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ABSTRACT The role of malware classification is crucial in addressing the explosive increase in malware
variants. By classifying malware instances into malware families, malware analysts can apply appropriate
techniques and tools to handle malware variants in each family. Using high-level representations of malware,
such as disassembled codes, yields meaningful classification performance. However, malware classification
based on disassembled codes depends on the practically implausible assumption that every malware is
correctly reversed by disassemblers. Unfortunately, sophisticated malware, which has anti-disassembly
capabilities, seeks to confuse disassemblers, yielding incorrectly disassembled codes. In this study, we focus
on malware family classification, which requires no disassembly, and propose a new CNN-based malware
classification model using non-disassembled malware files (i.e., binary files). Our model associates two
modalities: ‘‘malware images’’ and ‘‘structural entropies,’’ which are converted and extracted from binary
files. Bothmodalities have different granularities of bytes and chunks that complement each other. Themodel
adopts a cross-modal attention mechanism to combine the features of the two modalities by moderating
their expressive limitations. We validate our model using three popular datasets from the Kaggle Microsoft
Malware Classification, Malimg, and BODMAS datasets. The experimental results show that our model
identifies malware families with a higher degree of accuracy than previous methods and does not require the
burden of disassembling.

INDEX TERMS Malware classification, structural entropy, malware image, deep learning, convolutional
neural network, attention mechanism.

I. INTRODUCTION
The recent increase in remote education and work-from-
home due to the COVID-19 pandemic has introduced
ever-increasing threats to cybersecurity. Social phishing
attacks on new vaccines, government policies, and online
meeting schedules can easily deceive the workforce and
students. Online collaboration platforms can be abused
for the delivery of malware. Moreover, malware has
continued to evolve rapidly. The logic of malware has
become more sophisticated; malicious behaviors exhibited
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by malware samples have increased from 9 to 12 on
average during the pandemic [1]. New business mod-
els, such as malware-as-a-service, provide illegal ser-
vices for pay-for-use malware, making it easier to launch
malware.

With the rapid development of malware, the role of mal-
ware family classification has become essential. A malware
family classifier classifies malware samples into malware
families by exploiting the shared code fragments or com-
mon behavioral patterns, or attack strategies of each family.
This reduces the complexity of the analysis because mal-
ware analysts heuristically know how to dissect malware
samples of each family. In other words, accurate malware
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family classification is indispensable for promptly dealing
with sharp rise in variants of malware families [2], [3].

Deep-learning-based malware family classification has
attracted considerable attention, motivated by the significant
success of deep-learning techniques in the fields of vision and
natural language processing. Malware family classification
models based on deep neural networks outperform conven-
tional machine-learning-based classificationmodels. The for-
mer can learn different levels of features without any expert
intervention, whereas the latter depends on handcrafted fea-
tures selected based on experts’ experience. Owing to their
ability to learn automatically, various features can be used as
inputs for deep-learning-based models, broadly categorized
into dynamic and static features.

Dynamic features [4], [5], [6] refer to the runtime behav-
ior of malware. These features (e.g., a call sequence of
application programming interfaces (APIs), network behav-
ior, memory usage, registry changes, and execution paths)
are extracted by executing malware in a controlled environ-
ment (e.g., a virtual environment). They have the advan-
tage of transparently revealing their maliciousness. How-
ever, dynamic features involve executing malware, which
is time-consuming because the period of execution time
is guaranteed to log useful runtime information. Building
an environment that satisfies the execution conditions for
malware is burdensome. Moreover, sophisticated malware
adopts anti-VM, anti-debugging, and anti-emulation tech-
niques. When they identify the existence of a VM, debug-
ger, or emulator, they stop or behave similar to benign
software.

Static features are directly extracted from binary or disas-
sembled files without executing malware [2], [7], [8]. First,
the static features of the binaries are byte sequences, byte
entropy, histogram, structural entropy, and printable strings.
They were all imprinted with raw bytes of binaries. Thus,
this type of static feature has high applicability because there
are no additional steps (i.e., execution and disassembly).
Second, the disassembled files provide semantic informa-
tion. Static features revealed in disassembled files include
opcodes, control flow graphs, and function call graphs. Their
combination can represent malicious intent. However, these
features largely rely on the capabilities of a disassembler such
as IDA Pro [9]. In most case, Disassembly is not guaranteed
to be correct. The static features captured from incorrectly
disassembled codes would contain false semantic informa-
tion. Even classification models trained on such untrustwor-
thy disassembled codes would degrade their performance.
In particular, disassembling malware accurately is challeng-
ing because of the use of anti-disassembly techniques (i.e.,
packing and obfuscation) that encode, compress, and encrypt
code and malware data. Therefore, the use of static features
in disassembled codes is limited to defending against sophis-
ticated malware families.

Multi-modal learning creates rich feature representations
by combining information from various modalities (e.g.,

images and texts). Complementary information on different
modalities enables a holistic exploration of feature space.
Multi-modal learning is a promising solution for malware
family classification because static and dynamic features
of malware can be represented in diverse modalities (e.g.,
images and sequences of opcodes). HYDRA [10] uses static
features extracted from disassembled codes and binary files.
These are the APIs, opcodes, and raw bytes. HYDRA
has three components to handle these different types of
inputs. Orthrus [11] is a bimodal-based malware classifica-
tion model. It employs two CNNs using two different modali-
ties as input: a byte sequence and an opcode sequence. In [12],
Efficient-Net processed malware images visualized from dis-
assembled files, and 1D-CNN dealt with a byte sequence.
Different CNNs were employed, considering the nature of
different modalities. These multi-modal-based classification
models have proven effective for malware family classifica-
tion because multi-modal learning enhances malware family
models by simultaneously fusing data from diverse modali-
ties. However, whenmulti-modal-based malware family clas-
sification models leverage features extracted from disassem-
bled codes, the classification models inherit the limitations
mentioned above. Therefore, multi-modal models using the
static features of disassembled codes would also have diffi-
culty accurately identifying malware that can deceive disas-
semblers.

In this paper, we propose a novel attention-based cross-
modal model for malware family classification. The goal is
to identify malware families by comprehensively exploiting
the static features of diverse modalities in a non-disassembled
file (i.e., a binary file). Our focus on non-disassembled
files allows the proposed model to process malware without
considering disassembly issues. Our multi-modal approach
uses malware images and the structural entropy of mal-
ware. The former is visualized from binaries with byte
granularity, whereas the latter is calculated from binaries
with chunk granularity (i.e., 512 bytes, 1024 bytes). Each
modality has proven to be effective in various malware
analyses [13], [14], [15].

Moreover, the use of both can compensate for each other;
malware images are sensitive to byte distortions of code
obfuscation techniques, while structural entropy is robust
to byte-level modification because of its chunk-level cal-
culation [15]. In contrast, structural entropy loses detailed
information about byte-level patterns, while malware images
retain byte-level information in pixels. To maximize the
synergy effect through a combination of malware images
and structural entropy, we devised a new attention-based
cross-modal convolutional neural network (CNN) [16]. Two
independent CNNs for images and structural entropy were
employed to yield the respective intermediate representa-
tions. The two representations are fused by the cross-modal
attention module, where they attend to each other to explore
the correspondence between the images and structural
entropy.We compared our model with previous classification
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models to verify its effectiveness and observed performance
improvements.

The main contributions of our research are as follows;

• We noticed that the different granularities (i.e., bytes and
chunks) of malware images and structural entropy could
compensate for each other’s drawbacks. They were cre-
ated from binaries without disassembly, rendering our
model accurate for classifying malware that the disas-
sembler cannot correctly reverse.

• Our cross-modal attention mechanism was devised to
fuse the multi-modal features better. This fusion mecha-
nism allows our model to learn the alignment between
the byte-level and chunk-level features from the two
modalities, thereby creating a representation that con-
tains various levels of information.

• We demonstrate the effectiveness of our malware fam-
ily classification model using three malware datasets.
We compared it with unimodal and multi-modal mod-
els that use different fusion mechanisms. In addition,
our model outperforms previous malware classification
models that use other static features in malware binaries.

The remainder of this paper is organized as follows; Sec-
tion II describes deep-learning-based malware classification
research and related background knowledge. In Sections III
to VII, we explain each component of the proposed classifi-
cation model based on a cross-modal attention mechanism.
Section VIII presents the performance of the proposed mal-
ware classification model on the Kaggle Microsoft malware
classification dataset [17], Malimg [18], and BODMAS [19].
We compared our model with other classification models.
Finally, we conclude the paper in Section IX.

II. RELATED WORK AND BACKGROUND
This section provides previous related works on deep-
learning-based malware analysis, including malware
classification, and the background of our work. The first
two subsections present previous studies on the use of static
features with and without disassembly. Then, we discuss
malware classification models with dynamic features in Sec-
tion II-C. Section II-D. describes how multi-modal learning
for multiple modalities has been used for malware classifica-
tion.

A. MALWARE CLASSIFICATION USING STATIC FEATURES
WITH DISASSEMBLY
Many previous malware classification models depend on
features extracted from disassembled binary files. One of
the main features observed in the disassembled files is the
opcode. By describing the operational meanings of a pro-
gram, an opcode enables us to predict the maliciousness
of disassembled files in many cases. Previous work on
word2vec-based long short-term memory (LTSM) [20] used
opcode sequences and adopted an LSTM to consider the
sequential order of the opcodes appearing in the file. They
encoded opcodes using the word2vec embedding method

and then fed the result representation to the LSTM. Qiao
et al. proposed converting grayscale images using word
vector similarity calculated from opcodes and conveyed to
a CNN for malware classification [21]. Zhang et al. used
five machine-learning methods to classify ransomware fam-
ilies and applied statistical measures to opcode sequences to
obtain latent information. They extracted n-gram sequences
from an opcode sequence and selected meaningful n-gram
sequences [8]. Then they calculated the TF-IDF [8] for the
selected sequence and used n-gram sequences with high
TF-IDF values as features for classification. Rather than the
entire opcode sequence, some previous studies were based
only on the API call sequences from the disassembled binary
code. However, as mentioned earlier, malware developers
adopt anti-disassembly techniques (e.g., obfuscation and
packing techniques) to prevent malware from being analyzed.
Therefore, always extracting high-level static features such
as opcodes and API call sequences from malware samples is
implausible.

B. MALWARE CLASSIFICATION USING STATIC FEATURES
WITHOUT DISASSEMBLY
Some existing studies on malware classification have been
based on features extracted without disassembly. Among oth-
ers, visualized malware images are commonly used as fea-
tures for malware analysis and can be obtained directly from a
binary file. These images are usually fed to a CNN [13], [14],
[22] because CNNs exhibit outstanding performance in image
classification tasks. In [13] and [22], CNN-based malware
classification models were proposed to use a grayscale image
generated by converting byte values between 0-255 into pix-
els as inputs. Xiao et al. [14] proposed a different visualiza-
tion method that injects the structural information of malware
in the PE format into malware images. Thus, they attempted
to reduce malware family misclassification by distinguishing
the different meanings of the same or similar pixel patterns
from different structural layouts. They also adopted a unique
two-phase approach that performs an SVM-based classifica-
tion with the features provided by the CNN-based extractor.
However, malware images suffer from an inherent limitation
of information loss owing to image resizing in classification
models. The distortion caused by obfuscated or encrypted
features can twist distinct patterns that would otherwise be
correctly recognized. Structural entropy is another promising
feature that can be extracted frommalware without disassem-
bly. It is an entropy stream in which all the entropy values
of the chunks of a binary file are calculated. Gibert et al.
used the entropy stream transformed using a wavelet, and
the entropy stream was then fed to the CNN-based malware
classificationmodel [15]. They empirically demonstrated that
entropy streams are resilient to code obfuscation, although
they lose detailed malware patterns. For instance, encryption
causes some parts of malware to have high entropy, whereas
the intentionally inserted dead code for obfuscation usually
has extremely low entropy. To devise a robust method for
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FIGURE 1. Early fusion.

FIGURE 2. Late fusion.

malware family classification with no need for disassem-
bling overhead, we combine malware images and structural
entropy complementarily, which helps analyze modern mal-
ware armed with complicated anti-disassembly techniques.

C. MALWARE CLASSIFICATION USING DYNAMIC
FEATURES
Dynamic features represent the runtime behavior of a pro-
gram. For instance, API calls, network traffic, and snap-
shots of registries are all dynamic features because they are
gathered at runtime. Among these, API calls and opcode
sequences are the most popular because malicious activities
are eventually triggered by APIs and opcodes. Xue et al. [23]
comprised two classifiers based on CNNs and other machine-
learning techniques. Whereas the CNN-based classifier uses
malware images, the other classifier uses variable n-grams
of dynamic API call sequences earned at runtime. Malware
language models [24], [25] were devised to predict the next
system call based on the previous system calls. They treated
API calls similar to normal language models treating words.
Pektaş et al. used API call sequences for malware classifi-
cation. They selected and used meaningful subsequences of
API calls at runtime using a data mining technique instead
of an entire sequence per malware sample [26]. Hansen et al.
proposed a random forest malware classifier using statistical
information about API calls as the input [27]. Pascanu et al.
[24] proposed a recurrent neural network-basedmethod using
sequences of API calls for malware family classification.
Unlike static features, the extraction of dynamic features
requires malware samples to be executed in a virtualized envi-
ronment (i.e., a sandbox). However, sophisticated malware
has evasion functionality that causes the malware’s execution
to stop or behave differently when a virtualized environment
is detected, making it difficult to obtain dynamic features
from malware.

D. MALWARE CLASSIFICATION BASED ON MULTI-MODAL
LEARNING
Multi-modal learning [28] is a deep learning technique that
learns multiple modalities simultaneously. The aim is to

maximize the amount of information by combining various
modalities. The information that cannot be represented by one
modality is complemented by other modalities [10]. Multi-
modal learning combines various modalities in several ways.
Early fusion [28] combined data from different modalities at
a low level, as shown in Fig. 1. The fused data is fed to a
classifier. In late fusion [28], the outputs of the individual
classifiers on different modalities are combined, as shown in
Fig. 2. Many models that use images and text simultaneously
typically adopt multi-modal learning [29]. There are malware
classificationmodels based onmulti-modal learning [4], [10],
[30]. Gibert et al. [10] combined API calls, raw bytes, and
opcodes using the late fusion method to exploit low-level
and high-level information to enhance classification perfor-
mance. Han et al. [4] combined static and dynamic infor-
mation using an early fusion method. They used static API
sequences extracted from disassembled files and dynamic
API sequences logged during the runtime. In [30], the mal-
ware was identified by a multi-modal clustering algorithm
using a PE header, string hashes, IAT, and byte entropy.
Recently, cross-modal learning [29], [31], [32], a new multi-
modal learning method that focuses on the adaptive com-
bination of multiple modalities, has emerged. In the fields
of computer vision and natural language processing, cross-
modal learning has been studied to effectively combine mul-
tiple modalities [29], [31], [32]. In our classification model,
a cross-modal attention mechanism was integrated as a data
fusion method. This allows the data from the two multiple
modalities of malware images and structural entropy to be
flexibly combined to complement each other.

III. OVERVIEW OF ATTENTION-BASED CROSS-MODAL
CNN FOR MALWARE CLASSIFICATION
Our malware classification model is based on CNNs that
learn and recognize the patterns of input data. CNNs are
commonly used for malware detection and classification
[16] because they effectively extract high-level features from
low-level data without auxiliary feature engineering steps.
As mentioned earlier, the proposed model uses malware
images and structural entropy as inputs, which do not require
disassembling malware. The proposed model combines input
multi-modalities by calculating the cross-modal attention
described later in this paper.

Fig. 3 shows the architecture of the proposedmodel. Amal-
ware image is considered to be a sequence of chunks of
fixed byte size, similar to how structural entropy is rep-
resented as a sequence of entropy values of chunks. This
allows cross-modal attention to combining a malware image
and structural entropy by forcing each meaningful chunk to
align independently with the sequences of different modal-
ities. By calculating the cross-modal attention, our model
can obtain reinforced features by extending the dimension
of the features using information from another modality.
A one-dimensional CNN (1D-CNN) was adopted to treat
such a sequence of chunks. The 1D-CNN effectively pro-
cesses sequences because the kernels of the 1D-CNN move
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FIGURE 3. Architecture of attention-based cross-modal CNN.

only over elements of one input dimension. Each shallow
1D-CNN uses the corresponding modality of the input data.
As shown in Fig. 3, the outputs of these shallow 1D CNNs
were subsequently combined using the cross-modal attention
mechanism.

Malware images and structural entropy are commonly
used in malware classification; however, they do not yield
high accuracy because of the aforementioned drawbacks.
As shown in Fig. 4, our model reinforces each modality by
combining malware images with structural entropy to com-
plement each other.

The structural entropy is aligned at each element of the
representation of the malware image (the yellow vector
on the left side of Fig. 4) to overcome the disadvantages
of malware images. Distortion by obfuscation of malware
images is complemented by a structural entropy stream robust
against obfuscation. In contrast, malware image information
is aligned at each element of the representation of structural
entropy (the green vector on the right side of Fig. 4) to over-
come the disadvantage of structural entropy. In other words,
the loss of byte chunks in structural entropy is mitigated
using malware images. As a result, the dimensions of the
latent representations of each modality were extended. The
chunks of a feature in each modality are merged with the
information in other modalities to implement the reinforced
feature. Using these reinforced features, our model learns the
pattern of multi-modal input data while complementing these
two modalities.

However, combining these two modalities is difficult. One
modality’s representation typically has a different length than
that of another. This difference complicates the alignment
of these two representations. Malware images and structural

entropy are both affected by their different lengths. This is
because a malware image was downsampled to create an
acceptable input format for our model. The proposed model
effectively aligns the two representations of a malware image
and structural entropy by applying an attention mechanism
called cross-modal attention to each in this study. As shown
in Fig. 4, cross-modal attention causes the two represen-
tations of different modalities to have the same length for
each modality. In addition, the data for each modality were
reinforced with the other modality data. For a malware image,
the representation of the structural entropy shrinks to the
same length as the malware image according to the degree
of relevance of the individual chunks of the malware image.
Similarly, the representation of a malware image is resized to
that of structural entropy. Cross-modal attention obtains the
relevance of both modalities and propagates it to the oppo-
site modalities. As a result, the reinforced representations
effectively represent the information of the chunks appearing
simultaneously in both modalities.

The reinforced representations were then fed to their cor-
responding the following 1D-CNNs. The 1D-CNNs learn the
patterns of each modality, along with the relevance of one
modality to another. The outputs of the two 1D CNNs were
concatenated into the final feature vector and passed through
the fully connected layer.

The proposed method includes cross-modal attention-
based early fusion that implements low-level interactions
between ‘‘malware image’’ and ‘‘structural entropy’’ and late
fusion that extracts and combines high-level information of
each reinforced representation based on a CNN. An elabo-
rately designed model can provide both early and late fusion
advantages, effectively combining both modalities to identify
malware variants of the same family with high performance.

In Sections IV, V, and VI, we describe the model com-
ponents. In Section IV, we describe the malware image and
structural entropy obtained using the preprocessing method.
Section V describes the cross-modal attention process. Sub-
sequently, we describe other components of the model.

IV. MULTI-MODAL INPUT DATA
A. MALWARE IMAGE
The proposed model learns two modalities using CNNs. The
firstmodality is amalware image. Amalware image is created
by converting each byte of a binary file into a pixel between
0 and 255 without disassembling the file. Then, the image
was downsampled to an appropriate input size for CNN.
Fig. 5. shows an example of a malware image used in this
study. Malware images can effectively represent the overall
information of malware but have the disadvantage of being
heavily influenced by obfuscation and encryption, which can
cause image noise [13].

Most studies have used two-dimensional CNNs (2D
CNNs) for malware image analysis [13], in which the kernels
move in two-dimensional directions. In contrast, we use a
1D-CNN, in which the kernels move in one direction. This
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FIGURE 4. Reinforcement of modality by modality combination.

FIGURE 5. Malware image examples.

FIGURE 6. How to move the kernel in the byte-sequence
direction(1D-CNN).

allows these features to be combined with the results of
structural entropy feature engineering in a direction along
the image, despite their different modalities. However, the
two-dimensional movement directions of kernels in a 2D-
CNN complicate the alignment between the two features
of different modalities. In addition, our internal experiment
shows that the malware family classification model with a 1D
convolutional layer yields an accuracy as high as that of the
existing 2D-CNN-based classification model.

In summary, we created a malware image from a raw
malware binary file by converting each byte into a pixel value
between 0-255. The image was then downsampled into a

resized file of 64C-784 pixels. The kernels in the 1D-CNN
directly access the image in one direction to create low-level
features.

B. STRUCTURAL ENTROPY WITH SECTION INFORMATION
The structural entropy embedding section information is the
second modality we proposed.

Typically, structural entropy is a sequence of entropy val-
ues in the chunks of a file. Structural entropy is calculated
based on the frequency of bytes and has the advantage of
being robust to obfuscation [15]. To obtain the structural
entropy, we divided the malware into chunks and calculated
and extracted the Shannon entropy [33] based on the fre-
quency of bytes in each chunk. The calculation formula is
as follows.

H (x) = −6n
j=1p(xj)log2p(xj) (1)

In (1), n is the maximum value of the byte and is deter-
mined to be 255. X is the byte value from 0 to 255, and
p(xj) is the probability of occurrence within the chunk of X.
The patterns of structural entropy [14] in the same malware
family tend to be similar. Fig. 7 depicts the four structural
entropies of malware samples from the Ramnit and Gatak
families. It was found that malware samples from the same
family had similar shapes.

An executable file in PE format is structured in the form
of headers and sections for execution, as shown in Fig. 8.
Sections serve specific functions during execution. Normally,
each section has a well-known section name, such as.text
or.data. Malware samples belonging to the same family could
have similar section information [14]. In addition, malware
in PE format is usually accompanied by a normal section and
various other sections with unfamiliar names. Thus, section
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FIGURE 7. Structural entropy samples of the same family show similar
patterns: (a) two Ramnit samples have a series of the relatively stable
values around the head while irregular values around the tail. (b) Both
the samples from Gatak family have clear horisontal horizontal lines in
the middle.

FIGURE 8. PE format of exe file: the section table of the file header is an
array of section headers. A section name is defined in the corresponding
section header.

information can help discriminate malware from normal exe-
cutable files.

Unfortunately, typical structural entropy does not con-
tain section information in malware. To overcome this
limitation, we append the corresponding section informa-
tion to the structural entropy as one-hot encoding, as sug-
gested in [34] (shown in Fig. 9.) We categorized sec-
tion names into ‘‘standard (or normal) section names’’
and ‘‘undefined sections.’’ For standard sections, such
as Header,.text,.data,.idata,.rdata,.rsrc,.reloc,.bss,.edata,.tls,
.xdata,.pdata,.sdata, we adopted section names as section
information. For the other sections that mostly appear in
malware, detailed section names are omitted from the section
information, but we encode only the information that it is
an ‘‘undefined section.’’ This is because the detailed names
of the undefined section might be meaningless because the
section names in malware do not follow naming conventions
and are intentionally distorted in many cases.

In summary, a chunk is represented as an entropy value and
a one-hot vector for the 14 sections. Note that the structural
entropy combined with the section information should be
padded or truncated to a fixed length before being fed to

FIGURE 9. Feature engineering method [34].

our CNN model. Consequently, the structural entropy of the
input is represented as a vector of 15×length. The length is
the fixed maximum length for feeding the CNNs structural
entropies.

V. CROSS-MODAL ATTENTION
This section describes the attention mechanism and the archi-
tecture of the proposed cross-modal attention in detail. The
1D-CNN layers for malware images and structural entropies
described in the previous section are followed by the process
of combining the two types of features. Malware images
and structural entropy can compensate for each other when
used simultaneously. Additionally, structural entropy is more
robust against code obfuscation attacks than malware images,
whereas malicious code patterns are usually found in binary
code images rather than structural entropies.

We adopted an attention mechanism for effectively com-
bining these two modalities [35]. It is a concept proposed in
the field of machine translation from a source sentence (i.e.,
input sequence) to a target sentence (i.e., output sequence).
It flexibly calculates the relevance between the input and
output sequences. The relevance score of the source data h
and target data S is determined by the attention vector Wa
using the score function below. The weights of Wa were
learned during the training phase.

score(S, h) = Softmax(h×Wa × ST ) (2)

Finally, the context vector [35] for the target data S is
obtained by multiplying the relevance score by the source
data h, which means that the attention to h for S is calculated.
The attention indicates the relevance of the entire sequence
of source data based on the inner product operation.

In our model, cross-modal attention aligns the information
on a malware image for structural entropy windows and
structural entropy for malware image windows. As shown
in Fig. 10, sequences of different lengths were aligned
when calculating the attention. In the figure, the feature
sequence extracted from a malware image is shorter than
the feature sequence in terms of structural entropy. Because
the cross-modal attention mechanism calculates the context
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FIGURE 10. Example of relevance score calculation of structural
entropy(source) to malware image(target) for alignment.

vectors of each element of the structural entropy (for the
image), the context vectors’ length is defined to match
the malware image length. This indicates that the use of
cross-modal attention is independent of the lengths of the two
source and target sequences.

Fig. 11 shows a portion of the process in which the imaging
modality is reinforced using the relevant information of the
structural entropy from the attentionmechanism. The features
of the solid box in the center depict how to address the
structural entropy for the individual windows of a malware
image. The red matrix in the center is the attention weight
used to obtain the relevance score of the structural entropy
for the malware image. The numbers in red correspond to
those in the equations below. We assume that malware image
sequence x and structural entropy y are combined with cross-
modal attention. The sequences x and y are represented as
follows.

x = [x1, x2, . . . , x784] ∈ R784×64 (3)

y = [y1, y2, . . . , ylength] ∈ Rlength×15 (4)

Each x and y pass through the 1D convolution layers, where
64 kernels of size one convolve. Local features in the indi-
vidual windows belonging to a malware image or structural
entropy are extracted and embedded using 1D convolution
layers. Each element in the resulting sequences has the same
size of 64, forming two sequences of size 784C-64 for a
malware image and of length×64 for a structural entropy,
as shown in (5) and (6).

X = Conv1D(x, k64) ∈ R784×64 (5)

Y = Conv1D(y, k64) ∈ Rlength×64 (6)

Next, sequence X attends to sequence Y using the
cross-modal attention mechanism, and vice versa.We explain
the cross-modal attention in the case of one attention direc-
tion; the target sequence is X, and the source sequence is
Y. Equation (7) indicates the calculation of the relevance of
sequence Y to sequence X. First, we obtain the scores with the
score function, in which Wa denotes the alignment between
sequences X and Y. Then, the relevance score A is determined
by normalizing the result of the score function with a softmax
function.

A = score(X ,Y )

Wa ∈ R64×64

score(X ,Y ) = Softmax(Y ×Wa × XT ) (7)

The next step is to obtain a context vector, a weighted
vector of the structural entropy of the malware image. The
context vector is calculated using Equation (8). The relevant
information of Y for X is summarized by multiplying the
attention weight and Y. Consequently, the context vector is
a weighted sum of the sequence data Y aligned for a window
of X.

C = Y T × A (8)

Finally, the context vectors were concatenated to the cor-
responding windows of X, as shown in (9). Each of the final
vectors contains the information of a window of X and the
information of Y relevant to the window of X.

RX = [X ,C] (9)

In the above operation, the relevant information from Y
to X is extracted as a context vector using the cross-modal
attention mechanism and stacked on X. In other words,
the malware image modality is reinforced by the attention
mechanism. Hereby, the following 1D-CNNs can generate
higher-level information from raw byte sequences of malware
images and entropy value sequences of structural entropy.
This attention operation was also performed in the opposite
direction. The structural entropy modality learns the struc-
tural entropy and malware images aligned in the window step
of structural entropy simultaneously. Therefore, cross-modal
attention effectively combines the two modalities with each
other in a cross manner.

VI. 1D-CONV FOR HIGH-LEVEL FEATURE EXTRACTION
AND LATE FUSION
Modality reinforced with cross-modal attention is repre-
sented as a 128-dimensional vector. The reinforced features
for the two modalities were fed to the 1D CNNs to extract the
higher-level features. Fig. 12 shows the architecture of the
1D-CNN for both modalities.

The 1D CNN had four stacked 1D convolution layers,
each of which used 70 filters of size 3. The output of each
convolution layer was passed through a batch normalization
layer, followed by the ReLU activation function. Finally, the
max-pooling layer with a pooling size of 2×1 and a stride of
2 is the most outstanding feature among the features activated
by the ReLU activation function.

As shown on the right side of Fig. 11, the features that
passed through the 1D convolution layers are concatenated.
The concatenated vector is then fed to the following two fully
connected layers, each comprising 1000 and 300 nodes. The
last layer is structured to classify malware families using a
softmax layer.

VII. TRAINING AND TESTING PHASE
The proposed attention-based cross-modal CNN is an end-
to-end deep learning framework. It has the advantage of
not requiring separate training steps for feature extraction in
different modalities.
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FIGURE 11. Architecture of the proposed model in detail and process of attention to structural entropy (the red numbers in the figure denote the
corresponding equation numbers in Section V).

FIGURE 12. Architecture of 1D CNN for higher-level feature extraction.

The entire process of the proposed model comprises train-
ing and testing phases. In the training phase, multiple data
points were computed using cross-modal attention to com-
plement each other. Our model classifies malware into fami-
lies using a CNN that extracts high-level features and fully
connected layers, as described in Sections IV, V, and VI.
Consequently, the weights in our model were updated. Our
model was trained based on the selected hyperparameters
listed in Table 1.
Next, we evaluate the performance of our model during the

test phase. In the test phase, our model, whose weights were
trained in the training phase, classified malware into fami-
lies based on the dataset. The k-fold validation method was
adopted for evaluation. K-fold validation is a cross-validation
method used when the number of samples is small. It involves
dividing the dataset into k subsets and then using k-1 sub-
sets as training datasets and one subset as the test dataset.
A 10-fold validation method was adopted for the experiment.

TABLE 1. Hyperparameters of proposed models.

TABLE 2. Detail of Microsoft Malware Classification Challenge dataset.

VIII. EXPERIMENTS
In this section, we describe the dataset and evaluate the per-
formance of our proposed model. As mentioned, our model
is evaluated on the Kaggle Microsoft Malware Classification
Dataset [17], Malimg [18], and BODMAS [19] datasets.
We evaluated our model by implementing a baseline model,
especially for the Kaggle Microsoft Malware Classification
Dataset, and compared the performance results with those
of other studies using this dataset. The details of this are
described in the following sections. For the experiment,
we implemented the proposed model using the PyTorch
deep learning framework. The GPU used for training was a
GeForce RTX 3090 with 24 GB of memory.
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TABLE 3. Detail of Malimg dataset.

The performance metrics are accuracy and the F1-score,
a harmonic mean of precision and recall. Each perfor-
mance metric was calculated on a confusion matrix com-
prising true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) values. Accuracy is calcu-
lated as TP+TN/(TP+FP+TN+FN), precision as TP/(TP+FP),
recall as TP/(TP+FN), and F1-score as 2 C- (recallC-
precision)/(recall+precision).

A. DATASET
1) MICROSOFT MALWARE CLASSIFICATION CHALLENGE
DATASET
We used the Kaggle Microsoft Malware Classification Chal-
lenge (BIG-2015) dataset [17]to train and evaluate the per-
formance of our model. Microsoft Malware Classification
Challenge dataset [17] contains 10,868 malware assemblies
and binary files from nine families. Table 2 lists the number of
samples in the Microsoft Malware Classification Challenge
dataset. The bytes of the binary files in Microsoft Malware
Classification Challenge dataset are converted into pixels and
downsampled to generate 64 × 784 malware images. At this
time, ‘‘??’’ bytes are the bytes that cannot be identified, and
in this experiment, we replaced them with FF. Structural
entropy was calculated from the byte values in the binary
file. Our model uses structural entropy embedding section

TABLE 4. Detail of BODMAS-14 dataset.

information, which can be extracted from the file header.
Unfortunately, all header information is missing in Microsoft
Malware Classification Challenge dataset. Accordingly, the
structural entropy of the input is represented as a vector of
14×length. To deal with this limitation, we use the assembly
file that BIG 2015 provides, ending up appending section
information. The maximum length is fixed at 3600 for feeds
into CNN.

2) MALIMG DATASET
The Malimg Dataset [18] contains 9,339 malware samples
from 25 families. These were provided in the form of visu-
alized images. To exploit these two malware modalities,
we need malware images and their structural entropy. How-
ever, we could not collect approximately 1000 malware bina-
ries from the Malimg Dataset from VirusTotal. Therefore,
8,250 binaries were used in this experiment. Table 3 lists
the number of samples in the collected binaries. Malware
images and structural entropies with information about the
respective sections were created from the malware binaries.
The maximum length was fixed at 873 for feeds into CNN.

3) BODMAS-14 DATASET

We use the BODMAS [19] dataset to evaluate the model’s
performance. BODMAS [19] dataset is the most recent open
malware dataset. A total of 57,293 malware binaries and
information on 581 malware families were included. In the
case of some families, the number of samples was small.
Therefore, in this study, 14 families withmore than 1000 sam-
ples were used, named BODMAS-14 in this experiment.
The malware images and structural entropies were extracted
from the byte value of the file, and section information
was extracted based on the header information and one-hot
encoded to generate the structural entropy. The header infor-
mation was not accessible to binary files. In this case, all
sections were treated as unknown. The maximum length was
fixed at 4000 to be fed into the CNN. In total, 34,368 binaries
were used in the experiment. Table 4 lists the details of the
samples used in the experiments.

22898 VOLUME 11, 2023



J. Kim et al.: Attention-Based Cross-Modal CNN Using Non-Disassembled Files for Malware Classification

TABLE 5. Malware classification results of baseline models on the microsoft Malware classification challenge dataset.

TABLE 6. Malware classification results in comparison with other research on the microsoft Malware classification challenge dataset.

B. RESULTS ON MICROSOFT MALWARE CLASSIFICATION
CHALLENGE DATASET

1) PERFORMANCE COMPARISON OF BASELINE MODELS

For evaluation, we compared our model with other malware
classification models that use malware images or structural
entropy. We implemented malware classification models as
a baseline by benchmarking the architectures proposed in
other studies [13], [15]. We implemented a late fusion model
without cross-modal attention that combines malware images
and structural entropy with late fusion to prove the need for
cross-modal attention.

Table 5 shows a performance comparison between our
attention-based cross-modal CNN and the baseline models.
Baselines 1 (B1) and 2 (B2) are the CNNmodels trained using
structural entropy and malware images, respectively. Model
B1 was trained using structural entropy, which appends the
section information of the file using the method proposed
in [34]. Model B3 is a multi-modal CNN model with a late
fusion method in which cross-modal attention is removed
from our model.

As shown in Table 5, the proposed model classifies mal-
ware into families with high performance. The accuracy
was improved up to 1.93, and the F1-score was improved
up to 0.054 compared to the models trained only with one
modality (malware image or structural entropy). The pro-
posed attention-based cross-modal CNN classifies malware

with a higher performance than model B3. These results
prove that the proposed cross-modal attention is an effective
fusion method for compensating for information from mal-
ware images and structural entropy.

Fig. 13. shows the confusion matrix generated based on
the prediction results of each baseline model. Fig. 13. shows
that our cross-modal CNN performed significantly better
than the other models. For the Simda class with a small
number of samples, B1 and B2 classified instances with a
low accuracy of approximately 0.5, whereas the proposed
cross-modal CNN classifies them with an accuracy of 0.904.
B3 also performed better for the Simda class than when only
one modality was used but showed lower accuracy than our
cross-modal CNN concerning the Simda class. In addition,
our model classifies the obfuscator. ACY class with the high-
est accuracy.

2) PERFORMANCE COMPARISON WITH OTHER RESEARCH

Several studies have proposed methods for classifying mal-
ware families. In this section, we compare the malware clas-
sification models of previous studies, with and without dis-
assembly, to our attention-based cross-modal CNN. Table 6
shows the performance comparison between the models, and
all the compared models were evaluated with 10-fold valida-
tion on Microsoft Malware Classification Challenge dataset.
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FIGURE 13. Confusion Matrix of baseline models on Microsoft Malware Classification Challenge dataset (A matrix with a darker main
diagonal is a better confusion matrix).

TABLE 7. Malware classification results of baseline models on the Malimg dataset.

Gibert et al. used command frequency, API, and types
of sections appearing in a file for malware classification
[10]. Mays et al. [37] classified malware families based on
n-gram instructions and malware-image data. In addition, the
Hydra [10] multi-modal model classified malware into fam-
ilies using APIs, instruction sequences, and byte sequences.
As listed in Table 6, the aforementioned studies used static
features with disassembly.

In [13] and [14], malware families were classified using
malware images. In particular, CoLab, which appends section
information to binary files lacking malware images, was

proposed in [14]. MalCVS, trained using CoLab, classified
malware with higher performance when using normal mal-
ware images. Gibert et al. [15] classified malware families
using structural entropy, which was applied using a wavelet
transform. The XGBoost in [39] classifies malware families
based on the API of binary files. These studies classified
malware samples into families despite not using disassembly.

As shown in Table 6, the use of the extracted features
from disassembled malware enables the classification mod-
els to exhibit higher performance than the models based on
non-disassembled malware because disassembled codes have
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TABLE 8. Malware classification results in comparison with other research on the Malimg dataset.

FIGURE 14. The number of true positives on Simda class.

higher-level semantic information than non-disassembled
codes. Nevertheless, our model with cross-modal attention
achieved a competitive high accuracy of 98.72. Above all,
the malware images and structural entropy used in our model
were extracted without a disassembly step.

Most importantly, owing to the use of multi-modal fea-
tures, our model was more robust against data imbalances.
As shown in Fig. 14, for the Simda class, the number of true
positives in our model was 38 out of 42 samples, demon-
strating an accuracy of 90.4, which is the highest accuracy
compared to models from other studies [13], [14], [15] based
on unimodal feature.

C. RESULTS ON MALIMG DATASET

1) PERFORMANCE COMPARISON OF BASELINE MODELS

We implemented B4, B5, and B6 baseline models to compare
the performance of our model as described in the previous
section. Table 7 presents a performance comparison between
the proposed and baseline models. The CNN models, base-
lines 4 (B4) and 5 (B5) were trained using structural entropy,
which appended section information and malware images,
respectively. Baseline 6 (B6) is a multi-modal CNN model
with a late fusionmethod that uses structural entropy andmal-
ware images. Our proposed model showed the highest per-
formance for all the performance metrics. The accuracy was
99.09, and the F1-score was 0.976. As confirmed in the pre-
vious section, we infer that feature fusion using cross-modal

attention is more effective at combining the two modalities
than a simple concatenation of malware images and structural
entropy when our model is compared with B6.

Because of the many malware families in the Malimg
dataset, we excluded a confusion matrix on Malimg. What
is noteworthy in this experiment is the outstanding achieve-
ment of our model for packed samples. Most samples in the
Yuner class of the Malimg dataset were packaged using UPX
packers. Our model perfectly classified the packed samples in
the Yuner A class using only binaries, resulting in an accuracy
of 100%.

2) PERFORMANCE COMPARISON WITH OTHER RESEARCH
In this section, we compare our model with other malware
classification studies using Malimg datasets. Table 8 shows
the performance comparison between the models, and all the
compared models were evaluated with 10-fold validation on
the Malimg Dataset.

Various malware classification studies using Malimg have
been conducted. Nataraj et al. [18] first proposed the Malimg
dataset. In a recent study [40], Mitsuhashi and Shinagawa
proposed a malware classification model based on a pre-
trained model [40].

Table 8 shows the accuracy and F1-score values of six stud-
ies. Unfortunately, our model cannot be compared directly to
the others. We failed to collect all the binaries correspond-
ing to the malware images in the Malimg dataset. As such,
we could not extract structural entropy from some of theMal-
img datasets. We specified in Table 8 the number of samples
used in each study. Nevertheless, the proposed model is con-
sidered a reasonable method; it shows the highest accuracy
and f1-score. This proves that structural entropy accelerates
performance by compensating for information that malware
images cannot express.

D. RESULTS ON BODMAS-14 DATASET
1) PERFORMANCE COMPARISON OF BASELINE MODELS
We implemented the B7, B8, and B9 baseline models to
compare their performance, as described in the previous sec-
tion. Table 9 presents a performance comparison between the
proposed model and baseline models. The performance of
the proposed model was the best. In addition, Table 9 shows
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TABLE 9. Malware classification results in comparison of baseline models on the BODMAS-14 dataset.

higher performance in terms of accuracy and the f1-score than
when only the malware image or structural entropy was used
as training data. As a result, we obtained results similar to
those in the previous sections for the latest malware dataset.
However, no other study has used the BODMAS-14 dataset
in a configuration comparable to ours, so a performance
comparison with other studies could not be performed.

IX. CONCLUSION
In this paper, we propose a cross-modal CNN that classifies
malware families with high performance. The proposed
model is a multi-modal learning-based network simul-
taneously trained using malware images and structural
entropy. Using cross-modal attention, two modalities with
different granularities are reinforced to compensate for
each other’s drawbacks. Our model achieved high accu-
racy for malware families with three different datasets,
even when non-disassembled malware was used. The
experimental results demonstrate that multiple modal-
ities perform better than one modality and that our
cross-modal attention for feature fusion is more effec-
tive than simple fusion. The code of our model is
available at ‘‘https://github.com/PLASLaboratory/Attention-
based-crossmodal-CNN-using-Non-disassembled-Feature-
for-Malware-Classification’’.

Our future work will involve the addition of more modal-
ities. ASCII strings, IP addresses, and import table are
extracted from binary code without disassembly, and they
have semantic information that malware image and structural
entropy do not contain. We plan to make our model accom-
modates these features by considering a new modality.
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