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ABSTRACT The attacks and defenses on the information of which website pages are visited by users
are important research subjects in the field of privacy enhancing technologies, they are termed as website
fingerprinting (WF) attacks and defenses. Nowadays, deep learning is an important tool in many research
areas, including WF attacks and defenses. In this paper, we offer a comprehensive survey on deep learning
for WF attacks and defenses. After a brief introduction, we first summarize deep learning, WF attacks, and
WF defenses. For deep learning, we review the common paradigms, architectures, and performance metrics.
For WF attacks, we review the approaches, challenges and solutions. The approaches include deep learning,
traditional machine learning, and other methods. Challenges and solutions cover multi-tab browsing, concept
drift, and the base rate fallacy. For WF defenses, we review the strategies and approaches. Then, we survey
deep learning forWF attacks, and deep learning forWF defenses. In deep learning forWF attacks, we survey
in detail the deep learning paradigms, architectures of WF attack models, and the performance of several
representative WF attack models, and look into the future. In deep learning for WF defenses, we survey the
architecture, efficacy and overhead of deep learning models in WF defenses, and look into the future. In the
end, we summarize this paper.

INDEX TERMS Deep learning, website fingerprinting, WF attack, WF defense.

I. INTRODUCTION
Internet users and web service providers are employing more
and more privacy enhancing technologies (PETs) for secu-
rity reasons and privacy concerns. Among the various tech-
nologies, The Onion Router (Tor) [1] provides anonymous
communication between users and hidden service providers
through layered encryption, and the privacy protection it
provides is regarded as outstanding. However, even Tor still
suffers from traffic analysis attacks like website fingerprint-
ing (WF), which can be carried out to reveal the web-
site pages visited by the user, thus compromising her pri-
vacy. WF adopts deep learning, traditional machine learning
or other methods to achieve its goals. Powered by newly
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developed neural network architectures and emerging learn-
ing paradigms, deep learning achieves impressive results on
WF tasks.

WF attacks pose a great threat to those people who want to
hide their web activities. Inevitably, great efforts are put into
developing defensive measures against these attacks. These
measures alter contents and behavior of the communication to
mislead the attackers. Deep learning and traditional machine
learning methods are vulnerable to adversarial examples,
which incorporate small perturbations enough to change the
expected results. Applying adversarial perturbations to traffic
instances is a practical approach to WF defenses [2]. Adver-
sarial examples can be generated through deep learning or
other methods.

Deep learning emerged and achieved stunning results on
ImageNet classification tasks [3], and had since become a
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powerful tool widely adopted in various domains. The ability
to learn representations of data through multiple levels of
abstraction lays foundation for the success of deep learn-
ing [4]. As mentioned above, deep learning underpins most
state-of-the-art WF attacks, and serves as an indispensable
tool for some WF defenses.

This paper surveys deep learning for WF attacks and
defenses. First, We briefly summarize deep learning,
WF attacks andWF defenses. Then, we give detailed reviews
on deep learning for WF attacks and defenses separately and
look into the future. In the end, we summarize the survey.

II. DEEP LEARNING
Fueled by the advances in computing hardware, the deep
learning community nowadays constantly comes up with
new architectures. With the changes in the characteristics
and scale of available data for training, new deep learning
paradigms also emerge.

A. PARADIGMS
Common machine learning paradigms include supervised
learning which requires labeled data only, semi-supervised
learning which leverages both labeled and unlabeled data,
unsupervised learning which requires unlabeled data only,
and reinforcement learning which utilizes data generated via
interactions of the agent with an environment.

Transfer learning deals with situations like where there is
not enough training data in the target task/domain but suffi-
cient data in the source task/domain which shares common-
ality with the target task/domain, it extracts knowledge from
one or more source application scenarios to help improve the
learning performance in a target scenario. Multi-task learning
also exploits commonality across different tasks, but treats all
tasks with equal importance [5].

Self-supervised learning takes unlabeled data as input,
leverages the inherent co-occurrence relationships of the data
as self-supervision, learns to predict or reconstruct masked
or corrupted portions of the data [6], [7], [8]. Because there
is no manual label involved, self-supervised learning can be
viewed as a branch of unsupervised learning. While unsu-
pervised learning focuses on discovering data patterns, self-
supervised learning concentrates on recovering [7].

Pre-training acts as the first stage of transfer learning,
extracts knowledge from one or more source tasks, and is
often followed by fine-tuning as the second stagewhich trans-
fers the obtained knowledge to target tasks. If the source tasks
require labeled data only, then the pre-training is supervised.
With supervised pre-training, the computer vision community
benefits a lot from models like ResNet50 [9], explorations
on language tasks with models like CoVe [10] also achieve
promising results. If the source tasks require unlabeled data
only, then the pre-training is unsupervised. If an unsuper-
vised pre-training stage utilizes the training data itself to
recover portions of the data, then it is self-supervised [6].
Self-supervised pre-training brings about great progress on
language tasks with models like BERT [11] and GPT-3 [12],

a new paradigm of ‘‘pre-train, prompt, predict’’ also arises,
in which the downstream tasks are reformulated to look
more like those solved during the pre-training stage with the
help of a textual prompt, replacing the ‘‘pre-train, fine-tune’’
paradigm [13].

Metric learning [14] algorithms produce distance metrics
that capture the important relationships among data. Meta-
learning, known as learning to learn, is a process in which
previous knowledge and experiences are used to guide the
model in the learning of a new task. There are mainly three
types of meta-learning methods: metric-based, model-based,
and optimization-based [15].

Few-shot learning is proposed to mimic the capacity of
human beings learning a novel concept with only a few
examples or no examples. When no examples are needed, it is
called zero-shot learning. Transfer learning can pre-train all
previous experiences into a model for few-shot learning to
fine-tune [5]. Meta-learning is also an effective way to solve
the problem of few-shot learning [15].

Contrastive learning learns representations by contrasting
positive pairs against negative pairs [16]. Self-supervised
learning based on contrastive learning enables the CLIP
model [17] to achieve impressive results at zero-shot transfer
learning, with massive amounts of unlabeled language and
vision data in the multi-modal fashion [18].

Other paradigms include federated learning, etc.

B. ARCHITECTURES
Transformers [19], recurrent neural networks (RNNs), con-
volutional neural networks (CNNs), generative adversarial
networks (GANs) are among the most common deep learning
architectures.

Currently, Transformer-based models [11], [20] outper-
form other neural networks on language and vision tasks, due
to the global representations learned by entirely depending
on attention mechanisms. RNNs perform well on tasks with
sequential inputs, like speech and language. Conventional
RNNs have difficulties in learning long-term dependencies
because it is hard to learn to store information for long, while
long short-term memory (LSTM) networks introduce special
hidden units to remember inputs and are more effective.
CNN layers are inspired by visual neuroscience architecture,
and CNNs are suitable for vision tasks [4]. GANs are used
to estimate generative models [21], the ideas of adversarial
training adopted by GANs lead to successful applications in
image synthesis, content creation, domain adaptation, domain
or style transfer [8]. Siamese networks and triplet networks
are commonly used in metric-based meta-learning.

Other deep learning architectures include graph neural
networks (GNNs), variational auto-encoders (VAEs), etc.

C. PERFORMANCE METRICS
Common performance metrics for deep learning-based clas-
sifiers include [22], [23]: accuracy, error rate, precision,
recall, F-score, true positive rate (TPR), false positive
rate (FPR), etc. Accuracy refers to the proportion of examples
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for which the model produces the correct output. Error rate
refers to the proportion of examples for which the model
produces an incorrect output. There are four types of all the
results of classifiers: true positive (TP), true negative (TN),
false positive (FP), false negative(FN). Precision is the ratio
of true positives over the sum of true positives and false posi-
tives, i.e., TP / (TP + FP). Recall is the ratio of true positives
over the sum of true positives and false negatives, i.e., TP /
(TP+FN). F-score takes both precision and recall into the
consideration, is their harmonic mean, i.e., 2 × precision ×

recall / (precision + recall). TPR is equal to recall. FPR is the
ratio of false positives over the sum of true negatives and false
positives, i.e., FP / (TN + FP).

III. WF ATTACKS
WF attacks aim to identify website pages from correspond-
ing encrypted traffic or related data acquired through pas-
sively monitoring the communication process. The website
pages to be identified can be the index pages (homepages)
of different websites, or different webpages including index
page and non-index pages (inner pages) of the same website,
or some other combinations. The acquired traffic or other
data may include the raw IP packets, the metadata of these
packets (including size, direction, inter-arrival time, etc.), and
side-channel information such as power consumption, etc.

Consider each target website page as a label, and the
corresponding traffic or other data as an instance, WF can
be viewed as a classification problem. When all the class
labels are monitored webpages, the attack scenario is called
closed world, in which the user never visits non-monitored
webpages. When each monitored webpage is considered as
a separate class and all the non-monitored webpages are
considered as a single class, the attack scenario is called
open world, in which the user may visit monitored or non-
monitored pages. The closed-world setting is not realistic
and commonly used for theoretical purposes like comparing
classifiers, while the open-world setting is more realistic [24].

A. APPROACHES
The approaches to WF attacks include deep learning, tradi-
tional machine learning, and other methods.

Various deep learning architectures and paradigms have
been explored in realizing WF attacks. Abe and Goto [25]
proposed a new method for fingerprinting attacks on
Tor anonymity using Stacked Denoising Autoencoder
(SDAE). Rimmer et al. [26] proposed an automated feature
learning-based WF (AWF) attack based on deep learning,
they designed, tuned and evaluated SDAE, CNN and LSTM
models to automatically learn traffic features for website
recognition. Sirinam et al. [27] presented deep fingerprinting
(DF), a new website fingerprinting attack against Tor that
leveraged CNNs with a sophisticated architectural design.
He et al. [28] proposed a WF attack which used two-layer
GRU network to extract the time feature and the 50-layer
ResNet to extract the spatial features of the website finger-
print. Oh et al. [29] studied the suitability of Multi-layer
Perceptrons (MLPs) and CNNs as perceptron-fingerprinting

(p-FP) classifiers in a wide range of settings including identi-
fying top Alexa websites in the closed-world and open-world
settings, open-world multi-class classification, search query
(keyword) fingerprinting, Onion Service fingerprinting, TLS-
encrypted WF, etc. Shusterman et al. [30], [31] designed
and implemented the cache occupancy side-channel attack,
they evaluated the use of CNN and LSTM for fingerprinting
websites based on the cache activity traces collected while
loaded by the browsers. Bhat et al. [32] proposed Var-CNN,
a website fingerprinting attack that leveraged ResNets along
with novel insights specific to packet sequence classification.
Sirinam et al. [33] proposed a new WF attack called Triplet
Fingerprinting (TF) that used triplet networks for N-shot
learning (NSL). Rahman et al. [34] proposed the Tik-Tok
attack, which used directional timing representation gener-
ated by simply multiplying the timestamp of each packet
by its directional representation, for the DF classifier, and
achieved modest accuracy improvement over direction-only
information in several settings. Wang et al. [35] proposed a
novel website fingerprinting attack based on a two-channel
Temporal Convolutional Networks (2ch-TCN) model that
extracted features from both the packet sequences and packet
timing information. Dahanayaka et al. [36], [37] analyzed
CNNs for WF attacks, and found that they focused mainly on
transitions between uploads and downloads in trace fronts,
exhibited few-shot learning capabilities, and outperformed
RNNs due to their resilience to random shifts in data.
Wang et al. [38] presented a cross-platform website fin-
gerprinting (CPWF) attack based on Multi-Similarity Loss
which was introduced by deep metric learning to guide
the deep learning model to extract effective feature sets.
Ramezani et al. [39] developed a multi-label classifier based
on LSTM, that can predict the websites visited by a user in a
certain period, the classifier utilized the server names appear-
ing in chronological order in the TLSv1.2 and TLSv1.3 Client
Hello packets as features. Oh et al. [40] introduced Genera-
tive Adversarial Networks for Data-Limited Fingerprinting
(GANDaLF), a new deep-learning-based technique to per-
form WF attack on Tor traffic, GANDaLF worked with few
training samples, used GAN to generate a large set of fake
data that helped to train a deep neural network in distinguish-
ing between classes of actual training data. Wang et al. [41]
analyzed the application of CNN and LSTM models in WF
attacks using side-channel data. Wang et al. [42] proposed a
newmethod, namedAdaptive Fingerprinting (AF), which can
achieve high WF attack accuracy over few encrypted traffic
by leveraging adversarial domain adaption, i.e., a domain
adversarial network, to learn a DNN-based Feature Extrac-
tor over one or multiple source datasets by formulating a
minimax game between a Feature Extractor and a Domain
Discriminator. The learned Feature Extractor was extracted
and attached with a traditional machine learning classifier
(e.g., kNN) to carry out the classification over a target
dataset. Shen et al. [43] proposed BurNet, a fine-grained
WF method using CNNs which took unidirectional burst
sequences as input, sophisticated architecture was designed to
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improve classification accuracy and reduce time complexity
in training. Guo et al. [44] proposed a deep nearest neighbor
small-sample website fingerprinting (DNNF) attack, first
deep local fingerprinting features of websites were extracted
via CNN, then webpage prediction was carried out by the
k-nearest neighbor (kNN) classifier. Lu et al. [45] proposed
the Graph Attention Pooling Network for fine-grained web-
site fingerprinting (GAP-WF), introduced the trace graph to
describe the contextual relationship between flows in web-
page loading, utilized the Graph Neural Networks (GNNs) to
learn the intra-flow and inter-flow features. Dani et al. [46]
proposed a cross-trace WF attack based on the DF model
under the closed-world setting, which leveraged the semantic
correlation of the content of webpages across traffic traces
generated by the same user to improve attack accuracy when
existing defenses were enabled, four semantic similarity
evaluationmethods were investigated, including TF-IDFwith
cosine similarity, BERT embeddings with cosine similarity,
Word Movers Distance (WMD), and GLoVe embeddings
with cosine similarity. Nasr et al. [2] performed adversarial
training to increase the robustness of deep learning mod-
els like DF to adversarial examples, and used adversarial
perturbations as a regularizer to train robust traffic analysis
models. To generate a set of adversarial examples in the
training process, they randomly chose a number of packets
and flipped their directions from -1 to +1 and vice versa.
Similarly, for the packet timings and sizes they enforced all of
application constraints for generating adversarial examples.
Zhang et al. [47] proposed Tripod, a novel data augmentation
method for WF attacks, which applied three packet manip-
ulations (Injecting, Removing, and Losing) on one collected
traffic trace to generate several augmented traces, experimen-
tal results on ResNet-18, ResNet-34, VGG-16, VGG-19, DF,
Var-CNN showed that Tripod had good universality because it
had enhanced these six WF attacks and may work with more
WF attacks. Chen et al. [48] introduced a model-agnostic,
efficient, and harmonious data augmentation (HDA) method
that can improve deep WF attacks significantly, the method
augmented the original training data by rotating and masking
out randomly individual samples and mixing (linearly com-
bining) sample pairs in arbitrary proportions, experimental
results showed that Var-CNN with HDA achieved the best
results. Gulmezoglu [49] focused on explaining traditional
machine learning and deep learning models in the context
of microarchitecture-based website fingerprinting attacks,
performance counters and cache occupancy side-channels
were implemented on Google Chrome and Tor browsers,
LIME and saliency map eXplainable Artificial Intelligence
(XAI) methods were applied to examine the leakage points
in the side-channel data after the models were trained.
Guo et al. [50] studied and proposed a homology analysis-
based few-shot WF attack, relying on a Convolutional
Neural Network-Bidirectional Long Short-Term Memory
(CNN-BiLSTM) model. Chen et al. [51] studied few-shot
website fingerprinting attack where only a few training

samples per website were available, introduced a novel
Transfer Learning Fingerprinting Attack (TLFA) that can
transfer knowledge from the labeled training data of web-
sites disjoint and independent to the target websites, TLFA
employed embedding CNN model in the pre-training stage,
and explored multivariate logistic regression (LR), support
vector machine (SVM) with linear kernel, multilayer percep-
tron (MLP) in the fine-tune stage. Sun et al. [52] proposed
a WF attack to identify the websites visited by Tor users
through frequency domain fingerprinting (FDF) of network
traffic, they extracted the direction and length features of
circuit sequences in access traffic, combined and transformd
them into frequency domain data, and classifed the data using
a model combining CNN, FC, and self-attention. Yanbin
Wang et al. [53] presented snWF, a novel WF attack based
on a simple and effective neural network snapshot ensemble,
which used the newly designed CNN model as the base
classifier, and can reduce the variance of neural networks
and improve the robustness of the attack. Li et al. [54]
proposed more robust DNN models for WF attacks using
adversarial training. Yongxin Chen et al. [55] proposed a data
augmentation method which can improve the performance of
deep learning-based WF attacks using the generated bionic
traces. Cherubin et al. [56] adapted TF attack to an online
setting and trained theWFmodels on data safely collected on
a Tor exit relay. Chen et al. [57] introduced a novel Meta-Bias
Learning (MBL) method for few-shot WF attack.

Traditional machine learning methods have long been
employed in WF attacks. Sun et al. [58] chose the num-
ber and length of objects requested as part of a webpage
as the traffic trace signature, and Jaccard coefficient as the
metric for measuring the similarity between two signatures,
to fingerprint website pages. Bissias et al. [59] presented a
WF attack which measured the similarity of webpages by
computing the cross correlation of two sequences of values
of the statistical characteristics of web requests from inter-
esting sites, including distributions of packet sizes and inter-
arrival times. Liberatore et al. [60] examined the effectiveness
of two traffic analysis techniques for identifying encrypted
HyperText Transfer Protocol (HTTP) streams, one based on
the naïve Bayes classifier and one on the Jaccard coefficient,
on the basis of similarities to features like packet lengths in
a library of known profiles. Herrmann et al. [61] presented
a novel WF method based on a Multinomial Naïve-Bayes
classifier, which applied common text mining techniques to
the normalised frequency distribution of observable IP packet
sizes. Gong et al. [62] developed a remote WF attack on
home broadband users, which used the full time series data
contained in the observation, and performed kNN classifi-
cation using dynamic time warping (DTW) distance metric.
Lu et al. [63] selected sequence of HTTP request sizes and
sequence of HTTP response sizes (except MTU packets) as
features for the WF attack, and used Levenshtein distance
to measure the similarity between two website fingerprints.
Panchenko et al. [64] applied support vector machines (SVM)
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to features based on volume, time, and direction of the traffic
in the WF attack on Tor and JAP. Cai et al. [65] presented a
new webpage fingerprinting attack based on SVM classifier
with distance-based kernel, and a novel WF attack based on
Hidden Markov Model (HMM). Dyer et al. [66] built four
WF classifiers based on naïve Bayes classifier: time (TIME),
bandwidth (BW), the variable n-gram (VNG), and VNG++,
respectively using the coarse features: total transmission time,
total per-direction bandwidth, traffic ‘‘burstiness’’, and these
three combined. Wang et al. [67] employed SVM to perform
WF attack on Tor cell sequences, the SVM was trained by
directly computing the kernel matrix from these sequences
using distance-based metrics like the Damerau-Levenshtein
distance and the proposed fast Levenshtein-like distance.
Wang et al. [68] proposed a WF attack based on a kNN clas-
sifier applied on a large feature set with weight adjustment.
Shi et al. [69] generalized the Bayesian network (BayesNet)
based WF attack on static webpages to dynamic webpages,
by introducing a new feature called traffic surge period, and
adapting the first n Components of HaarWavelet Transforma-
tion. He et al. [70] proposed a novel activeWF attack based on
SVMwith one-against-rest multi-class model, which actively
delayed HTTP requests originated from users for a cer-
tain period to isolate responding traffic segments containing
different web objects. Kwon et al. [71] evaluated CART,
C4.5, and kNN classifiers for WF attacks on Tor hidden
service clients and servers, and found that kNN worked best.
Al-Naami et al. [72] proposed the packet to vector (P2V)
approach based on the naïve Bayes classifier, they constructed
a corpus from network packets and represented these packets
as real-valued vectors, and modeled WF attack using the
Global Vector space representation (GloVe). Hayes et al. [73]
presented k-fingerprinting, a new WF technique based on
random decision forests, which achieved better perfor-
mance than previous attacks over standard web pages as
well as Tor hidden services even against WF defenses.
Panchenko et al. [74] proposed CUMUL, a novel WF attack
on Tor based on SVM, which sampled features from a
cumulative representation of a trace, involving packet size,
direction and ordering. Jahani et al. [75], [76] introduced
a new WF attack based on Fast Fourier Transform (FFT)
to calculate the similarity distance between two instances.
Spreitzer et al. [77] provided a WF attack utilizing Android
data-usage statistics collected by an unprivileged application,
and used the Jaccard index as a metric to determine the
similarity between two websites. Al-Naami et al. [78] studied
WF attacks using BI-directioNal Dependence (BIND) fea-
tures (Bi-burst size and time; uni-burst size, time and count;
packet size), they evaluated SVM under the closed-world
setting, weighted kNN and random forest under the open-
world setting, with and without defenses on HTTPS and Tor
datasets. Panchenko et al. [79], [80] employed a two-phase
SVM-based CUMUL WF attack on Tor hidden services
(HSs), which utilized the sum of packet sizes transmitted
between the client and each of the entry nodes as additional

features, first detected the connection to an HS, and
then determined the visited HS within the HS universe.
Ejeta et al. [81] used kNN for WF attack on Psiphon traffic.
Zhuo et al. [82] proposed a WF attack based on profile
hidden Markov model (PHMM), which explicitly considered
possible hyperlink transitions when fingerprinting a target
website. Qin et al. [83] designed a power estimation based
side-channel attack to perform WF, which was carried out
by SVM classifier with average amplitudes of 6 equal-sized
frequency range bins of FFT-transformed power trace as fea-
tures. Matyunin et al. [84] provided a WF attack on mobile
devices, which uses the RF classifier and features based
on the reaction of magnetometer sensors to CPU activity.
Zeng et al. [85] proposed a WF attack on malicious web-
sites with traffic aggregated by SNI, which employed RF
classifier and took advantage of burst. Zhang et al. [86]
utilized deep forest to fingerprint different webpages in the
same website, they proposed to use the local request and
response sequence (LRRS) as features of Internet traffic in
HTTP/1.1 or HTTP/2, the raw features were slid by several
different sizes of convolutional layers to generate more fea-
tures in the multi-grained scanning process and the resulting
features were fed into cascade forests which had a multi-
layer structure, each layer consisted of the Random Forest
classifiers and the Completely-Random Forest classifiers.
Meng et al. [87] proposed a novel Website Response Fin-
gerprinting (WRFP) Attack based on response time feature
and extremely randomized tree algorithm. Ghiette et al. [88]
proposed a two-stage algorithm using MinHash and locality
sensitive hashing in combination with the Jaccard similarity
to improve the scalability of WF attacks. Ma et al. [89]
proposed a context-aware WF attack on encrypted proxies,
which employed RF classifier and systematically tackled
the training-testing asymmetry problem using a two-stage
spatial-temporal flow correlation approach. Kim et al. [90]
did a pilot study on real-time WF attacks on Tor hidden
services, the classification was conducted with XGBoost,
Decision Tree, and Random Forest, results showed enough
accuracy in classifying fewer websites. Mitseva et al. [91]
proposed two novel WF methods, voting-based and HMM-
based, which can take advantage of the consecutive visits
of multiple pages of a single website to detect websites.
Shen et al. [92], [93] proposed FineWP, a novel fine-grained
webpage fingerprinting method based on kNN, RF, Deci-
sion Tree classifiers, which utilized length information of
packets in bidirectional client-server interactions as distinc-
tive features. Kailong Wang et al. [94] proposed the novel
intra-domain WF attack that aimed to differentiate the web-
pages within the same social media website, which employed
RF classifier and utilized temporal and volumetric features
including CDN bursts. Mei et al. [95] evaluated WF attacks
on Tor using statistical features or package sequence features,
based on C4.5, RF, kNN, or Quadratic Discriminant Analysis
(QDA) classifiers, separately. Okazaki et al. [96] proposed
a WF attack using SVM classifier, and Virtual Set Size

VOLUME 11, 2023 26037



P. Liu et al.: Survey on Deep Learning for Website Fingerprinting Attacks and Defenses

fluctuation of a specific process regarding website browsing
as a feature. Li et al. [97] constructed a resource loading tree
(RLTree) to represent a website, based on the multiple initial
TCP sessions generated by visiting the website, and proposed
a novel WF attack based on RLTree similarity. Hongcheng
Zou et al. [98] presented Probabilistic Fingerprinting (PF),
a new WF attack based on kNN, using topic probability
vectors of traffic instances as features. Kexin Zou et al. [99]
proposed a novel lightweight WF attack on Bitcoin hidden
service, using a random decision forest classifier with fea-
tures from TLS packet size and direction.

Early research adopted simple and direct methods to fin-
gerprint websites. Cheng et al. [100] utilized the Hyper-
Text Markup Language (HTML) file size, total object size,
total number of objects and a link structure algorithm to
identify the webpage. Hintz [101] presented a WF attack
which simply observed the amount of encrypted data that was
transferred.

Deep learning approaches usually do better than traditional
machine learning. DF [27] reported 98% accuracy, TF [33]
reported 95% accuracy, while CUMUL [74] reported 92.03%
accuracy.

B. CHALLENGES AND SOLUTIONS
In the real world, WF attacks face many challenges pre-
sented by all parties directly or indirectly involved, including
Internet users, web service providers, browser developers,
operating system (OS) developers, Internet service providers,
computing and routing hardware manufacturers, etc. These
stakeholders can affect the contents and/or behavior of the
target traffic within their power. Among the challenges,
significant ones include overlapping traffic of different web-
pages, concept drift, the base rate fallacy, etc., other ones
include browser versions, OS versions, network locations,
routing policies, etc.

Multi-tab browsing may produce overlapping traffic traces
of two or more webpages, if the user opens a new tab of
the browser requesting a new webpage when one or more
old webpages are still loading elements. WF attacks on
such overlapping traffic traces face the challenge of dis-
tinguishing between the webpages and identifying them.
Juarez et al. [102] observed a dramatic drop in the accuracy
of classifiers trained on single tab traces when tested on the
overlapping traces of two webpages, they also observed a
drop in the accuracy when the size of the world increased,
their experiment implied that feature selection might be more
important than learning models and shorter delay between the
loading of the two webpages did not mean smaller distance
between the observed overlapping trace and either of the two
webpage traces. Wang et al. [103] splitted Tor cell sequences
by distinguishing between different web pages that may
occur sequentially or even in parallel, they demonstrated the
effectiveness of time-based splitting and classification-based
splitting. Gu et al. [104] identified the overlapping webpages
separately, they utilized the delay between the loading of
the two webpages which they called think time, analyzed

the traffic during the think time and selected fine-grained
features to identify the first page, employed coarse fea-
tures to identify the second page from the remaining traffic.
Xu et al. [105] presented a new BalanceCascade-XGBoost
scheme to identify the start point of the second page, they
also developed a new classifier based on random forests
which can accurately classify webpages given only the small
chunk of packets between the start time of the two webpages.
Yin et al. [106] built a WF classifier based on XGBoost algo-
rithm, replacing the original random forest classifier in [105].
Cui et al. [107] proposed a splitting algorithm based on
Hidden Markov Model to identify two continuous network
traces and a sectioning algorithm to identify overlapping
network traces, which divided the trace into multiple sections
and performed website prediction on each section indepen-
dently, based on the hypothesis that if two traces overlap,
the beginning of the first trace and the end of the second
trace would be unaffected. Gong et al. [108] improved known
solutions to splitting with a new framework called Coarse-
Decided Score-Based (CDSB), they used a random forest
classifier with 511 features extracted by expert knowledge
to decide how many splits there are, extended the XGBoost
scheme in [105] to score each outgoing packet in the trace,
chose the highest-scoring packet as a split in each round,
and eliminated nearby packets from consideration as splits
for future rounds. Cui et al. [109] proposed a CNN-based
classifier to distinguish between one-page and multiple-page
traces, evaluated the DLmodel on partial traces and improved
the performance on traces missing the head part by adding the
head detection, constructed two DL models for webpage pre-
diction on two-page overlapping traces, training on the first N
and last N packets to predict the first and second webpages in
traces respectively. Guan et al. [110] proposed a Block Atten-
tion Profiling Model (BAPM) which fully utilized the whole
multi-tab packet trace including the overlapping area to gen-
erate a tab-aware representation from direction sequences,
divided the trace into blocks and attention-based profiling
was used to group blocks belonging to the same webpage
tab, and identified each website page under a global view.
Chen et al. [111] proposed an end-to-endWebsite Fingerprint
Detection (WFD) method, based on the idea of considering
each monitored trace of interest in traffic traces as a specific
object in an image, and adapted object detection methods in
computer vision to the multi-tab browsing scenario.

Concept drift in WF attacks refers to the phenomenon
that the contents of webpages are constantly changing over
time, which results in changes in the patterns of traffic traces
and may affect the accuracy of WF attacks. Resilent WF
classifiers can grasp salient and stable features, and remain
effective over time. Juarez et al. [102] studied the effect of
staleness on WF and observed the extremely fast drop in
accuracy over time, modeled the updating cost of a WF sys-
tem with respect to the webpage changes. Wang et al. [103]
learned from experience that a small amount of data was
enough for training an effective WF classifier and therefore
keeping the data fresh was easy, they provided several
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practical schemes for updating the training set.
Al-Naami et al. [78] addressed the challenge through reg-
ularly updating the model, they studied the effect of fixed
update in which fixed updates were applied to re-train the
model periodically, and dynamic update in which model was
re-trained whenever there was a drift between the current data
and previously seen training data. Attarian et al. [112], [113]
proposed AdaWFPAwhich avoided concept drift by updating
its model over time. Zhu et al. [114] proposed a novel WF
attack framework, Persistent Attack of Student (PAS), which
integrated self-training mechanism with DL, trained new DL
models using concept drift datasets with pseudo labels to
alleviate the impact of concept drift. Yanbin Wang et al. [53]
revealed that under concept drift WF attacks suffered more
severe performance degradation in a open-world setting than
in a closed-world setting.

The base rate fallacy refers to the bias in the evaluation of
the WF attack introduced by the base rate or prior, i.e., the
probability of a user visiting a monitored webpage a priori,
under the open-world scenario. When the base rate is low,
even if the WF classifier reports high true positive rate (TPR)
and low false positive rate (FPR), the rate of successful
attack still can be much lower [102], [115]. Several methods
have been proposed to mitigate the effects of the base rate
fallacy, including the Classify-Verify approach, Precision
Optimizers (POs), etc. The Classify-Verify approach rejects
predictions of the classifier when estimated probabilities are
lower than a threshold determined by training [102]. POs
adopt strategies similar to the Classify-Verify approach, and
the presented confidence-based POs, distance-based POs,
and ensemble POs are inspired by clustering and ensemble
learning techniques [116].

IV. WF DEFENSES
WF defenses aim to defend against WF attacks, thus adopting
various methods tomodify the content and behavior of traffic,
conceal the webpages visited and protect the privacy of both
parties of the communication.WF defenses evolve along with
WF attacks, like in an arms race, in which both sides keep
coming up with new strategies and approaches.

A. STRATEGIES
The strategies of WF defenses include noise, mimicry, regu-
larization, adversarial examples, etc. The noise strategy ran-
domly adds dummy packets to target traffic traces to disrupt
the classification. The mimicry strategy modifies the traffic
of a webpage to look like another to confuse the classifier.
The regularization strategy defines fixed rules and patterns
for all webpage traffic to follow to reduce information leak-
age [117]. The adversarial examples strategy generates adver-
sarial traffic traces against the classifier.

B. APPROACHES
Various approaches to WF defenses have been proposed, fol-
lowing different strategies. Deep learning underpins several
latest and effective WF defenses, other approaches rely on
traditional methods.

Many deep learning architectures have been employed in
realizing WF defenses. Jiang et al. [118] proposed a novel
WF defense called PST, which predicted subsequent fuzzy
bursts with a neural network, given a few past bursts of a trace
as input, then searched small but effective adversarial per-
turbation directions based on observed and predicted bursts,
finally transfered the perturbation directions to the remaining
bursts. Rahman et al. [141], [142] proposed Mockingbird,
a technique for generating traces that resisted adversarial
training by moving randomly in the space of viable traces
and not following more predictable gradients. Mockingbird
gradually changed the defended source sample to get closer
to a randomly selected target sample, until a trained deep
learning-based WF classifier called the detector predicted
that the class of the sample had changed. Hou et al. [119]
proposed a novel WF defense based on adversarial examples,
generated by WF-GAN, a GAN with an additional WF clas-
sifier component. Sadeghzadeh et al. [120] proposed Adver-
sarial Website Adaptation (AWA), a new defense against
WF attack using adversarial deep learning approaches.
Gong et al. [121] proposed Surakav, a tunable and prac-
tical WF defense with reasonable overhead, which made
use of a GAN to generate realistic sending patterns and
regulated buffered data according to the sampled patterns.
Sun et al. [122] proposed WF-UAP, a WF defense which
employed GAN to generate Universal Adversarial Perturba-
tions (UAPs) to add to the defended traffic traces.

Traditional methods have been employed since the earliest
WF defenses came into being. Sun et al. [58] described
three traffic-shaping mechanisms, i.e., padding, mimicking,
and morphing, which can be used to defend against WF
attacks. Levine et al. [123] introduced defensive dropping,
a variation of cover traffic that better defended against timing
attacks. Shmatikov et al. [124] proposed adaptive padding,
a defense against timing analysis, in which intermediate
mixes inject dummy packets into statistically unlikely gaps
in the packet flow, destroying timing fingerprints without
adding any latency to application traffic. Wright et al. [125]
proposed a novel method for thwarting statistical traffic
analysis algorithms by optimally morphing one class of
traffic to look like another class. Dyer et al. [66] proposed
Buffered Fixed-Length Obfuscator (BuFLO), which operated
by sending fixed-length packets at a fixed interval for at
least a fixed amount of time. Cai et al. [65], [126] proposed
Congestion-Sensitive BuFLO (CSBuFLO), which optimized
BuFLO to make the protocol congestion sensitive, rate adap-
tive, and efficient at hiding macroscopic website features,
such as total size and the size of the last object. Cai et al. [115]
proposed Tamaraw, based on an extension of the concept of
optimal partitioning and feature hiding, which extended and
tuned BuFLO to hide the most significant traffic features,
the packet size was set at 750 bytes rather than the MTU,
outgoing traffic was fixed at a higher packet interval than
incoming traffic to reduce the overhead in both bandwidth
and time. Wang et al. [68] constructed a principled and prov-
ably private defense using an approximation of the smallest
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common supersequence problem and clustering techniques,
based on the finding that bandwidth-optimal simulatable,
deterministic defense was to transmit packets using super-
sequences over anonymity sets. Nithyanand et al. [127] pro-
posed Glove, an SSH-based highly-tunable defense, which
used existing knowledge of website traces to add cover
traffic conservatively, extended the traffic morphing princi-
ples to cover all features, and provided information-theoretic
security guarantees. Juarez et al. [128] proposed Website
Traffic Fingerprinting Protection with Adaptive Defense
(WTF-PAD), which adapted Adaptive Padding (AP) to
combat WF attacks on Tor, and included a number of
link-padding primitives that enable more sophisticated
padding strategies than basic AP. Wang et al. [129] proposed
Walkie-Talkie (WT), which molded burst sequences so that
sensitive and non-sensitive pages look the same. WT mod-
ified the browser to communicate in half-duplex mode,
and produced easily moldable burst sequences to leak less
information and cost little overhead. Cherubin et al. [130]
proposed two application-level defenses, one was Applica-
tion Layer Padding Concerns Adversaries (ALPaCA) for the
server, the other was client-side Lightweight application-
Layer Masquerading Add-on (LLaMA) for the client.
ALPaCA altered the size of each content type, e.g., PNG,
HTML, CSS of an index.html page to conform to the size
distribution of a significant fraction of the total Tor .onion
site pages. LLaMA added extra delays to the HTTP requests,
which altered the order of the requests in a similar way to
randomized pipelining (RP). Zhuo et al. [82] presented two
WF defenses, one was Probabilistic MTU padding, which
selectively padded packets to MTU size with an equal prob-
ability for each packet, the other was Probabilistic Dummy
packet, which inserted dummy packets of random direction
and size into the testing packet sequence, each packet had
an equal probability to place the to-be-inserted packet ahead
of it. Lu et al. [131] introduced DynaFlow, a highly tunable
WF defense based on dynamically-adjusting flows, which
used fixed burst patterns with dynamically-changing inter-
vals between packets to hide the websites a user visited.
Chan-Tin et al. [132] proposed a WF defense which first
grouped websites with similar number and size of pack-
ets into clusters, then performed traffic morphing within
each cluster to make all other websites have the same
packet sizes as the website with the biggest packet size.
Cui et al. [133], [134] introduced a WF defense which
generated cover traffic that looked like historical network
traffic of user visiting websites. Matyunin et al. [84] pre-
sented WF defense measures against information leakage
through magnetometer sensors, including physical shielding
with ferromagnetic materials, placing magnetometer sensors
far away from CPUs when designing smartphone mother-
boards, lowering sampling rate, limiting user permission
to access magnetometers, etc. Liu et al. [135] proposed
a WF defense based on genetic algorithm to generate
adversarial samples. Cadena et al. [136], [137] proposed

TrafficSliver, network-layer and application-layer WF
defenses for Tor, which distributed traffic between the user
and the middle OR over multiple entry ORs to limit the
information available to an attacker. The network-layer
TrafficSliver realized the concept of multipathing entirely
within Tor, while the client-side application-layer Traffic-
Sliver distributed single HTTP requests for different web
objects over distinct Tor entry nodes. Gong et al. [108]
proposed two novel zero-delay lightweight defenses, FRONT
and GLUE. FRONT focused on obfuscating the trace front
with dummy packets, and also randomized the number
and distribution of dummy packets for trace-to-trace ran-
domness to impede the attacker’s learning process. GLUE
added dummy packets between separate traces so that they
appeared to the attacker as a long consecutive trace, ren-
dering the attacker unable to find their start or end points.
Abusnaina et al. [138] proposed a novel defense mechanism
using a per-burst injection technique, called Deep Finger-
printing Defender (DFD), against deep learning-based WF
attacks, which had two operation modes, one-way and two-
way injection. DFD was designed to break the inherent
patterns preserved in Tor traffic traces by carefully inject-
ing dummy packets within every burst. Henri et al. [139]
proposed a multihoming-based WF defense, in which a
user can split traffic among the networks, and designed
a novel multipath scheduler called HyWF, which can be
combined with other defenses like adaptive padding and
Walkie-Talkie. Al-Naami et al. [140] proposed BiMorphing,
a WF defense that obfuscated original website traffic patterns
through the use of double sampling and mathematical opti-
mization techniques to deform packet sequences and destroy
traffic flow dependency characteristics used by attackers to
identify websites. Nasr et al. [2] proposed a WF defense
to apply blind adversarial perturbations on the patterns of
live network traffic, which were generated through solving
specific optimization problems tailored to WF attacks, and
included changing the timings and sizes of packets, as well
as inserting dummy network packets. Shusterman et al. [30],
[31] proposed a defense against cache-based WF attack,
which created spurious network activity to introduced noise
in the cache, thus masking the website rendering activity.
Wang [117] created the first defense that was strong enough
for the one-page setting by augmenting Tamarawwith greater
randomization overhead so that its anonymity sets were more
evenly dispersed. Gulmezoglu [49] proposed an XAI-based
obfuscation defense technique as a countermeasure against
microarchitecture-based WF attacks. Hou et al. [143] pre-
sented a novel effective defense, which generated univer-
sal perturbation that can transform original examples to
adversarial examples tailored to specific WF attack models.
Hou et al. [144] proposed a WF defense named Attack
to Attack (A2A) that leveraged adversarial examples to
attack the WF attacker’s classifier. A2A manipulated traffic
iteratively according to the output of a substitute model
which was an elaborate model intentionally learning a
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similar classification boundary with the attacker’s model.
Huang et al. [145] proposed two effective and efficient
algorithms, PadS and PadI, to defend Shadowsocks against
WF attacks, which were based on the size and the true
distribution of time series of traffic data packets, respectively.
Luo et al. [146] proposed Random Bidirectional Padding
(RBP), a novel website fingerprinting defense technology
based on time sampling and random bidirectional pack-
ets padding, which can covert the real packets distribu-
tion to destroy the Inter-Arrival Time (IAT) features in the
traffic sequence and increase the difference between the
datasets with random bidirectional virtual packets padding.
Shan et al. [147] proposed Dolos, which injected dummy
packets into traffic traces by computing input-agnostic
adversarial patches that disrupt deep learning classifiers
used in WF attacks. Patches are then applied to alter
and protect user traffic in real time. Importantly, these
patches are parameterized by a user-side secret, ensuring
that attackers cannot use adversarial training to defeat Dolos.
Dahanayaka et al. [37] proposed FRONT-U, which defended
website visits by obfuscating transitions between uploads
and downloads in trace fronts and provided similar pri-
vacy as the defense FRONT, with half the data overhead.
Li et al. [148] proposed cache shaping, a defense against
cache-based WF attacks, which produced dummy cache
activities by introducing dummy I/O operations and imple-
menting with multiple processes, hiding fingerprints when
a user visited websites. Holland et al. [149] presented a
realistic and novel defense, RegulaTor, which took advantage
of common patterns in web browsing traffic to reduce defense
overhead, worked by regularizing the size and shape of packet
‘surges’ that frequently occur in download traffic, masking
potentially revealing features, ‘surge’ was broadly defined as
a large number of packets sent over a short period of time.
Tang et al. [150] proposed segmented adversary defense
(SAD) for deep learning-based WF attacks, in which
sequence data were divided into multiple segments to ensure
that SAD was feasible in real scenarios, then the adversarial
examples for each segment of data can be generated by SAD.
Liang et al. [151] observed that Walkie-Talkie significantly
increased the page loading time (time overhead) although the
bandwidth overhead was not high and analyzed the cause of
the increased page loading time, and presented a defending
approach called Tail Time (TT), which addressed the problem
by limiting the maximum time for which a pending request
can block subsequent requests. Zhang et al. [152] proposed
RAP, an application layer WF defense based on random-
izing the request order and location of website resources.
Li et al. [54] proposed a new WF defense called Mini-
patch based on adversarial patches, which injected extremely
few dummy packets in real-time traffic. Ling et al. [153]
proposed a genetic-programming-based variant cover traf-
fic search technique to generate WF defense strategies for
effectively injecting dummy Tor cells into the raw Tor traffic.
Smith et al. [154] designed and implemented the QCSD
framework, which leveraged QUIC and HTTP/3 to emulate

existing WF defenses by bidirectionally adding cover traffic
and reshaping connections solely from the client.

V. DEEP LEARNING FOR WF ATTACKS
In WF attacks, deep learning mainly exercises its power
through the role of classifiers. We focus on the learning
paradigm, architecture, performance, and model update pol-
icy to survey deep learning for WF attacks, and look into the
future. We summarized the paradigms and architectures of
deep learning for WF attacks in existing works in Table 1.

A. PARADIGMS
As shown in Table 1, the paradigms of deep learning for WF
attacks in existing works mainly cover supervised learning
(26 models), semi-supervised learning (2 models), transfer
learning (2 models), metric-learning (4 models), and meta-
learning (1model). The choice of deep learning paradigms for
WF attacks is greatly influenced by the amount of available
labeled and unlabeled training examples, i.e., traffic traces.

In supervised learning, when the labeled traffic traces for
training are insufficient, data augmentation can help generate
more data with lower cost to help improve WF attacks, such
methods include HDA, Tripod, and Bionic data augmenta-
tion. The HDA method [48] can be used in a harmonious
manner to expand a tiny training dataset to an arbitrarily large
collection, which involved both intrasample and intersample
data transformations. Experiments showed that HDA can
boost deep learning WF attack models like Var-CNN in both
closed-world and open-world settings, at the absense and
presence of strong defense. Tripod [47] used three manip-
ulations of Injecting, Removing, and Losing on one col-
lected traffic trace to generate several augmented traces,
reflecting the changes or exceptions of the Internet. The
Injecting manipulation introduced background traffic. The
Removing and Losing manipulations simulated the packet
loss and packet retransmissions due to network congestion or
transmission errors. Experimental results showed that Tripod
had enhanced six deep learning WF attack models and may
work with more. Bionic traces [55] can be generated based
on the rearranged send-and-receive pairs (SRPs), expensive
experiments showed that bionic traces successfully simulated
the website traffic and relieved the data-hungry problem of
deep learning-based WF attacks.

B. ARCHITECTURES
As shown in Table 1, the architectures of deep learning for
WF attacks in existing works include common basic neural
networks like FC, Self-attention, GRU, MLP, SDAE, CNN
(including ResNet, VGG), RNN (including LSTM), GNN,
GAN, Siamese networks, Triplet networks and their variants,
and popular advanced neural networks like AWF, DF, Var-
CNN, TF, etc. Together with other necessary components,
they form the classifiers for WF attacks.

C. PERFORMANCE
Existing works on deep learning for WF attacks evaluated
the performance of their models on various datasets, under
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TABLE 1. Deep learning paradigms and architectures for WF attacks.

the scenarios of the closed-world setting, or the open-world
setting. It is not easy to compare their performance directly,
thuswe choose several representativemodels to do the survey,
including DF, TF, snWF, Online WF, as shown in Table 2.

The DF [27] model achieved over 98% accuracy on Tor
traffic with no defenses. DF remained effective in the open-
world setting, with 99% precision and 94% recall on traffic
without defense, and can still get 96% precision and 68%
recall on traffic with the WTF-PAD defense.

The TF [33] model used triplet networks for NSL, achieved
up to 95% accuracy using only 20 examples per website, and
near 85% accuracy when using only five examples per class
and the feature extractor was pre-trained with a three-year-
old dataset. TF remained effective in a small open-world set-
ting, achieving approximately 90% precision and 80% recall
when tuned for precision. When the size of the world was
significantly increased, its performance degraded signifi-
cantly to 30% precision and 70% recall.

The snWF [53] model managed to determine whether a
user is visiting a monitored website, with a true positive

TABLE 2. Performance of deep learning models.

rate of 98.1% and a false positive rate of 5.7%, in a large
open-world setting with 400,000 websites. In the case of only
100 training samples per monitored website, snWF achieved
90.4% balanced accuracy and 84.2% TPR. A more realistic
attack scenario, termed as wide-world, was also evaluated.
In the face of concept drift, snWF was found to be more
resilient than any other attacks.

The Online WF [56] model evaluated WF using genuine
Tor traffic as ground truth, and under a true open world
setting achieved by adapting TF attack to an online setting
and training the WF models on data safely collected on a
Tor exit relay. They achieved a WF accuracy of above 95%
when monitoring a small set of 5 popular websites, but that
accuracy quickly degraded to less than 80%when monitoring
as few as 25 websites.

D. THE FUTURE
In the future, new deep learning architectures and paradigms
will come up, offering new choices for constructing novel
WF classifiers. Currently unexplored deep learning classi-
fiers will be tested for WF classification tasks, and the ones
with better performance will be chosen. Few-shot learning,
foundation models, and adversarial training are becoming
popular, and are likely to be widely adopted in WF attacks.

VI. DEEP LEARNING FOR WF DEFENSES
In WF defenses, deep learning mainly takes effect through
its role in realizing the defense strategy, e.g., generating
sending patterns or adversarial examples, etc.We focus on the
architecture, efficacy, and overhead to survey deep learning
for WF defenses, and look into the future.

A. ARCHITECTURE, EFFICACY AND OVERHEAD
Common deep learning architectures for WF defenses
include RNN, GAN, transformer, etc.

In PST [118], an encoder-decoder RNN served the purpose
of predicting subsequent parts of a trace after observing
the first several parts. The neural network included three
components, the embedding layer, the encoder layer, and
the decoder layer. In the embedding layer, each burst size
in the observed network trace was embedded into a vector.
The encoder layer adopted an LSTM network, took the
embedded vectors as input, and generated compressed fea-
tures. The decoder layer adopted another LSTMnetworkwith
the attention mechanism, took the compressed feature vectors
as input, used a fully-connected neural network to scan and
calculate a joint score vector for each hidden state of the
encoder, thus predicting the subsequent burst sizes of the net-
work trace. Experimental results over a public closed-world
dataset demonstrated that PST can reduce the accuracy of
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DF by 87.6%, under 31% bandwidth overhead, observing
only the first 10 bursts of the network trace. Moreover, PST
adapted to WF attacks dynamically, which could be retrained
or updated.

WF-GAN [119] adopted a GAN which followed the
paradigm of AdvGAN [155], which adopted similar architec-
tures for generator and discriminator with pix2pix [156] and
CycleGAN [157]. Pix2pix used a U-Net-based architecture
for the generator, and a convolutional PatchGAN classifier
for the discriminator, both generator and discriminator used
modules of the form convolution-BatchNorm-ReLU. Cycle-
GAN used PatchGAN for the discriminator. WF-GAN was
evaluated on DF, it achieved 90% success rate with at most
15% overhead for untargeted defense, and over 90% targeted
defense success rate when the size of target website set was
twice as many as that of the source website set.

In Mockingbird [141], [142], AWF and DF played the role
of detector models, which were trained to detect whether
the predicted class of the sample had changed. Mockingbird
dropped the accuracy of DF and Var-CNN hardened with
adversarial training from 98% to 42–58% while incurring
only 58% bandwidth overhead.

AWA [120] used adversarial deep learning approaches
to create a transformer set in each run, so that each web-
site had a unique transformer, each transformer generated
adversarial traces to evade the adversary’s classifier. They
accommodated secret random elements in the training phase
of transformers in order for AWA to generate various sets
of transformers in each run. They run AWA several times
and created multiple sets of transformers. There were two
versions of AWA, including Universal AWA (UAWA) and
Non-Universal AWA (NUAWA). NUAWA needed to access
the entire trace of a website in order to generate an adversarial
trace, while there was no such need for UAWA. If an adver-
sary and a target user selected different sets of transformers,
the accuracy of adversary’s classifier was almost 19.52% and
31.94%with almost 22.28% and 26.28% bandwidth overhead
in UAWA and NUAWA, respectively. If a more powerful
adversary generated adversarial traces through multiple sets
of transformers and trained a classifier on them, the accuracy
of adversary’s classifier was almost 49.10% and 25.93%with
almost 62.52% and 64.33% bandwidth overhead in UAWA
and NUAWA, respectively.

WF-UAP [122] had three components: the generator, the
discriminator, and the target WF classifier. An encoder and
decoder based architecture was specified to realize the func-
tions of the discriminator and the generator respectively.
A random sample from a normal distribution was fed into the
generator to produce a perturbation, which was then scaled
and added to the traffic trace, the perturbed instance was then
fed into the discriminator and the target classifier. Experimen-
tal results over a public dataset demonstrated that WF-UAP
reduced the accuracy of Var-CNN from 98% to 15% with at
most 20% bandwidth overhead.

Surakav [121] made use of a generator that can output
infinite non-repeated sending patterns, which was achieved

by training a well-designed GAN to mimic realistic traffic
patterns of different webpages. Surakav reduced overhead
while maintaining effectiveness by tunneling packets through
different sending patterns rather than a constant pattern.
Experiments showed that Surakav was able to reduce the
attacker’s true positive rate by 57% with 55% data overhead
and 16% time overhead.

B. THE FUTURE
In the future, new deep learning paradigms, architectures, and
models will arise, newWF defense strategies and approaches
may also come up. Unexplored combinations of deep learning
tools andWF defense requirements will be tested continually,
and the ones with better efficacy and smaller overhead will
stand out.

VII. SUMMARY
We briefly surveyed deep learning for WF attacks and
defenses in this paper. First, we introduced the common
usages of deep learning in WF attacks and WF defenses.
Second, we surveyed deep learning, WF attacks, and WF
defenses separately in detail. For deep learning, we surveyed
the paradigms, architectures, and performance metrics. For
WF attacks, we surveyed the approaches, challenges and
solutions. The approaches included deep learning, traditional
machine learning, and other methods. Challenges and solu-
tions covered multi-tab browsing, concept drift, and the base
rate fallacy. For WF defenses, we surveyed the strategies and
approaches. Third, we surveyed deep learning forWF attacks,
and deep learning for WF defenses. In deep learning for WF
attacks, we surveyed in detail the deep learning paradigms,
architectures of WF attack models and the performance of
several representative WF attack models, and looked into the
future. In deep learning for WF defenses, we surveyed the
architecture, efficacy and overhead of deep learning models
in WF defenses, and looked into the future.

REFERENCES
[1] R. Dingledine, N. Mathewson, and P. Syverson, ‘‘Tor: The second-

generation onion router,’’ in Proc. 13th USENIX Secur. Symp. San Diego,
CA, USA, Aug. 2004, pp. 303–320.

[2] M. Nasr, A. Bahramali, and A. Houmansadr, ‘‘Defeating DNN-
based traffic analysis systems in real-time with blind adversarial
perturbations,’’ in Proc. 30th USENIX Secur. Symp., Aug. 2021,
pp. 2705–2722. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/nasr

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Advances in Neural Infor-
mation Processing Systems, vol. 25, F. Pereira, C. Burges, L. Bottou, and
K. Weinberger, Eds. Red Hook, NY, USA: Curran Associates, Inc., 2012.

[4] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.

[5] Q. Yang, Y. Zhang, W. Dai, and S. J. Pan, Transfer Learning. Cambridge,
U.K.: Cambridge Univ. Press, 2020, pp. 3–13.

[6] X. Han et al., ‘‘Pre-trained models: Past, present and future,’’ AI
Open, vol. 2, pp. 225–250, Jan. 2021. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2666651021000231

[7] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang, ‘‘Self-
supervised learning: Generative or contrastive,’’ IEEE Trans. Knowl.
Data Eng., vol. 35, no. 1, pp. 857–876, Jan. 2023.

[8] Y. Bengio, Y. LeCun, andG. E. Hinton, ‘‘Deep learning for AI,’’Commun.
ACM, vol. 64, pp. 58–65, Jun. 2021, doi: 10.1145/3448250.

VOLUME 11, 2023 26043

http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1145/3448250


P. Liu et al.: Survey on Deep Learning for Website Fingerprinting Attacks and Defenses

[9] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[10] B. McCann, J. Bradbury, C. Xiong, and R. Socher, ‘‘Learned in trans-
lation: Contextualized word vectors,’’ in Advances in Neural Informa-
tion Processing Systems, vol. 30, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Red Hook,
NY, USA: Curran Associates, 2017.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang.
Technol., vol. 1. Minneapolis, MN, USA, Jun. 2019, pp. 4171–4186.
[Online]. Available: https://www.aclweb.org/anthology/N19-1423

[12] T. B. Brown et al., ‘‘Language models are few-shot learners,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 33, H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, Eds., 2020, pp. 1877–1901.

[13] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, ‘‘Pre-train,
prompt, and predict: A systematic survey of promptingmethods in natural
language processing,’’ 2021, arXiv:2107.13586.

[14] C.-K. Hsieh, L. Yang, Y. Cui, T.-Y. Lin, S. Belongie, and D. Estrin,
‘‘Collaborative metric learning,’’ in Proc. 26th Int. Conf. World
Wide Web, Geneva, Switzerland, Apr. 2017, pp. 193–201, doi:
10.1145/3038912.3052639.

[15] Y. Tian, X. Zhao, and W. Huang, ‘‘Meta-learning approaches for
learning-to-learn in deep learning: A survey,’’ Neurocomputing, vol. 494,
pp. 203–223, Jan. 2022, [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0925231222004684

[16] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, ‘‘A simple framework
for contrastive learning of visual representations,’’ in Proc. 37th Int. Conf.
Mach. Learn. (PMLR), in Proceedings of Machine Learning Research,
vol. 119, A. Singh, Ed., Jul. 2020, pp. 1597–1607. [Online]. Available:
http://proceedings.mlr.press/v119/chen20j.html

[17] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever,
‘‘Learning transferable visual models from natural language supervi-
sion,’’ in Proc. 38th Int. Conf. Mach. Learn., in Proceedings of Machine
Learning Research, vol. 139, M. Meila and T. Zhang, Eds., Jul. 2021,
pp. 8748–8763. [Online]. Available: https://proceedings.mlr.press/v139/
radford21a.html

[18] S. Hochreiter, ‘‘Toward a broad AI,’’ Commun. ACM, vol. 65, no. 4,
pp. 56–57, Mar. 2022, doi: 10.1145/3512715.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. U. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in
Advances in Neural Information Processing Systems, vol. 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds. Red Hook, NY, USA: Curran Associates, 2017.

[20] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, ‘‘An image is worth 16×16 words: Trans-
formers for image recognition at scale,’’ in Proc. Int. Conf. Learn.
Represent., 2021, pp. 1–16. [Online]. Available: https://openreview.net/
forum?id=YicbFdNTTy

[21] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’
in Advances in Neural Information Processing Systems, vol. 27,
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger,
Eds. Red Hook, NY, USA: Curran Associates, 2014.

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[23] Y.-S. Lim, H.-C. Kim, J. Jeong, C.-K. Kim, T. Kwon, and Y. Choi, ‘‘Inter-
net traffic classification demystified: On the sources of the discriminative
power,’’ inProc. 6th Int. Conf., NewYork, NY,USA,Nov. 2010, pp. 1–12,
doi: 10.1145/1921168.1921180.

[24] T. Wang, ‘‘Website fingerprinting: Attacks and defenses,’’
Ph.D. dissertation, Univ. Waterloo, Waterloo, ON, Canada, 2015.

[25] K. Abe and S. Goto, ‘‘Fingerprinting attack on Tor anonymity using deep
learning,’’ in Proc. Asia–Pacific Adv. Netw., 2016, pp. 15–20.

[26] V. Rimmer, D. Preuveneers, M. Juarez, T. V. Goethem, and W. Joosen,
‘‘Automated website fingerprinting through deep learning,’’ in Proc.
Netw. Distrib. Syst. Secur. Symp., 2018, pp. 1–15.

[27] P. Sirinam, M. Imani, M. Juarez, and M. Wright, ‘‘Deep fingerprinting:
Undermining website fingerprinting defenses with deep learning,’’ in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur., New York, NY,
USA, Oct. 2018, pp. 1928–1943, doi: 10.1145/3243734.3243768.

[28] X. He, J. Wang, Y. He, and Y. Shi, ‘‘A deep learning approach for website
fingerprinting attack,’’ in Proc. IEEE 4th Int. Conf. Comput. Commun.
(ICCC), Dec. 2018, pp. 1419–1423.

[29] S. E. Oh, S. Sunkam, and N. Hopper, ‘‘FP: Extraction, classification,
and prediction of website fingerprints with deep learning,’’ Privacy
Enhancing Technol., vol. 2019, no. 3, pp. 191–209, Jul. 2019, doi:
10.2478/popets-2019-0043.

[30] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and
Y. Yarom, ‘‘Robust website fingerprinting through the cache occupancy
channel,’’ in Proc. 28th USENIX Secur. Symp., Santa Clara, CA, USA,
Aug. 2019, pp. 639–656.

[31] A. Shusterman, Z. Avraham, E. Croitoru, Y. Haskal, L. Kang, D. Levi,
Y. Meltser, P. Mittal, Y. Oren, and Y. Yarom, ‘‘Website fingerprinting
through the cache occupancy channel and its real world practicality,’’
IEEE Trans. Dependable Secure Comput., vol. 18, no. 5, pp. 2042–2060,
Oct. 2021.

[32] S. Bhat, D. Lu, A. Kwon, and S. Devadas, ‘‘Var-CNN: A data-
efficient website fingerprinting attack based on deep learning,’’ in Proc.
Privacy Enhancing Technol. Symp. (PETS), 2019, pp. 292–310, doi:
10.2478/popets-2019-0070.

[33] P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright, ‘‘Triplet
fingerprinting: More practical and portable website fingerprinting
with N-shot learning,’’ in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., New York, NY, USA, Nov. 2019, pp. 1131–1148, doi:
10.1145/3319535.3354217.

[34] M. S. Rahman, P. Sirinam, N. Mathews, K. G. Gangadhara, and
M. Wright, ‘‘Tik-Tok: The utility of packet timing in website fingerprint-
ing attacks,’’ in Proc. Privacy Enhancing Technol. Symp. (PETS), 2020,
pp. 5–24, doi: 10.2478/popets-2020-0043.

[35] M.Wang, Y. Li, X.Wang, T. Liu, J. Shi, andM. Chen, ‘‘2ch-TCN: Aweb-
site fingerprinting attack over Tor using 2-channel temporal convolutional
networks,’’ in Proc. IEEE Symp. Comput. Commun. (ISCC), Jul. 2020,
pp. 1–7.

[36] T. Dahanayaka, G. Jourjon, and S. Seneviratne, ‘‘Understanding traffic
fingerprinting CNNs,’’ in Proc. IEEE 45th Conf. Local Comput. Netw.
(LCN), Nov. 2020, pp. 65–76.

[37] T. Dahanayaka, G. Jourjon, and S. Seneviratne, ‘‘Dissecting traf-
fic fingerprinting CNNs with filter activations,’’ Comput. Netw.,
vol. 206, Apr. 2022, Art. no. 108770. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1389128622000068

[38] S. Wang, L. Wang, S. Yin, H. Zhao, and H. Shentu, ‘‘CPWF: Cross-
platform website fingerprinting based on multi-similarity loss,’’ in Proc.
Int. Conf. Netw. Netw. Appl. (NaNA), Dec. 2020, pp. 73–80.

[39] A. Ramezani, A. Khajehpour, and M. J. Siavoshani, ‘‘On multi-session
website fingerprinting over TLS handshake,’’ in Proc. 10th Int. Symp.
Telecommun. (IST), Dec. 2020, pp. 211–216.

[40] S. E. Oh, N. Mathews, M. S. Rahman, M. Wright, and N. Hopper,
‘‘GANDaLF: GAN for data-limited fingerprinting,’’ Privacy Enhancing
Technol., vol. 2021, no. 2, pp. 305–322, Apr. 2021, doi: 10.2478/popets-
2021-0029.

[41] H. Wang, H. Sayadi, A. Sasan, P. D. S. Manoj, S. Rafatirad, and
H. Homayoun, ‘‘Machine learning-assisted website fingerprinting attacks
with side-channel information: A comprehensive analysis and character-
ization,’’ in Proc. 22nd Int. Symp. Quality Electron. Design (ISQED),
Apr. 2021, pp. 79–84.

[42] C. Wang, J. Dani, X. Li, X. Jia, and B. Wang, ‘‘Adaptive fingerprint-
ing: Website fingerprinting over few encrypted traffic,’’ in Proc. 11th
ACM Conf. Data Appl. Secur. Privacy, New York, NY, USA, Apr. 2021,
pp. 149–160, doi: 10.1145/3422337.3447835.

[43] M. Shen, Z. Gao, L. Zhu, and K. Xu, ‘‘Efficient fine-grained web-
site fingerprinting via encrypted traffic analysis with deep learning,’’ in
Proc. IEEE/ACM 29th Int. Symp. Quality Service (IWQOS), Jun. 2021,
pp. 1–10.

[44] M. Guo, J. Fei, and Y. Meng, ‘‘Deep nearest neighbor website fin-
gerprinting attack technology,’’ Secur. Commun. Netw., vol. 2021,
pp. 5399816:1–5399816:14, Jan. 2021, doi: 10.1155/2021/5399816.

[45] J. Lu, G. Gou, M. Su, D. Song, C. Liu, C. Yang, and Y. Guan, ‘‘GAP-WF:
Graph attention pooling network for fine-grained SSL/TLS website fin-
gerprinting,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2021,
pp. 1–8.

[46] J. Dani and B. Wang, ‘‘HiddenText: Cross-trace website fingerprinting
over encrypted traffic,’’ in Proc. IEEE 22nd Int. Conf. Inf. Reuse Integr.
Data Sci. (IRI), Aug. 2021, pp. 274–281.

26044 VOLUME 11, 2023

http://dx.doi.org/10.1145/3038912.3052639
http://dx.doi.org/10.1145/3512715
http://dx.doi.org/10.1145/1921168.1921180
http://dx.doi.org/10.1145/3243734.3243768
http://dx.doi.org/10.2478/popets-2019-0043
http://dx.doi.org/10.2478/popets-2019-0070
http://dx.doi.org/10.1145/3319535.3354217
http://dx.doi.org/10.2478/popets-2020-0043
http://dx.doi.org/10.2478/popets-2021-0029
http://dx.doi.org/10.2478/popets-2021-0029
http://dx.doi.org/10.1145/3422337.3447835
http://dx.doi.org/10.1155/2021/5399816


P. Liu et al.: Survey on Deep Learning for Website Fingerprinting Attacks and Defenses

[47] Y. Zhang, X. Sun, X. Qin, C. Li, S. Wang, and Y. Xie, ‘‘Tripod: Use data
augmentation to enhance website fingerprinting,’’ in Proc. IEEE Symp.
Comput. Commun. (ISCC), Sep. 2021, pp. 1–7.

[48] M. Chen, Y. Wang, Z. Qin, and X. Zhu, ‘‘Few-shot website fingerprint-
ing attack with data augmentation,’’ Secur. Commun. Netw., vol. 2021,
p. 2840289:1–2840289:13, Jan. 2021, doi: 10.1155/2021/2840289.

[49] B. Gulmezoglu, ‘‘XAI-based microarchitectural side-channel analysis for
website fingerprinting attacks and defenses,’’ IEEE Trans. Dependable
Secure Comput., vol. 19, no. 6, pp. 4039–4051, Nov. 2022.

[50] M. Guo and J. Fei, ‘‘Website fingerprinting attacks based on homology
analysis,’’ Secur. Commun. Netw., vol. 2021, Oct. 2021, Art. no. 6070451,
doi: 10.1155/2021/6070451.

[51] M. Chen, Y. Wang, H. Xu, and X. Zhu, ‘‘Few-shot website finger-
printing attack,’’ Comput. Netw., vol. 198, Jan. 2021, Art. no. 108298.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1389128621003108

[52] Y. Sun, X. Luo, H. Wang, and Z. Ma, ‘‘A method for identifying Tor users
visiting websites based on frequency domain fingerprinting of network
traffic,’’ Secur. Commun. Netw., vol. 2022, Jan. 2022, Art. no. 3306098,
doi: 10.1155/2022/3306098.

[53] Y.Wang, H. Xu, Z. Guo, Z. Qin, andK. Ren, ‘‘SnWF:Website fingerprint-
ing attack by ensembling the snapshot of deep learning,’’ IEEE Trans. Inf.
Forensics Security, vol. 17, pp. 1214–1226, 2022.

[54] D. Li, Y. Zhu, M. Chen, and J. Wang, ‘‘Minipatch: Undermining DNN-
based website fingerprinting with adversarial patches,’’ IEEE Trans. Inf.
Forensics Security, vol. 17, pp. 2437–2451, 2022.

[55] Y. Chen, Y. Wang, and L. Yang, ‘‘SRP: A microscopic look at the
composition mechanism of website fingerprinting,’’ Appl. Sci., vol. 12,
no. 15, p. 7937, 2022. [Online]. Available: https://www.mdpi.com/2076-
3417/12/15/7937

[56] G. Cherubin, R. Jansen, and C. Troncoso, ‘‘Online website fingerprinting:
Evaluating website fingerprinting attacks on Tor in the real world,’’
in Proc. 31st USENIX Secur. Symp. Boston, MA, USA, Aug. 2022,
pp. 753–770.

[57] M. Chen, Y. Wang, and X. Zhu, ‘‘Few-shot website fingerprinting
attack with meta-bias learning,’’ Pattern Recognit., vol. 130, Oct. 2022,
Art. no. 108739. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0031320322002205

[58] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan, and
L. Qiu, ‘‘Statistical identification of encrypted web browsing traffic,’’ in
Proc. IEEE Symp. Secur. Privacy, May 2002, pp. 19–30.

[59] G. D. Bissias, M. Liberatore, D. Jensen, and B. N. Levine, ‘‘Privacy
vulnerabilities in encrypted HTTP streams,’’ in Privacy Enhancing Tech-
nologies, G. Danezis and D. Martin, Eds. Berlin, Germany: Springer,
2006, pp. 1–11.

[60] M. Liberatore and B. N. Levine, ‘‘Inferring the source of encrypted
HTTP connections,’’ in Proc. 13th ACM Conf. Comput. Com-
mun. Secur., New York, NY, USA, Oct. 2006, pp. 255–263, doi:
10.1145/1180405.1180437.

[61] D. Herrmann, R. Wendolsky, and H. Federrath, ‘‘Website finger-
printing: Attacking popular privacy enhancing technologies with the
multinomial Naïve–Bayes classifier,’’ in Proc. ACM Workshop Cloud
Comput. Secur., New York, NY, USA, Nov. 2009, pp. 31–42, doi:
10.1145/1655008.1655013.

[62] X. Gong, N. Kiyavash, and N. Borisov, ‘‘Fingerprinting websites
using remote traffic analysis,’’ in Proc. 17th ACM Conf. Comput.
Commun. Secur., New York, NY, USA, Oct. 2010, pp. 684–686, doi:
10.1145/1866307.1866397.

[63] L. Lu, E.-C. Chang, and M. C. Chan, ‘‘Website fingerprinting
and identification using ordered feature sequences,’’ in Computer
Security—ESORICS 2010, D. Gritzalis, B. Preneel, and M. Theoharidou,
Eds. Berlin, Germany: Springer, 2010, pp. 199–214.

[64] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, ‘‘Website fingerprint-
ing in onion routing based anonymization networks,’’ in Proc. 10th Annu.
ACM workshop Privacy Electron. Soc., New York, NY, USA, Oct. 2011,
pp. 103–114, doi: 10.1145/2046556.2046570.

[65] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, ‘‘Touching from a dis-
tance: Website fingerprinting attacks and defenses,’’ in Proc. ACM Conf.
Comput. Commun. Secur., New York, NY, USA, Oct. 2012, pp. 605–616,
doi: 10.1145/2382196.2382260.

[66] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, ‘‘Peek-a-boo, I
still see you:Why efficient traffic analysis countermeasures fail,’’ inProc.
IEEE Symp. Secur. Privacy, May 2012, pp. 332–346.

[67] T. Wang and I. Goldberg, ‘‘Improved website fingerprinting on Tor,’’ in
Proc. 12th ACM Workshop Workshop Privacy Electron. Soc., New York,
NY, USA, Nov. 2013, pp. 201–212, doi: 10.1145/2517840.2517851.

[68] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, ‘‘Effec-
tive attacks and provable defenses for website fingerprinting,’’ in
Proc. 23rd USENIX Secur. Symp., San Diego, CA, USA, Aug. 2014,
pp. 143–157.

[69] Y. Shi and S. Biswas, ‘‘Website fingerprinting using traffic analysis of
dynamic webpages,’’ in Proc. IEEE Global Commun. Conf., Dec. 2014,
pp. 557–563.

[70] G. He, M. Yang, X. Gu, J. Luo, and Y. Ma, ‘‘A novel active website
fingerprinting attack against tor anonymous system,’’ in Proc. IEEE
18th Int. Conf. Comput. Supported Cooperat. Work Design (CSCWD),
May 2014, pp. 112–117.

[71] A. Kwon, M. AlSabah, D. Lazar, M. Dacier, and S. Devadas, ‘‘Circuit
fingerprinting attacks: Passive deanonymization of Tor hidden services,’’
in Proc. 24th USENIX Secur. Symp., Washington, DC, USA, Aug. 2015,
pp. 287–302.

[72] K. Alnaami, G. Ayoade, A. Siddiqui, N. Ruozzi, L. Khan, and
B. Thuraisingham, ‘‘P2V: Effective website fingerprinting using vec-
tor space representations,’’ in Proc. IEEE Symp. Ser. Comput. Intell.,
Dec. 2015, pp. 59–66.

[73] J. Hayes and G. Danezis, ‘‘k-fingerprinting: A robust scalable website
fingerprinting technique,’’ in Proc. 25th USENIX Secur. Symp., Austin,
TX, USA, Aug. 2016, pp. 1187–1203.

[74] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp, K. Wehrle,
and T. Engel, ‘‘Website fingerprinting at internet scale,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., San Diego, CA, USA, 2016, pp. 1–15.

[75] H. Jahani and S. Jalili, ‘‘A novel passive website fingerprinting attack on
Tor using fast Fourier transform,’’ Comput. Commun., vol. 96, pp. 43–51,
Dec. 2016.

[76] H. Jahani and S. Jalili, ‘‘Online Tor privacy breach through website
fingerprinting attack,’’ J. Netw. Syst. Manage., vol. 27, no. 2, pp. 289–326,
Apr. 2019, doi: 10.1007/s10922-018-9466-z.

[77] R. Spreitzer, S. Griesmayr, T. Korak, and S. Mangard, ‘‘Exploiting data-
usage statistics for website fingerprinting attacks on android,’’ in Proc.
9th ACM Conf. Secur. Privacy Wireless Mobile Netw., New York, NY,
USA, Jul. 2016, pp. 49–60, doi: 10.1145/2939918.2939922.

[78] K. Al-Naami, S. Chandra, A. Mustafa, L. Khan, Z. Lin, K. Hamlen,
and B. Thuraisingham, ‘‘Adaptive encrypted traffic fingerprinting
with bi-directional dependence,’’ in Proc. 32nd Annu. Conf. Com-
put. Secur. Appl., New York, NY, USA, Dec. 2016, pp. 177–188, doi:
10.1145/2991079.2991123.

[79] A. Panchenko, A. Mitseva, M. Henze, F. Lanze, K. Wehrle, and T. Engel,
‘‘Analysis of fingerprinting techniques for Tor hidden services,’’ in Proc.
Workshop Privacy Electron. Soc., New York, NY, USA, Oct. 2017,
pp. 165–175, doi: 10.1145/3139550.3139564.

[80] A. Mitseva, A. Panchenko, F. Lanze, M. Henze, K. Wehrle, and T. Engel,
‘‘POSTER: Fingerprinting Tor hidden services,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., New York, NY, USA, Oct. 2016,
pp. 1766–1768, doi: 10.1145/2976749.2989054.

[81] T. G. Ejeta and H. J. Kim, ‘‘Website fingerprinting attack on Psiphon
and its forensic analysis,’’ in Digital Forensics and Watermarking,
C. Kraetzer, Y.-Q. Shi, J. Dittmann, and H. J. Kim, Eds. Cham,
Switzerland: Springer, 2017, pp. 42–51.

[82] Z. Zhuo, Y. Zhang, Z.-L. Zhang, X. Zhang, and J. Zhang, ‘‘Website
fingerprinting attack on anonymity networks based on profile hidden
Markov model,’’ IEEE Trans. Inf. Forensics Security, vol. 13, no. 5,
pp. 1081–1095, May 2018.

[83] Y. Qin and C. Yue, ‘‘Website fingerprinting by power estimation based
side-channel attacks on Android 7,’’ in Proc. 17th IEEE Int. Conf. Trust,
Secur. Privacy Comput. Commun./12th IEEE Int. Conf. Big Data Sci.
Eng., Aug. 2018, pp. 1030–1039.

[84] N. Matyunin, Y. Wang, T. Arul, K. Kullmann, J. Szefer, and
S. Katzenbeisser, ‘‘MagneticSpy: Exploiting magnetometer in mobile
devices for website and application fingerprinting,’’ in Proc. 18th ACM
Workshop Privacy Electron. Soc., New York, NY, USA, Nov. 2019,
pp. 135–149, doi: 10.1145/3338498.3358650.

[85] X. Zeng, C. Kang, J. Shi, Z. Li, and G. Xiong, ‘‘A novel website finger-
printing method for malicious websites detection,’’ in Information and
Communication Technology for Intelligent Systems, S. C. Satapathy and
A. Joshi, Eds. Singapore: Springer, 2019, pp. 723–730.

VOLUME 11, 2023 26045

http://dx.doi.org/10.1155/2021/2840289
http://dx.doi.org/10.1155/2021/6070451
http://dx.doi.org/10.1155/2022/3306098
http://dx.doi.org/10.1145/1180405.1180437
http://dx.doi.org/10.1145/1655008.1655013
http://dx.doi.org/10.1145/1866307.1866397
http://dx.doi.org/10.1145/2046556.2046570
http://dx.doi.org/10.1145/2382196.2382260
http://dx.doi.org/10.1145/2517840.2517851
http://dx.doi.org/10.1007/s10922-018-9466-z
http://dx.doi.org/10.1145/2939918.2939922
http://dx.doi.org/10.1145/2991079.2991123
http://dx.doi.org/10.1145/3139550.3139564
http://dx.doi.org/10.1145/2976749.2989054
http://dx.doi.org/10.1145/3338498.3358650


P. Liu et al.: Survey on Deep Learning for Website Fingerprinting Attacks and Defenses

[86] Z. Zhang, C. Kang, G. Xiong, and Z. Li, ‘‘Deep forest with LRRS
feature for fine-grained website fingerprinting with encrypted SSL/TLS,’’
in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage., New York, NY, USA,
Nov. 2019, pp. 851–860, doi: 10.1145/3357384.3357993.

[87] Y. Meng and J. Fei, ‘‘Hidden service website response fingerprint-
ing attacks based on response time feature,’’ Secur. Commun. Netw.,
vol. 2020, Dec. 2020, Art. no. 8850472, doi: 10.1155/2020/8850472.

[88] V. Ghiëtte and C. Doerr, ‘‘Scaling website fingerprinting,’’ in Proc. IFIP
Netw. Conf., Netw., 2020, pp. 199–207.

[89] X. Ma, M. Shi, B. An, J. Li, D. X. Luo, J. Zhang, and X. Guan, ‘‘Context-
aware website fingerprinting over encrypted proxies,’’ in Proc. IEEE
Conf. Comput. Commun., May 2021, pp. 1–10.

[90] D. Kim, L. Ho, Y.-H. Kim, W.-G. Kim, and D. Hwang, ‘‘Poster: A pilot
study on real-time fingerprinting for Tor onion services,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp. (NDSS), 2021, pp. 1–3.

[91] A. Mitseva, J. Pennekamp, J. Lohmöller, T. Ziemann, C. Hoerchner,
K. Wehrle, and A. Panchenko, ‘‘POSTER: How dangerous is my click?
Boosting website fingerprinting by considering sequences of webpages,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., New York, NY,
USA, Nov. 2021, pp. 2411–2413, doi: 10.1145/3460120.3485347.

[92] M. Shen, Y. Liu, L. Zhu, X. Du, and J. Hu, ‘‘Fine-grained webpage
fingerprinting using only packet length information of encrypted traffic,’’
IEEE Trans. Inf. Forensics Security, vol. 16, pp. 2046–2059, 2021.

[93] M. Shen, Y. Liu, S. Chen, L. Zhu, and Y. Zhang, ‘‘Webpage fingerprinting
using only packet length information,’’ in Proc. IEEE Int. Conf. Commun.
(ICC), May 2019, pp. 1–6.

[94] K.Wang, J. Zhang, G. Bai, R. Ko, and J. S. Dong, ‘‘It’s not just the site, it’s
the contents: Intra-domain fingerprinting social media websites through
CDN bursts,’’ in Proc. Web Conf., New York, NY, USA, Apr. 2021,
pp. 2142–2153, doi: 10.1145/3442381.3450008.

[95] H. Mei, G. Cheng, W. Gao, and J. Chen, ‘‘Website fingerprinting on
access network and core gateway,’’ in Proc. 17th Int. Conf. Mobility, Sens.
Netw. (MSN), Dec. 2021, pp. 671–678.

[96] T. Okazaki, H. Kato, S. Haruta, and I. Sasase, ‘‘A website fingerprinting
attack based on the virtual memory of the process on Android devices,’’
in Proc. 26th IEEE Asia–Pacific Conf. Commun. (APCC), Oct. 2021,
pp. 7–12.

[97] C. Li, L. Nie, and L. Zhao, ‘‘RLTree: Website fingerprinting through
resource loading tree,’’ in Network and System Security, M. Yang,
C. Chen, and Y. Liu, Eds. Cham, Switzerland: Springer, 2021, pp. 3–16.

[98] H. Zou, Z. Wei, J. Su, B. Zhao, Y. Xia, and N. Zhao, ‘‘PF: Website finger-
printing attack using probabilistic topic model,’’ Secur. Commun. Netw.,
vol. 2021, Oct. 2021, Art. no. 3265300, doi: 10.1155/2021/3265300.

[99] K. Zou, J. Shi, Y. Gao, X. Wang, M. Wang, Z. Li, and M. Su, ‘‘Bit-FP:
A traffic fingerprinting approach for Bitcoin hidden service detection,’’
in Proc. IEEE 6th Int. Conf. Data Sci. Cyberspace (DSC), Oct. 2021,
pp. 99–105.

[100] H. Cheng and R. Avnur, ‘‘Traffic analysis of SSL encrypted web brows-
ing,’’ Tech. Rep., 1998.

[101] A. Hintz, ‘‘Fingerprinting websites using traffic analysis,’’ in Privacy
Enhancing Technologies, R. Dingledine and P. Syverson, Eds. Berlin,
Germany: Springer, 2003, pp. 171–178.

[102] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, ‘‘A critical eval-
uation of website fingerprinting attacks,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., New York, NY, USA, Nov. 2014, pp. 263–274,
doi: 10.1145/2660267.2660368.

[103] T. Wang and I. Goldberg, ‘‘On realistically attacking Tor with website
fingerprinting,’’ Proc. Privacy Enhancing Technol., vol. 2016, no. 4,
pp. 21–36, Oct. 2016, doi: 10.1515/popets-2016-0027.

[104] X. Gu, M. Yang, and J. Luo, ‘‘A novel website fingerprinting attack agai-
nst multi-tab browsing behavior,’’ in Proc. IEEE 19th Int. Conf. Comput.
Supported Cooperat. Work Design (CSCWD), May 2015, pp. 234–239.

[105] Y. Xu, T. Wang, Q. Li, Q. Gong, Y. Chen, and Y. Jiang, ‘‘A multi-
tab website fingerprinting attack,’’ in Proc. 34th Annu. Comput. Secur.
Appl. Conf., New York, NY, USA, Dec. 2018, pp. 327–341, doi:
10.1145/3274694.3274697.

[106] Q. Yin, Z. Liu, Q. Li, T. Wang, Q. Wang, C. Shen, and Y. Xu, ‘‘An auto-
mated multi-tab website fingerprinting attack,’’ IEEE Trans. Dependable
Secure Comput., vol. 19, no. 6, pp. 3656–3670, Nov. 2022.

[107] W. Cui, T. Chen, C. Fields, J. Chen, A. Sierra, and E. Chan-Tin, ‘‘Revis-
iting assumptions for website fingerprinting attacks,’’ in Proc. ACM
Asia Conf. Comput. Commun. Secur., New York, NY, USA, Jul. 2019,
pp. 328–339, doi: 10.1145/3321705.3329802.

[108] J. Gong and T. Wang, ‘‘Zero-delay lightweight defenses against web-
site fingerprinting,’’ in Proc. 29th USENIX Secur. Symp., Aug. 2020,
pp. 717–734. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/gong

[109] W. Cui, T. Chen, and E. Chan-Tin, ‘‘More realistic website fingerprinting
using deep learning,’’ in Proc. IEEE 40th Int. Conf. Distrib. Comput. Syst.
(ICDCS), Nov. 2020, pp. 333–343.

[110] Z. Guan, G. Xiong, G. Gou, Z. Li, M. Cui, and C. Liu, ‘‘BAPM: Block
attention profiling model for multi-tab website fingerprinting attacks on
Tor,’’ in Proc. Annu. Comput. Secur. Appl. Conf., New York, NY, USA,
Dec. 2021, pp. 248–259, doi: 10.1145/3485832.3485891.

[111] M. Chen, Y. Chen, Y. Wang, P. Xie, S. Fu, and X. Zhu, ‘‘End-to-end
multi-tab website fingerprinting attack: A detection perspective,’’ 2022,
arXiv:2203.06376.

[112] R. Attarian, L. Abdi, and S. Hashemi, ‘‘AdaWFPA: Adaptive
online website fingerprinting attack for Tor anonymous network:
A stream-wise paradigm,’’ Comput. Commun., vol. 148, pp. 74–85,
Dec. 2019. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0140366419300763

[113] R. Attarian and S. Hashemi, ‘‘Investigating the streaming algorithms
usage in website fingerprinting attack against Tor privacy enhancing
technology,’’ in Proc. 16th Int. Iranian Soc. Cryptol. Conf. Inf. Secur.
Cryptol. (ISCISC), Aug. 2019, pp. 33–38.

[114] Z. Zhu, G. Chen, Z. Zhang, M. Fang, Q. Song, and B. Mao, ‘‘Website
fingerprinting attack through persistent attack of student,’’ in Proc. IEEE
7th Int. Conf. Cloud Comput. Intell. Syst. (CCIS), Nov. 2021, pp. 78–82.

[115] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg,
‘‘A systematic approach to developing and evaluating website fin-
gerprinting defenses,’’ in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., New York, NY, USA, Nov. 2014, pp. 227–238, doi:
10.1145/2660267.2660362.

[116] T. Wang, ‘‘High precision open-world website fingerprinting,’’ in Proc.
IEEE Symp. Secur. Privacy (SP), May 2020, pp. 152–167.

[117] T. Wang, ‘‘The one-page setting: A higher standard for evaluating web-
site fingerprinting defenses,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., New York, NY, USA, Nov. 2021, pp. 2794–2806, doi:
10.1145/3460120.3484790.

[118] M. Jiang, Y. Wang, G. Gou, W. Cai, G. Xiong, and J. Shi, ‘‘PST:
A more practical adversarial learning-based defense against website
fingerprinting,’’ in Proc. IEEE Global Commun. Conf., Dec. 2020,
pp. 1–6.

[119] C. Hou, G. Gou, J. Shi, P. Fu, and G. Xiong, ‘‘WF-GAN: Fighting back
against website fingerprinting attack using adversarial learning,’’ in Proc.
IEEE Symp. Comput. Commun. (ISCC), Jul. 2020, pp. 1–7.

[120] A. M. Sadeghzadeh, B. Tajali, and R. Jalili, ‘‘AWA: Adversarial website
adaptation,’’ IEEE Trans. Inf. Forensics Security, vol. 16, pp. 3109–3122,
2021.

[121] J. Gong, W. Zhang, C. Zhang, and T. Wang, ‘‘Surakav: Generating
realistic traces for a strong website fingerprinting defense,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), May 2022, pp. 1558–1573.

[122] B. Sun, W. Yang, M. Yan, Y. Zhu, and Z. Bai, ‘‘A practical website fin-
gerprinting defense approach with universal adversarial perturbations,’’
in Proc. 7th Int. Conf. Comput. Commun. Syst. (ICCCS), Apr. 2022,
pp. 752–760.

[123] B. N. Levine, M. K. Reiter, C. Wang, and M. Wright, ‘‘Timing attacks
in low-latency mix systems,’’ in Financial Cryptography, A. Juels, Ed.
Berlin, Germany: Springer, 2004, pp. 251–265.

[124] V. Shmatikov and M.-H. Wang, ‘‘Timing analysis in low-latency mix
networks: Attacks and defenses,’’ inComputer Security—ESORICS 2006,
D. Gollmann, J. Meier, and A. Sabelfeld, Eds. Berlin, Germany: Springer,
2006, pp. 18–33.

[125] C. V.Wright, S. E. Coull, and F.Monrose, ‘‘Trafficmorphing: An efficient
defense against statistical traffic analysis,’’ in Proc. Netw. Distrib. Syst.
Secur. Symp. 2009, San Diego, CA, USA, Feb. 2009, pp. 1–14.

[126] X. Cai, R. Nithyanand, and R. Johnson, ‘‘CS-BuFLO: A congestion
sensitive website fingerprinting defense,’’ in Proc. 13th Workshop Pri-
vacy Electron. Soc., New York, NY, USA, Nov. 2014, pp. 121–130, doi:
10.1145/2665943.2665949.

[127] R. Nithyanand, X. Cai, and R. Johnson, ‘‘Glove: A bespoke web-
site fingerprinting defense,’’ in Proc. 13th Workshop Privacy Elec-
tron. Soc., New York, NY, USA, Nov. 2014, pp. 131–134, doi:
10.1145/2665943.2665950.

26046 VOLUME 11, 2023

http://dx.doi.org/10.1145/3357384.3357993
http://dx.doi.org/10.1155/2020/8850472
http://dx.doi.org/10.1145/3460120.3485347
http://dx.doi.org/10.1145/3442381.3450008
http://dx.doi.org/10.1155/2021/3265300
http://dx.doi.org/10.1145/2660267.2660368
http://dx.doi.org/10.1515/popets-2016-0027
http://dx.doi.org/10.1145/3274694.3274697
http://dx.doi.org/10.1145/3321705.3329802
http://dx.doi.org/10.1145/3485832.3485891
http://dx.doi.org/10.1145/2660267.2660362
http://dx.doi.org/10.1145/3460120.3484790
http://dx.doi.org/10.1145/2665943.2665949
http://dx.doi.org/10.1145/2665943.2665950


P. Liu et al.: Survey on Deep Learning for Website Fingerprinting Attacks and Defenses

[128] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright, ‘‘Toward an effi-
cient website fingerprinting defense,’’ in Computer Security—ESORICS
2016, I. Askoxylakis, S. Ioannidis, S. Katsikas, and C. Meadows, Eds.
Cham, Switzerland: Springer, 2016, pp. 27–46.

[129] T. Wang and I. Goldberg, ‘‘Walkie-talkie: An efficient defense against
passive website fingerprinting attacks,’’ in Proc. 26th USENIX Secur.
Symp., Vancouver, BC, USA, Aug. 2017, pp. 1375–1390.

[130] G. Cherubin, J. Hayes, and M. Juarez, ‘‘Website fingerprinting defenses
at the application layer,’’ in Proc. Privacy Enhancing Technol. Symp.
(PETS), no. 2, 2017, pp. 186–203, doi: 10.1515/popets-2017-0023.

[131] D. Lu, S. Bhat, A. Kwon, and S. Devadas, ‘‘DynaFlow: An efficient
website fingerprinting defense based on dynamically-adjusting flows,’’ in
Proc. Workshop Privacy Electron. Soc., New York, NY, USA, Jan. 2018,
pp. 109–113, doi: 10.1145/3267323.3268960.

[132] E. Chan-Tin, T. Kim, and J. Kim, ‘‘Website fingerprinting attack mit-
igation using traffic morphing,’’ in Proc. IEEE 38th Int. Conf. Distrib.
Comput. Syst. (ICDCS), Jul. 2018, pp. 1575–1578.

[133] W. Cui, J. Yu, Y. Gong, and E. Chan-Tin, ‘‘Realistic cover traffic to
mitigate website fingerprinting attacks,’’ in Proc. IEEE 38th Int. Conf.
Distrib. Comput. Syst. (ICDCS), Jul. 2018, pp. 1579–1584.

[134] W. Cui, J. Yu, Y. Gong, and E. Chan-Tin, ‘‘Efficient, effective, and real-
istic website fingerprinting mitigation,’’ ICST Trans. Secur. Saf., vol. 6,
no. 20, Apr. 2019, Art. no. 161977.

[135] X. Liu, Z. Zhuo, X. Du, X. Zhang, Q. Zhu, and M. Guizani, ‘‘Adversarial
attacks against profile HMM website fingerprinting detection model,’’
Cognit. Syst. Res., vol. 54, pp. 83–89, May 2019.

[136] W. De la Cadena, A. Mitseva, J. Hiller, J. Pennekamp, S. Reuter,
J. Filter, T. Engel, K. Wehrle, and A. Panchenko, ‘‘TrafficSliver: Fight-
ing website fingerprinting attacks with traffic splitting,’’ in Proc. ACM
SIGSACConf. Comput. Commun. Secur., NewYork, NY, USA,Oct. 2020,
pp. 1971–1985, doi: 10.1145/3372297.3423351.

[137] W. De la Cadena, A. Mitseva, J. Pennekamp, J. Hiller, F. Lanze, T. Engel,
K. Wehrle, and A. Panchenko, ‘‘POSTER: Traffic splitting to counter
website fingerprinting,’’ in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., New York, NY, USA, Nov. 2019, pp. 2533–2535, doi:
10.1145/3319535.3363249.

[138] A. Abusnaina, R. Jang, A. Khormali, D. Nyang, and D. Mohaisen,
‘‘DFD: Adversarial learning-based approach to defend against website
fingerprinting,’’ in Proc. IEEE Conf. Comput. Commun., Jul. 2020,
pp. 2459–2468.

[139] S. Henri, G. Garcia-Aviles, P. Serrano, A. Banchs, and P. Thiran, ‘‘Pro-
tecting against website fingerprinting with multihoming,’’ Proc. Pri-
vacy Enhancing Technol., vol. 2020, no. 2, pp. 89–110, Apr. 2020, doi:
10.2478/popets-2020-0019.

[140] K. Al-Naami, A. El-Ghamry, M. S. Islam, L. Khan, B. Thuraisingham,
K. W. Hamlen, M. Alrahmawy, and M. Z. Rashad, ‘‘BiMorphing:
A bi-directional bursting defense against website fingerprinting attacks,’’
IEEE Trans. Dependable Secure Comput., vol. 18, no. 2, pp. 505–517,
Mar. 2021.

[141] M. S. Rahman, M. Imani, N. Mathews, and M. Wright, ‘‘Mockingbird:
Defending against deep-learning-based website fingerprinting attacks
with adversarial traces,’’ IEEE Trans. Inf. Forensics Security, vol. 16,
pp. 1594–1609, 2021.

[142] M. Imani, M. S. Rahman, and M. Wright, ‘‘Adversarial traces for
website fingerprinting defense,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., New York, NY, USA, Oct. 2018, pp. 2225–2227, doi:
10.1145/3243734.3278493.

[143] C. Hou, J. Shi, M. Cui, M. Liu, and J. Yu, ‘‘Universal website finger-
printing defense based on adversarial examples,’’ in Proc. IEEE 20th Int.
Conf. Trust, Secur. Privacy Comput. Commun. (TrustCom), Oct. 2021,
pp. 99–106.

[144] C. Hou, J. Shi, M. Cui, and Q. Yang, ‘‘Attack versus attack: Toward
adversarial example defend website fingerprinting attack,’’ in Proc. IEEE
20th Int. Conf. Trust, Secur. Privacy Comput. Commun. (TrustCom),
Oct. 2021, pp. 766–773.

[145] S. Huang, X. Ma, and H. Bian, ‘‘Effectively and efficiently defending
shadowsocks against website fingerprinting attacks,’’ in Proc. 8th Int.
Conf. Dependable Syst. Their Appl. (DSA), Aug. 2021, pp. 251–256.

[146] T. Luo, L.Wang, S. Yin, H. Shentu, andH. Zhao, ‘‘RBP: Awebsite finger-
printing obfuscation method against intelligent fingerprinting attacks,’’
J. Cloud Comput., vol. 10, no. 1, p. 29, May 2021, doi: 10.1186/s13677-
021-00244-8.

[147] S. Shan, A. N. Bhagoji, H. Zheng, and B. Y. Zhao, ‘‘A real-time defense
against website fingerprinting attacks,’’ 2021, arXiv:2102.04291.

[148] H. Li, N. Niu, and B. Wang, ‘‘Cache shaping: An effective defense
against cache-based website fingerprinting,’’ in Proc. 12th ACM Conf.
Data Appl. Secur. Privacy, New York, NY, USA, 2022, pp. 252–263, doi:
10.1145/3508398.3511500.

[149] J. K. Holland and N. Hopper, ‘‘RegulaTor: A straightforward website
fingerprinting defense,’’ Proc. Privacy Enhancing Technol., vol. 2022,
no. 2, pp. 344–362, Apr. 2022, doi: 10.2478/popets-2022-0049.

[150] R. Tang, G. Shen, C. Guo, and Y. Cui, ‘‘SAD: Website fingerprint-
ing defense based on adversarial examples,’’ Secur. Commun. Netw.,
vol. 2022, Apr. 2022, Art. no. 7330465, doi: 10.1155/2022/7330465.

[151] J. Liang, C. Yu, K. Suh, and H. Han, ‘‘Tail time defense against website
fingerprinting attacks,’’ IEEE Access, vol. 10, pp. 18516–18525, 2022.

[152] Y. Zhang, L. Yang, J. Jia, S. Ying, and Y. Zhou, ‘‘RAP: A lightweight
application layer defense against website fingerprinting,’’ in Security
and Privacy in New Computing Environments, W. Shi, X. Chen, and
K.-K. R. Choo, Eds. Cham, Switzerland: Springer, 2022, pp. 254–270.

[153] Z. Ling, G. Xiao, W. Wu, X. Gu, M. Yang, and X. Fu, ‘‘Towards an
efficient defense against deep learning based website fingerprinting,’’ in
Proc. IEEE Conf. Comput. Commun., May 2022, pp. 310–319.

[154] J.-P. Smith, L. Dolfi, P. Mittal, and A. Perrig, ‘‘QCSD: A QUIC client-
side website-fingerprinting defence framework,’’ in Proc. 31st USENIX
Secur. Symp. Boston, MA, USA, Aug. 2022, pp. 771–789.

[155] C. Xiao, B. Li, J.-Y. Zhu,W. He,M. Liu, and D. Song, ‘‘Generating adver-
sarial examples with adversarial networks,’’ in Proc. 27th Int. Joint Conf.
Artif. Intell., Jul. 2018, pp. 3905–3911, doi: 10.24963/ijcai.2018/543.

[156] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, ‘‘Image-to-image translation
with conditional adversarial networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 5967–5976.

[157] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, ‘‘Unpaired image-to-image
translation using cycle-consistent adversarial networks,’’ in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2242–2251.

PEIDONG LIU received the B.E. and M.E.
degrees from Beihang University, where he is cur-
rently pursuing the Ph.D. degree with the School
of Computer Science and Engineering. His cur-
rent research interests include deep learning, web-
site fingerprinting, and encrypted network traffic
classification.

LONGTAO HE was born in China, in 1974.
He received the B.E., M.S.E., and Ph.D. degrees
from the Harbin Institute of Technology, China.
He is currently a Senior Engineer (professor level)
with the National Computer Network Emergency
Response Technical Team/Coordination Center
of China (CNCERT/CC). His research inter-
ests include internet measurement, network traf-
fic classification, internet security, and mobile
security.

ZHOUJUN LI received the Ph.D. degree from
the National University of Defense Technology,
Hunan, China, in 1999. He is currently a Professor
with the School of Computer Science and Engi-
neering, Beihang University, Beijing, China. His
main research interests include concurrency theory
and process algebra, formal analysis and verifi-
cation of security protocols, information security,
and data mining.

VOLUME 11, 2023 26047

http://dx.doi.org/10.1515/popets-2017-0023
http://dx.doi.org/10.1145/3267323.3268960
http://dx.doi.org/10.1145/3372297.3423351
http://dx.doi.org/10.1145/3319535.3363249
http://dx.doi.org/10.2478/popets-2020-0019
http://dx.doi.org/10.1145/3243734.3278493
http://dx.doi.org/10.1186/s13677-021-00244-8
http://dx.doi.org/10.1186/s13677-021-00244-8
http://dx.doi.org/10.1145/3508398.3511500
http://dx.doi.org/10.2478/popets-2022-0049
http://dx.doi.org/10.1155/2022/7330465
http://dx.doi.org/10.24963/ijcai.2018/543

