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ABSTRACT Accurate real-time information on road slopes and the capacity to forecast future moment
gradient values are critical for the vehicle control, stability, and driving comfort. Thus, this study proposes
a stacking model method for road slope estimation of electric vehicles. Gated Circulation unit (GRU),
Convolutional Neural Network (CNN), and CNN-GRU are used as the base classifiers, and Multilayer
Perceptron (MLP) is used as a meta-classifier. The vehicle dynamics equations are examined to select the
appropriate parameters to feed into the base classifier for training. The meta-classifier is trained using the
estimated results from the basic classifier. The current slope values are estimated by slicing the training set
by data sampling time and windowing the training data set to predict the future slope values in 2s, 3s, and
4s. Road experiments are conducted, and error indicators are selected for evaluation. The stacking model
is compared with each base classifier, Adaptive Kalman filter, Recursive Least Squares with Forgetting
Factor and Back Propagation Neural Network for estimating the current moment slope, and it is verified that
the stacking model can better estimate the current slope value and outperform the conventional algorithm.
Comparing the stacking model with the predicted results of each base classifier for future time slope
prediction shows that the stacking model is more accurate at predicting the slope values in the short future
time.

INDEX TERMS Electric vehicles, stacking model, gated circulation unit, convolutional neural networks,
road slope prediction.

I. INTRODUCTION

Currently, the world is facing the challenges of environmental
issues and energy crises [1]. Many countries are developing
electric vehicles because of their low energy consumption and
zero pollution [2], [3]. Road slope is an important parameter
of the vehicle control system [4]. Accurate road slope infor-
mation has a significant impact on enhancing the comfort,
safety, and economy of electric vehicles [5], [6]. With the
development of driverless and smart driving technologies, it is
essential to optimize vehicle control techniques by efficiently
forecasting future road slopes [7], [8].
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Numerous academics have studied the estimation of road
slope, and the methods for road slope estimation are mainly
divided into two major categories: One category of the
estimation method is based on additional sensors to mea-
sure the road slope directly or indirectly by inclinometers
[9], GIS [10] (Geographic Information System), GPS [11],
[12], [13] (Global Positioning System), smart phone [14],
accelerometers [15], etc. The other category is the method
based on the dynamics model, in which the road slope is
estimated by various algorithms based on dynamics model.
The Kalman Filter (KF) and its variations [16], [17], [18],
[19], as well as the Recursive Least Squares (RLS) method
and its variations [20], [21], are frequently used; however,
because the dynamics equation couples the mass and slope,
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and because a single algorithm has a poor decoupling per-
formance, the present study focuses primarily on the joint
estimation of the road slope and the entire vehicle mass
by a variety of methods. Kim et al. used the Kalman filter
to first estimate slope, velocity, and acceleration, and then
the estimates were used as recursive least squares inputs to
estimate the vehicle mass [22]; Sun et al. used an extended
Kalman filter to estimate the vehicle mass and slope, and then
used recursive least squares quadratic estimation to weigh the
two estimates to obtain the optimal solution [23]; Chu et al.
combined high-pass filters with recursive least squares to
estimate the whole vehicle mass based on the accurate driving
force of electric vehicles, and later estimated the road slope
by combining kinematics and dynamics [24]; Chen et al. per-
formed slope estimation based on the longitudinal motion
characteristics of electric vehicles by fusing slope informa-
tion from a 1st-order dilation observer with slope information
separated from the acceleration sensor using a forgetting
factor recursive squares method [25]. Li et al. considered the
time-varying friction coefficient and systematic error using
a double forgetting factor recursive least squares method to
first estimate the whole vehicle mass and then the extended
Kalman filter to estimate the road slope [26], Feng et al.
proposed a multi-model multi-data fusion algorithm for slope
estimation [27]. Jiang et al. proposed a two-stage adaptive
road slope and overall vehicle mass estimation method con-
sidering multiple driving resistance factors [28]. With the
development of machine learning, deep learning is widely
used in various fields such as stock prediction [29], electricity
consumption [30], wind power prediction [31], hybrid vehicle
battery state estimation [32], etc. With the rapid development
of machine learning, deep learning can be applied to the esti-
mation of road slopes, Torabi et al. used feedforward neural
networks for road slope estimation in heavy vehicles [33];
Wang et al. proposed an LSTM-based method for estimating
the road slope of fuel cell vehicles [34].

In summary, in the method using additional sensors, the
signal of GIS, GPS and smart phone can be disturbed or
even no signal in the tunnel or forest, the estimation accuracy
in the method using inclinometer, accelerometer depends
on the sensor accuracy and installing high precision sen-
sors in a vehicle might raise the cost of the vehicle. In the
dynamics-based approach, a single algorithm is less effec-
tive in decoupling the dynamics equations, and the variation
of the engine or drive motor torque during vehicle braking
leads to poorer estimation results. The multi-model technique
necessitates sophisticated decoupling calculations, and the
estimation results are influenced by modeling accuracy and
still contain large mistakes when the car is braked. The road
slope value will change with time during the actual driving,
so the road slope value can be regarded as a time-varying
parameters. Deep learning methods has also yielded better
results in time series prediction. Also, neural networks can
take vehicle braking into account in model training to assure
vehicle braking accuracy, and time series can obtain predic-
tions for the future time, which traditional approaches cannot.
The current research method is primarily used to investigate
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current moment slope estimation, with minimal research on
future moment road slope prediction.

Based on the above analysis, this paper proposes a stack-
ing model-based slope estimation method for electric vehi-
cle roads, which uses Gated Circulation Unit (GRU), Con-
volutional Neural Network (CNN), and Gated Circulation
Unit-Convolutional Neural Network (CNN-GRU) as base
classifiers of the stacking model and uses MLP (Multilayer
Perceptron) as a meta-classifier to train the estimation results
of the three base classifiers to obtain the final slope estimation
results. The vehicle driving process is analyzed, and appro-
priate parameters are selected as model inputs. According to
the model characteristics, the input data can be divided into
window forms of different lengths to estimate the current road
slope and predict the road slope in a short period of time in
the future. All model inputs are collected using the vehicle’s
CAN bus, eliminating the need for additional sensors. Model
training is distinct from testing, and the test set can be com-
pleted quickly. To validate the algorithm’s results, an electric
vehicle is chosen for testing, and the integrated model’s slope
prediction is performed using actual CAN bus measurement
data, with the slope prediction results compared to the base
model prediction results.

Il. PROPOSED METHOD

A. FEATURE SELECTION

Define The specific structure and complexity of the neural
network model are determined by the input feature param-
eter selection [35]. Therefore, the electric vehicle dynamic
model is analyzed, and the appropriate feature parameters
are selected as inputs to the algorithm. Analyzing the vehicle
dynamics theory during the vehicle driving process, the total
traction force Fw(t) as

Fw(1) :Faero(t)+F/4(t)+Fgrade(t)+Fa(t) (D

where Fyero(2) is the air resistance, F, () is the rolling resis-
tance, Fgrade(?) is the ramp resistance, F,(¢) is the acceleration
resistance.

The above equation expands to:

T(1)in _ CpApv(t)?
r 2
+ pmgcosO(t) + mgsin6(t) + dma(t) (2)

where T (¢) is the motor torque, i is the gear ratio of the main
reducer in the drive axle of the vehicle, r is the rolling radius of
the wheel, 7 is the mechanical efficiency of the transmission
system, Cp is the air resistance coefficient, A is the windward
area, p is air density, v(¢) is Vehicle speed, u is the rolling
resistance coefficient, m is Vehicle mass, g is the gravitational
acceleration, 6(¢) is road slope, 4 is the conversion coefficient
of vehicle rotating mass, a(t) is Vehicle acceleration.
According to (2), the road slope 6(¢) as can be written as

0(1) = fi(Fw (1), Faero(1), Fa(1)) (€)

During the electric vehicle driving process, the vehicle con-
trol module regulates the power battery output based on the
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accelerator pedal opening degree oy, and the output power
drives the drive motor rotation through the inverter. Vehi-
cle braking requires a braking signal ay,. Electric vehicles
generally use braking energy recovery. The vehicle brake
motor in the transmission unit will convert energy through
the inverter, BDU (Battery energy Distribution Unit) into
electrical energy back to the battery, and then further into
drive energy while providing braking torque so that the motor
swiftly stops the pointless inertia spinning. From the above
process, it can be obtained that the driving force is related to
the drive motor torque, accelerator pedal opening and brake
pedal. Fw(¢) can be written as

Fw(t) = (T (@), dacc(t), Qpralt)) 4

In general, the vehicle mass, rolling resistance coefficient,
air density, air resistance coefficient, windward area, and
gravitational acceleration are basically constant during the
driving processes, and they are regarded as constant. The
motor torque, vehicle speed, vehicle acceleration, accelerator
pedal opening degree, braking signal and road slope are time-
varying parameters that change at any time. Considering that
this paper is to analyze the vehicle driving state variables
to select the appropriate characteristic variables, it does not
involve the relationship between road slope and other quanti-
tative. Thus, the (3) can be reduced to a functional represen-
tation of the time-varying parameters:

0(1) = f((1), a(t), T (1), tace(1), Xora(?)) *)

The motor torque, vehicle speed, vehicle acceleration, accel-
erator pedal opening a,cc(t), and braking signal opr,(t) were
then selected as algorithm inputs, and these parameters are
available from the vehicle CAN bus.

B. STACKING ENSEMBLE LEARNING

Stacking is also known as cascading generalization
method [36]. A two-stage model is used in the stacking
approach. The model in the first stage is a model with the orig-
inal training set as input, called the base model, and several
base models can be trained. The meta-model is the second
stage of the model, which uses the predictions of the base
model on the initial training set as the training set and the
predictions of the base model on the initial test set as the test
set. The training set for each base classifier is the complete
original training set. After training each base classifier, all the
outputs are combined as a new training set to train the second
stage of the meta-classifier. The stacking model architecture
is shown in Fig. 1.

In this paper, GRU [37], CNN [38], and CNN-GRU are
selected as the base classifiers, and MLP is chosen as the
meta classifier. GRU is a type of Recurrent Neural Network
(RNN), which can solve the problems such as the inability
of long-term memory and gradient in backpropagation in
RNN, similar to Long-Short Term Memory (LSTM). Since
LSTM has better time series prediction performance [39] and
GRU has similar performance compared to LSTM. However,
it is easier to compute [40], which largely improves the
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Algorithm: Stacked Ensemble Network for Road Slope Pre-
diction
Input: Training data D = {x;, yi}1<i<n, Test data Dyeg, Sub-
models
QOutput: Result from the stacked ensemble network
Generate probability scores from predictions made by sub-
models (S):
fors =1to S do

Get predictions P based on D"
end for
PG = Concatenation ([P, PP ..., PO)))
Create a new dataset, Dy containing the probability scores
and target labels:
fori=1toN do

Dyes = {P(Sl)v yi }
end for
Train a meta-learner, Mpea With the newly created dataset,
Dey
result = prediction Mpeta
return result

training efficiency and reduces the arithmetic cost, Thus,
GRU is chosen to predict the time-varying series of road
slope. The GRU model used in this paper uses a 3-layer
GRU unit overlay and outputs the results using a fully
connected neural network. CNN is commonly used in the
image field. However, its feature extraction ability can tap
the intrinsic connection between data and reduce the size and
complexity of the original data, so it also has good applica-
tions in sequence processing. 1-dimensional CNN typically
utilizes one-dimensional convolutional kernels to process
1-dimensional data and can efficiently extract features from
fixed-length segments throughout the dataset. 1-dimensional
CNN can also be applied to time series prediction [41].
Empirically, if the variability between the base models to
be combined is significant, then there is usually a better
result afterward. Thus, 1-dimensional CNN is chosen as base
classifier. The CNN model used in this paper uses three con-
volutional layers with three maximum pooling layers super-
imposed on each other and outputs the results through a fully
connected neural network. CNN-GRU is also used for the
estimation of time series [42]. In CNN-GRU, CNN extracts
the effective features of the data, but the extracted features
are more local in focus, and the dependencies of the local
features in the time step can be better captured by feeding
the extracted features through GRU. The CNN-GRU model
utilized in this paper uses two convolutional layers two pool-
ing layers, and three GRU layers, and the results are output
through MLP.

Ill. EXPERIMENTS

A. EXPERIMENT EQUIPMENT

The experiment was conducted on a BAIC EX360 new
energy vehicle, and Table 1 shows the basic parameters
of the vehicle. The experiment equipment includes T-BOX,
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FIGURE 1. Stacking model structure.

TABLE 1. Vehicle parameters.

Dimension mm 4110X1750X1583
Maximum speed 125
Vehicle km/h
Vehicle Mass kg 1480
Tire 205/50 R16
specification
Type Permanent magnet
P synchronous motor
Electric Maximum
80
motor power kw
Maximum
torque Nm 230
Ternary Li-ion
Type Battery
Battery NEDC Pure
electric range 318
km

SD card, and high-precision IMU (Inertial Measurement
Unit). The T-box terminal collects the CAN bus data of the
car at a sampling frequency of 10 HZ through the OBD
(On-Board Diagnostics) module and MCU (Microcontroller
Unit). InVIEW is used as the data analysis and process-
ing software, which reads the real-time vehicle information
acquired by the T-BOX in the SD card. Python is used to
build algorithm model and produce results by inputting test
data into algorithm model. The slope data gathered by the
high-precision IMU is utilized to calculate the real value of
the road grade.

B. EXPERIMENT SECTION AND DATA PROCESSING
In order to better demonstrate the performance of the algo-
rithm and better match the actual road conditions, a road sec-
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FIGURE 2. Experiment routes.

tion with uphill, downhill, flat, straight, and curved multiple
road conditions were selected as the test verification section.
Fig. 2 shows the test verification routes. In the test, the vehicle
was driven along the test section for 2 laps. The first lap
is shown on the left side of Fig 2, and the vehicle driving
from point A to point B along the red line. The second lap
is shown on the right side of Fig 2, and the vehicle driving
from point B to point A along the red line. Total mileage is
5.48km, the average speed is 20.74km/h, and the maximum
speed is 36.48km/h. The vehicle starts from point A, while
the recorder starts to record data. The vehicle travels 2 laps
and reaches point A and stops recording data. Marking by the
recorder when the vehicle reaches point B to distinguish the
first and second lap. The data from 2 laps of the vehicle are
used as the test set and the data from the first lap are used
as the training set. The experimental test set input data are
shown in Fig. 3.

The slope estimation method at the current moment is sim-
ilar to the traditional table prediction. The slope estimation
value is obtained by the data input at the current moment. The
input feature data and label data of the training set are sliced
according to the data sampling time during data processing,
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FIGURE 3. Input data for the test set.

TABLE 2. Estimation results error indicators.

frmsel° MAEP R
STACKING 0.900 0.581 0.920
GRU 1.006 0.687 0.899
CNN 1.384 1.070 0.800
CNN-GRU 1.356 1.049 0.805

and the training set is disturbed during model training to
increase model training accuracy.

Neural networks forecast the slope values at future dates in
a time-series way, in contrast to sensor-based or longitudinal
dynamics-based slope estimation approaches. The data length
of 2s, 3s, and 4s is utilized as the window length while
processing the training set data to divide the feature data
and label data and predict the next slope values of 2s, 3s,
and 4s by producing the data of the window length. Unlike
the table prediction in order to prevent the leakage of future
information in the model training in accordance with the time
series without disrupting the training set.

IV. RESULTS AND ANALYSIS
A. ANALYSIS OF CURRENT SLOPE ESTIMATION RESULTS
In order to evaluate the estimation performance of the algo-
rithm, the estimation results of the proposed algorithm are
compared with the results of GRU, CNN, and CNN-GRU.
Fig. 7 shows the comparison graph of the estimation results,
and frMmsg (root mean square error), MAE (mean absolute
error), and R (Pearson correlation coefficient) are chosen as
the error indicators. The error indicators of the estimation
results at the current moment are listed in Table 2.

The error indicators are expressed as follow:

N
Z‘i X: = Y)?
t=

SRMSE = — N (6)
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FIGURE 4. Current moment estimation results of road slope.

N
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1=
MAE = ¥ @)
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N N
$mﬁ—;x%«mﬁ—;nm
1= =

where X; is Estimated value at moment t, Y; is Measured
values at moment t, N is Total amount of data.

As shown in Fig. 4, the four models can fit the real value
better in both known and unknown road sections. The conven-
tional slope estimation method based on longitudinal dynam-
ics cannot accurately estimate the slope value during braking
due to the influence of torque variation and other factors.
The stacking model can include the braking signal in the
input parameters, so it can still estimate the slope better when
the vehicle is braking. The R values of all four algorithms
shown in Table 2 are greater than 0.8, which indicates that
the estimated results are strongly correlated with the true
values. The stacking model has the highest correlation and
the lowest frmsg and MAE compared to other single models,
which implies that the stacking model has higher estimation
accuracy because the stacking model can weigh the estima-
tion performance of every single model to reach the best esti-
mation result. In the single model, GRU has a lower error and
higher correlation compared to CNN and CNN-GRU. The
possible reason is that GRU can pass the information from the
current moment to the next moment and fully use historical
information in estimating the current road slope value, so it
has better estimation results for time-varying parameters like
slope. Its error index is closer to the stacking model fRmsE,
the MAE difference is about 0.1°, and the R difference is
0.021, which also means that GRU has a higher weight in
the stacking model. The correlation between the CNN and
CNN-GRU estimation results is relatively similar with only a
0.05 difference, and the difference between frvsg and MAE
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FIGURE 6. Future 2s prediction results of road slope.

is only 0.028° and 0.021°, which is because CNN-GRU adds
memory information to CNN feature extraction to improve
the accuracy. CNN, CNN-GRU, and stacking model errors
are much higher than GRU and integrated model errors. fRMsg
differs by 0.484°, 0.456°, MAE differs by 0.489°, 0.468°, and
the difference of Ris 0.120°, 0.125°, which is due to CNN can
extract data features adaptively, and the regularity feature of
road slope feature change is not obvious in some road sections
with rapid slope change.

In order to reflect the advantages of this model over the
traditional algorithm, the estimation results of this model are
compared with the AKF (Adaptive Kalman Filter), RLSF
(the Recursive Least Squares with Forgetting factor) and BP
(Back Propagation Neural Network). the comparison results
are shown in Fig. 5. In comparison to AKF, RLSF and BP, the
stacking model in the figure has the highest degree of fit to
the true value. RLSF as a stable variable estimating approach,
while adding an oblivion factor to the recursive least squares,
is still not ideal for time-varying parameter estimation. AKF
estimation results are closer to the true value, but there are
numerous brakes due to the experimental process, and the
influence of the filter’s response speed leads to larger errors.
BP, as a local search optimization method, is likely to fall
into local extremes, and the “‘sawtooth phenomenon” occurs
when optimizing complex objective functions, thus making
the algorithm inefficient. In summary, this stacking model
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FIGURE 8. Future 4s prediction results of road slope.

estimates the slope more accurately than other single models
and conventional methods, providing a more accurate assess-
ment of the slope at present. All input parameters of the
model are derived from the vehicle CAN bus without adding
additional sensors, and the model prediction and training
are separate for the entire test set, which can be computed
within 0.1s, reducing equipment and computational costs
in practice.

B. ANALYSIS OF SLOPE PREDICTION RESULTS FOR
FUTURE MOMENTS
The prediction results of stacking model are also con-
trasted with those of GRU, CNN, and CNN-GRU for the
prediction of the future moment slope. Fig. 6-8 show the
slope estimation results for the future 2s, 3s, and 4s. Table 3
shows the error indicators of the slope estimation results for
the future 2s, 3s, and 4s.

As shown in Fig. 6-8, both the stacking model and GRU
can fit the true value better, however, CNN and CNN-GRU
have large errors in the first 150s, 450s-480s, and later 250s.
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TABLE 3. Prediction result error indicators.

frmsE/® MAE/° R

STACKING 1.262 0.916 0.840

2 GRU 1.437 1.098 0.806
CNN 1.711 1.308 0.658
CNN-GRU 1.673 1.262 0.684
STACKING 1.252 0.915 0.851

3s GRU 1.413 1.085 0.807
CNN 1.874 1.414 0.575
CNN-GRU 1.857 1.411 0.579
STACKING 1.237 0.876 0.841

4s GRU 1.370 1.005 0.809
CNN 1.913 1.455 0.543
CNN-GRU 1.878 1.420 0.571
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FIGURE 9. Partial enlargement of future 2s prediction results of road
slope.

When the slope value changes rapidly in a short period of time
in the road section, the error magnification of the three time
periods is shown in Figs. 9-11. This may be since the road
slope features of these road sections are not obvious and the
convolution scales the data by dot product operation to extract
features adaptively, this process also ignores some other fea-
tures of the data. CNN, CNN-GRU is better at extracting the
slope features when the slope changes smoothly than when
the slope changes rapidly, and its prediction in the smooth
road sections results are close to the real values.

As shown in Table 3, the training procedure for the future
2s, 3s, and 4s did not disturb the data set in order to prevent
information leaking, which increased each model’s prediction
error when compared to the results of the current moment’s
estimation. The frmsg and MAE values of GRU fall with
increasing prediction time, while the R value grows. The
reason is that as the prediction time and data input to the

22886

slope

Reference values

3 30 60 90 120 150

Time (s)
(a)

6l Is{‘cafccl::::;c values
& 3t
<
R o = < Il
I
O -3¢

-6t

420 450 480 510 540

Time (s)
(b)

"— Reference valles
Stacking

800 850 900 950 1000 1050
Time (s)
©
FIGURE 10. Partial enlargement of future 3s prediction results of road
slope.

Reference values

6 :
Stacking

C 3 ——GRU
3 0fF
I
-3

-6

4 30 0 . 90 120 150
Time (s)
(a)
Reference Values
6 Stacking
——GRU

6 3F —ow
<0
=
Q-3

-6

420 450 480 510 540

Time (s)
(b)
™ Refe lues

of Sucking
<3
3 Ot
s
O -3¢

_6F

800 850 900 950 1000 1050

Time (s)

(0)
FIGURE 11. Partial enlargement of future 4s prediction results of road
slope.

model rise at each step, GRU can mix more data information
with the present information to improve prediction accuracy.
The frmse, MAE, and R values of CNN, CNN-GRU increase
with increasing prediction time because the point multiplica-
tion process ignores more features as the input data increases
and has a more significant impact on the prediction results
for rapid changes in slope. The stacking model’s predic-
tion results are more stable, with minimal variance in error
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indications. As the prediction time increases, the frmsg of the
stacking model decreased by 0.010° and 0.015° relative to the
previous group, MAE decreased by 0.001° and 0.039° relative
to the previous group, with the lowest variation among the
models. However, the R-value of the stacking model is the
highest when predicting the future 3s, which may be due
to the following reasons: According to the change in error
metrics, the maximum frysg and MAE changes of CNN and
CNN-GRU are 0.184°, and the minimum is 0.106° as the
estimate duration grows from 2s to 3s. The maximum fRMmsE
and MAE changes of CNN and CNN-GRU are 0.006°, and the
minimum is 0.041° as the estimation time grows from 3s to
4s. The stacking model enhances the weight of the prediction
results of the CNN and CNN-GRU models since the error
of CNN and CNN-GRU models grows dramatically in the
smooth slope section while the error of GRU increases with
the rise in prediction time. In summary, the stacking model
can better predict the road slope in the future 2s, 3s and 4s.

V. CONCLUSION

In this paper, a stacking model based on GRU, CNN, and
CNN-GRU is proposed. The model integrates the advantages
of GRU memory history information and CNN feature extrac-
tion and obtains the best estimation result by estimating the
weight of each base model. This method only uses the CAN
bus data to predict the road slope with the applicability of
low cost and low computational time. Adding a braking sign
to the model input improves the estimation performance of
the vehicle during braking. The processing of the input data
estimates the present time and forecasts the road slope values
of the 2s, 3s, and 4s slopes in the future.

Experiments demonstrate that the model performs well
in both known and unknown road sections. The correlation
coefficient between the predicted value and the real value of
the model at the current time and the future time is greater
than 0.840 (representing a strong correlation), and the fRMsg
and MAE values are the smallest compared to the estimated
results of each base model. The stacking model currently
has the lowest frmsg and MAE values when compared to the
results of future time prediction. In the prediction of slope at
future moments, the fRvsg and MAE values grow with predic-
tion time, each time within 0.02° and 0.1°, respectively. The
weight of each base model shifts as the prediction time grows,
which results in the highest correlation coefficient between
the predicted and true values in the future 3s. In summary,
this model can better estimate the current moment slope value
and predict the slope value for a short time in the future and
provide a new parameter prediction method for intelligent
control of electric vehicles, unmanned driving, and forward-
looking control of vehicles.
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