
g 2ω2

)
=

(
1 + |g|2 2ω2g
2ωg 4

)
≡ 0I mod 2

if and only if |g|2 ≡ 1mod 2. If we choose R/(2ω)R =

{0, −ω, 1, 1 + ω} by 3 of Remark 1, |g|2 ≡ 1mod 2 if and
only if g = −ω, 1, 1 + ω. Thus there exist three self-dual
R-modules LG1/2L with

A1G1 =

(
2 1 + ω

0 ω2

)(
1 1
0 2ω

)
=

(
2 1
0 ω2

)(
1 −ω

0 2ω

)
=

(
2 ω

0 ω2

)(
1 1 + ω

0 2ω

)
= 2I .

Example 8: We determine the self-dual R-modules in
L/3L for l = 2. Note that R/3R is not a field because
(−2 − ω)2 = 3(1 + ω). All R-modules C ⊂ L/3L with
|C|

2
= |L/3L| are LG2/3L for

A2G2 =

(
−ω 0
0 3

)(
3(1 + ω) 0

0 1

)
=

(
−1 + ω f ω

0 −1 + ω

)(
−2 − ω f

0 −2 − ω

)
=

(
3 gω
0 −ω

)(
1 g
0 3(1 + ω)

)
= 3I ,

where f ∈ R/(−2−ω)R and g ∈ R/(3(1 + ω))R. Consider

G2 =

(
3(1 + ω) 0

0 1

)
. Because

(
3(1 + ω) 0

0 1

)(
3(1 + ω) 0

0 1

)†
̸≡ 0I mod 3,

LG2/3L is not self-dual.

Next, consider G2 =

(
−2 − ω f

0 −2 − ω

)
. If

G2G
†
2 =

(
−2 − ω f

0 −2 − ω

)(
−2 − ω 0

f −2 − ω

)
=

(
3 + |f |2 f (−2 − ω)
f (−2 − ω) 3

)
≡ 0I mod 3,

then f (−2 − ω) ≡ 0mod 3 and f = 0.

Finally, consider G2 =

(
1 g
0 3(1 + ω)

)
. If

G2G
†
2 =

(
1 g
0 3(1 + ω)

)(
1 0
g 3(1 + ω)

)
=

(
1 + |g|2 g3(1 + ω)
g3(1 + ω) 9

)
≡ 0I mod 3

and we choose R/3(1+ω)R = {0, ±1, ±ω, ±(1+ω), ±(2+

ω)} by 3 of Remark 1, then there is no such g with |g|2 ≡

2mod 3.
Thus there exist one self-dual R-module LG2/3L with

A2G2 =

(
−1 + ω 0

0 −1 + ω

)(
−2 − ω 0

0 −2 − ω

)
= 3I .

Example 9: All self-dual R-modules LG/6L are derived
from self-dual R-modules LG1/2L and LG2/3L by LG =

LG1∩LG2. We computeGwithG1 =

(
1 1 + ω

0 2ω

)
andG2 =(

−2 − ω 0
0 −2 − ω

)
. If LG = LG1 ∩ LG2, then

G = G1G2 =

(
−2 − ω −1 − 2ω

0 2 − 2ω

)
,

AG=

(
−2 + 2ω −1 − 2ω

0 2 + ω

)(
−2 − ω −1 − 2ω

0 2 − 2ω

)
=6I .

VII. CONCLUSION
In this paper, for codes over the residue ring with modulo
m ∈ R of Gaussian or Eisenstein integer ring R, we have
proposed a method of constructing self-orthogonal and self-
dual codes from codes modulo powers of prime elements
appearing in the prime-element decomposition of m. In par-
ticular, in Proposition 4, we have shown that, if R/mR = Fp2 ,
the dual code Ĉ ⊂ L/mL corresponds to the Hermitian
dual code over Fp2 . Thus Corollary 3 is an analogue of
[6, Theorem 4.2] and [10, Propositions 3,4] for quasi-cyclic
codes over Fq in the sense that the conjugation in R corre-
sponds to reciprocal polynomials in Fq[x], and Theorem 2
can be said to be its generalization to self-orthogonal codes.
As future works, concerning recent applications using codes
over the residue rings of Gaussian and Eisenstein integers,
we should specifically find useful codes of this types with
high error correction capability according to the communica-
tion channels.
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