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ABSTRACT In this paper, the non-static error tracking control issue for the networked control system is
considered. First, the unstable modes of the external disturbance signal and the output signal of the reference
system are established to form a new series system with the controlled objects. Then, an internal model
compensation controller is presented to achieve non-static tracking error. Furthermore, an adaptive event-
triggering mechanism is introduced as a communication method to improve network resource utilization.
By formulating the tracking control problem of the networked control system as the stabilization problem of
a time-varying time-delay system, a sufficient condition such that the closed-loop system is asymptotically
stable and satisfies theH∞ output tracking performance is derived. Finally, the simulation examples illustrate
the feasibility and effectiveness of the proposed approach.

INDEX TERMS The internal model principle, H∞ output tracking control, networked control systems,
adaptive event-triggering mechanisms, time-delay systems.

I. INTRODUCTION
In recent years, with the development of modern industry
and military, tracking control has been widely applied in
fields like industrial process control, robot control, marine
information detection, and aerospace [1], [2], [3], [4], [5].
It should be mentioned that the practical control systems
often suffer from external periodic disturbances, such as wind
shear forces on aircraft [6], and wave forces on offshore
platforms or ships [7]. These periodic disturbances can usu-
ally be described by some kinds of sinusoidal signals. For a
tracking system, to reduce the tracking error, some strategies
have been adopted in literature, such as internal model con-
trol(IMC) [8], [9], predictive control [10], [11], sliding mode
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control [12], [13]. Among these methods, internal model
control is an effective method to eliminate certain kinds of
interferences like periodic sinusoidal disturbances. In addi-
tion, if the tracked signal is generated by a reference model,
when the unstable modes of the external disturbance and the
reference signal are implanted in the servo compensator, the
tracking error can be asymptotically reduced to zero. More-
over, this method is insensitive to the parameter variations of
the controlled system and compensator except for the internal
model [14]. When the parameters of the controlled system
and the compensator are perturbed, the controlled objects can
still achieve non-static error tracking control as long as the
closed-loop system is asymptotically stable, even if the range
of the perturbation is quite large.

Another feature of current tracking control systems is
that the components such as sensors, controllers, actuators,
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and controlled objects exchange data or information mostly
through shared communication networks. Networked con-
trol systems have also become one of the main hot fields
of control theory and engineering [15], [16]. Naturally, the
tracking control problem of networked control systems has
drawn much attention from scholars [17], [18]. Due to the
introduction of networks, the tracking performance not only
depends on the designed controller but also is affected by the
network-induced delay and limited communication resources
[19], [20]. This brings great challenges to the research of net-
worked tracking control. In the traditional networked control
systems, the time-triggering mechanism(TTM) is applied,
where the controller is updated with a fixed period [21].
To release the restriction of this case, a well-designed event-
triggering mechanism (ETM) is introduced into the net-
worked tracking control [22], [23]. Different from the TTM,
the ETM generally leads to a less conservatism usage of
systems resources since the information of system states was
sent to the controller unless the occurrence of an event [24],
[25]. Recently, significant achievements have been made on
the various ETMs. For instance, distributed event-triggered
control for a multi-agent system was studied and the results
were then extended to a self-triggered setup in [26]. In [27],
the sampled-data-based event-triggered control and filter-
ing for networked systems were investigated. For the issue
of the networked output tracking control, a state-dependent
ETM based on the T-S fuzzy model was reported in [28].
In [29], a fixed-time event-triggered control mechanism was
proposed to investigate the time-varying formation tracking
problem for multiagent systems. In [30], to perform the
control in two different time scales, a new dual ETM was
presented for a singularly perturbed system with structured
state-space uncertainty. The periodic event-triggered control
strategies were developed for linear systems in [31] and [32].
Further, a novel periodic event-triggered scheme and the
predictor-based periodic event-triggered scheme were pro-
posed for nonlinear systems in [33] and [34], respectively.
The alternate periodic event-triggered control was investi-
gated for the exponential synchronization ofmultilayer neural
networks in [35]. The dynamic event triggering mechanism
by the introduction of an internal dynamic variable was pro-
posed in [36]. Moreover, the adaptive event-triggered con-
troller design method was investigated in [37] for IT2 fuzzy
networked control systems. Fuzzy event-triggered integral
sliding mode control was addressed in [38] for TSFM-based
nonlinear systems.

So far, in the aforementioned literature, the approach to
tracking control is mostly to construct an augmented system
with the states of the reference system and the plant, and
the tracking error is used as the output. Thus, the tracking
problem of the controlled systems is transformed into the
stability problem of the augmented systems. However, when
using this method to track a continuous signal produced by
the reference system, even if the input signal of the reference

system and the external disturbance are both step signals,
there will exist a steady-state tracking error for the controlled
objects. It is difficult to eliminate the steady tracking error.
Moreover, when the external disturbance is a periodically
changing signal, the tracking performance of the controlled
objects further deteriorates. It is no longer applicable to
some systems that require precise docking. As alluded to
above, the internal model control has non-static error tracking
property and strong robustness, which is the motivation for
introducing the internal model control into the networked
tracking problem. At present, we have not found scholars
who combine ETM with internal model control to study
networked tracking control. More importantly, if the tracked
signal is generated by a reference model, how to obtain the
structural characteristic model of tracking signal yr (t) by the
input signal r(t) of the reference system is the difficulty of
the proposed method. Another challenge of the considered
approach is how to combine adaptive ETMand internalmodel
compensation controller. And how to deal with adaptive
parameter variables in LMIs is also an issue that needs to be
considered.

Therefore, in this paper, an internal model controller with
the adaptive ETM is designed for networked tracking control
systems, which can suppress sinusoidal disturbance signals,
achieve non-static error tracking control as well as save
network bandwidth resources. And two numerical examples
demonstrate the effectiveness and practicability of the pro-
posed method.

The main contribution of the manuscript can be summa-
rized as follows:

• New tracking method based on the internal model prin-
ciple is proposed, in which the common unstable modes
of the reference tracking system and the external distur-
bance is implanted into the servo compensator.

• The internal model compensation controller is designed
for networked tracking control problems. Meanwhile,
the adaptive ETM is introduced to improve bandwidth
utilization.

• Considering the influence of network-induced delay, the
networked control system is firstly modeled as a time-
varying time-delay system that depends on sampling
state error. Then, the networked tracking problem is
further transformed into the stability problem of the
closed-loop system.

• By constructing a Lyapunov-Krasovskii functional with
the delay segmentation technique, we derive a sufficient
condition such that the time-varying time-delay system
is asymptotically stable and satisfies the H∞ output
tracking performance.

Notations: Rm means the m-dimensional Euclidean space.
Sym(Y ) represents Y + Y T , and ∗ denotes the symmetric
elements of a matrix. n × n identity matrix is expressed as
In. A symmetric positive definite (semi-definite) matrix is
defined by the representation S > 0 (S ≥ 0).
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II. PROBLEM STATEMENT AND PRELIMINARIES
Let us consider the linear continuous-time plant as follows:

ẋ(t) = Ax (t) + B1u (t) + B2w (t)

y (t) = Cx (t) + Dw (t) (1)

where x (t) ∈ Rn, u (t) ∈ Rr , y (t) ∈ Rq, and w (t) ∈

Rq denote the state, control input, measured output, dis-
turbance, and their corresponding dimensions respectively.
A,B1,B2,C,D are the coefficient matrices with appropriate
dimensions. The initial condition of the system (1) is x (t0) =

x0. Assume that {A,B1} is completely controllable and {A,C}

is completely measurable.
The plant (1) is controlled to track the signal yr (t), which

is generated by the reference system (2),

ẋr (t) = Gxr (t) + r (t)

yr (t) = Hxr (t) (2)

where, xr (t) ∈ Rm is the state of the reference system, r (t) ∈

Rm is the input of the reference system, yr (t) ∈ Rp is the
output signal of the reference system,G andH are appropriate
dimensional constant matrices with G Hurwitz.
The controller is connected with the plant (1) via the

internet shown in Fig.1. Our purpose is to design a class of
controllers to make the closed-loop networked control system
realize non-static error tracking control even if the external
disturbance signal and the reference input signal both are
periodic signals like sinusoids.

So, the ideas of internal model control and the adaptive
ETM are introduced into networked control systems. The
designed controller is composed of a stabilization compen-
sator u1 (t) and an internal model servo compensator u2 (t).
The stabilization compensator u1 (t) is static state feedback,
whose function is to make the controlled objects asymptot-
ically stable. While the internal model servo compensator
u2 (t) provides the cancellation of unstable modes of the
tracked reference system and the disturbance signal. The sum
of the two compensators u (t) = u1 (t) + u2 (t) is used as the
quantity for the tracking control system to achieve that the
error e (t) = y (t) − yr (t) tends asymptotically to zero.

III. DESIGN OF TRACKING CONTROLLER AND
ADAPTIVE ETM
A. DESIGN OF INTERNAL MODEL CONTROLLER
In order to realize non-static error tracking control, the
following equation should be satisfied: lim

t→∞
e (t) =

lim
t→∞

[y (t) − yr (t)] = 0.

First, for the q-dimensional disturbance signal, w (t) =[
w1 (t) ,w2 (t) . . . .wq (t)

]T take Laplace transform and
obtain

W̄ (s) =
[
W̄1 (s) , W̄2 (s) , . . . .W̄q (s)

]T
=

[
nw1 (s)
dw1 (s)

,
nw2 (s)
dw2 (s)

, . . . .
nwq (s)
dwq (s)

]T
(3)

FIGURE 1. A diagram of networked tracking control system based on
internal model principle and adaptive ETM.

From the structural characteristics of the denominator, it is
easily found that dw (s) =

{
dw1 (s) , dw2 (s) , . . . .dwq (s)

}
is

the least common multiple, and nw is the degree of the poly-
nomial dw (s). Thus, the unstable model of the disturbance
signal w (t) can be derived as (4):

ẋw (t) = Awxw (t)

w (t) = Cwxw (t) (4)

where, Aw is a nw × nw dimensional matrix that satisfies
‘‘minimum polynomial = dw (s)’’, Cw is a q × nw dimen-
sional matrix that satisfies the output variable is w (t). Then,
so does for the m-dimensional reference input signal r (t) =

[r1 (t) , r2 (t) , . . . .rm (t)]T, and obtain the Laplace transform
(5) and the least common multiple (6).

R̄ (s) =
[
R̄1 (s) , R̄2 (s) , . . . .R̄m (s)

]T
=

[
nr1 (s)
dr1 (s)

,
nr2 (s)
dr2 (s)

, . . . .
nrm (s)
drm (s)

]T
(5)

dr (s) = {dr1 (s) , dr2 (s) , . . . .drm (s)} (6)

where nr is the degree of the polynomial dr (s). Similarly, the
structural characteristic model of the input signal r(t) of the
reference system can be derived as (7).

ẋp (t) = Apxp (t)

r (t) = Cpxp (t) (7)

where, Ap is any nr × nr dimensional matrix that satisfies
‘‘minimum polynomial = dr (s)’’, Cp is any q × nr dimen-
sional matrix that satisfies the output variable is r (t).

Combining the state-space model of the reference system
(2), the structural characteristic model of the output yr (t) can
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FIGURE 2. The structural characteristic model of yr(t).

be described by (8) as shown in Fig.2.[
ẋp (t)
ẋr (t)

]
=

[
Ap 0
Cp G

] [
xp (t)
xr (t)

]
yr (t) =

[
0 H

] [ xp (t)
xr (t)

]
(8)

Since the signal model to be implanted in the controller
is just the common unstable modes of the reference output
signal and the disturbance signal, the smallest polynomials
of the structural properties of yr (t) and w(t) are obtained as
dy(s) and dw(s), respectively. Then, take the factor product
of dy(s) and dw(s) in the right half-plane of the complex plane
asφy(s) andφw(s), and finally, take the least commonmultiple
of the common unstable signal model φ (s) = φy (s) · φw (s).
Let φ (s) = sl + al−1sl−1

+ . . . a1s + a0, the coefficient
matrices can be computed as follows.

Ac =

0

. . .

0


ql×ql

,Bc =

 β

. . .

β


ql×q

(9)

where

0 =


0
...

0

Il−1

−a0 −a1 · · · −al−1


l×l

, β =


0
...

0
1


l×1

Furthermore, the common unstable modes of the reference
system output and the disturbance signal can be described as:

ẋc (t) = Acxc (t) + Bce (t)

yc (t) = xc (t)

u2 (t) = Kcxc (t) (10)

where Kc is the gain matrix of the servo compensator, xc(t)
is the state variable of the common unstable model, which
includes stable variables xw(t), xp(t), xr (t) defined in (4) and
(8). u2(t) is the control output of the internal mode controller.
Remark 1: The important advantages of the non-static

tracking control system scheme based on the internal model
principle are: it has strong insensitivity to the parameter
changes of the controlled system and compensator except the
internal model. When the parameters of the controlled system
and the compensator are perturbed, even if the parameter
perturbation range is quite large, as long as the closed-loop
system remains asymptotically stable, the system must still
have the property of non-static error tracking.
Remark 2: For the non-static error tracking control system

based on the internal model principle, under the premise

FIGURE 3. Internal model compensation controller.

that the system is asymptotically stable, the basic reason
why the system can achieve asymptotic tracking and distur-
bance suppression is the internal model and the compensa-
tion effect generated by the internal model. The essence of
internal model control is that the root of the common unstable
algebraic equation φ(s)of reference tracking signal yr (t) and
disturbance signal w(t) can accurately cancel the unstable
mode of yr (t) and w(t), to achieve the goal of non-static error
tracking.

Assuming that both the reference signal and the external
disturbance signal are sinusoidal with frequencies ω1 and ω2,
respectively, the common unstable model is

ẋc (t) =


0 1 0 0
0 0 1 0
0 0 0 1

−ω2
1ω

2
2 0 −

(
ω2
1 + ω2

2

)
0

 xc (t)

+


0
0
0
1

 [y (t) − yr (t)]

yc (t) = xc (t) (11)

The structure of the internal mode compensation controller is
shown in Fig.3.

Taking the stabilization compensator as the state feedback
of the controlled system, we have u1(t) = Kx(t). Then the
state equation of the (n+ql)-dimensional series system can be
given:

ξ̇ (t) = Ãξ (t) + B̃1u (t) + B̃2w (t) + Ẽyr (t)

u (t) = K̃ξ (t) (12)

where, ξ (t) =

[
x (t)
xc (t)

]
, Ã =

[
A 0
BcC Ac

]
, B̃1 =

[
B1
BcD

]
,

B̃2 =

[
B2
0

]
, Ẽ =

[
0

−Bc

]
, K̃ =

[
K Kc

]
.

For the series system (12), the necessary and sufficient
condition for the existence of state feedback is that the system
is fully controllable. If the non-static error tracking control
based on the principle of the internal model is realized, the
system (1) and the series system (12) are both controllable.
The following lemma is necessary to prove that the series
system (12) is controllable.
Lemma 1 [39]: For the series system (12), there exists a

state feedback controller to make the tracking error approach
to zero when t → ∞, if the following conditions are satisfied.

• The input dimension of the controlled system is greater
than or equal to the output dimension, i.e. dim(u) ≥

dim(y);
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• For each root λi of the common unstable algebraic equa-
tion φ(s) = 0 of the output of the reference system and
the disturbance signal, the following equation holds:

rank
[

λiI − A B
−C D

]
= n+ q, i = 1, 2, . . . , l

B. DESIGN OF THE ADAPTIVE ETM
Consider a networked tracking control system as shown in
Fig.1, assuming that sensors are time-triggered with a con-
stant sampled period h, h ∈ N, the sampled data is transmitted
in a single packet, and neither packet losses nor disorder
occurs in transmission.

The sampling sequence is described by the set S1 =

{0, h, 2h, . . . , lh, . . .}(l ∈ N). The successfully transmitted
sampled sequence at the sensors is described by the set S2 =

{0, t1h, t2h, . . . , tkh, . . .}(tk ∈ N). To reduce the transmission
of data packets, the time to start a transmission task tkh is
determined by adaptive event-triggering equipment. When
the triggering condition is satisfied, the state sequence ξ (tkh)
is transmitted to the controller through the network channel,
then the control law is updated, and a new set point is sent to
the zero-order holder (ZOH) via network again. ZOH keeps
the current value for the actuator until the next transmitting
datum come.

The adaptive ETM is implemented as the violation of the
following inequality condition:

ρT (lh)W1ρ (lh) < σ (lh) ξT (lh)W2ξ (lh) (13)

where lh ∈ [tkh, tk+1h), ξ (lh) is the current sampling data,
ξ (tkh) is the latest transmission data, ρ(lh) = ξ (tkh) − ξ (lh)
is the current sampling state error, W1,W2 are quadratic
positive weighting matrices on ρ(lh) and ξ (lh), respectively.
The adaptive triggering threshold σ (lh) is designed for given
parameters 0 ≤ σ ≤ σ̄ as σ (lh) = σ +

(
σ̄ − σ

)
·

exp(−ρT (lh) ρ (lh)).
Hence, the next event-triggering time instant tk+1h is deter-

mined as follows:

tk+1h = tkh+ min
l≥tk ,l∈N{

lh|ρT (lh)W1ρ (lh) ≥ σ (lh) ξT (lh)W2ξ (lh)
}
(14)

Remark 3: The proposed adaptive event-triggered condi-
tion only is judged at the sampling instant, the lower bound
of the internal execution time is the sampling period h, (h >

0), hence avoiding the occurrence of Zeno behavior.
Remark 4: According to (13), the sampling data is not sent

to the controller unless satisfying the trigger condition. This
may cost a bit of computing time of (13), but it can consid-
erably relieve the transmission pressure and save the band-
width use of the network. In networked control systems, the
bandwidth resources are usually limited, and communication
consumes more energy than information processing does.
Therefore, it is significant to improve bandwidth utilization
by the adaptive ETM.

Due to the influence of the network-induced delay, the
state sequence ξ (tkh) is sent at the time tkh by the adaptive
ETM and arrives at the actuator at the moment tkh + τtk .
Afterward, the control input will remain a constant through
ZOH until the next state sequence ξ (tk+1h) arrives. where
τtk = τ sctk + τ catk ∈ [τmin, τmax], τmin, τmax ∈ R , ( τtk includes
the transport delays both from the sensor to the controller τ sctk
and from the controller to the actuator τ catk ). Hence, the state
feedback control law based on the internal model principle is
chosen as follows:

u (t) = u1 (t) + u2 (t)

=Kx (tkh) +Kcxc (tkh)

=K̃ξ (tkh) (15)

where, t ∈ Ia =
[
tkh+ τtk , tk+1h+ τtk+1

)
, K̃ =

[K Kc], ξ (t) =

[
x (tk)
xc (tk)

]
, Kc is the gain matrix of the

servo-compensated controller and K is the gain matrix of the
stabilization controller.

As in the literature [40], the time interval Ia is partitioned
as Ia =

⋃tk+1−1
l=tk Il, l ∈ N with Il ≜ [lh+ τl, lh+ h+ τl+1),

tk ∈ N and τl ⩽ h + τl+1, which ensures that the sequence
{lh+ τl} is strictly increasing. For ∀t ∈ Il , we denote the time
delay as ηt = t − lh, where, ηt is bounded by η = τ ⩽ τl ⩽
ηt < 1+ τl+1 ⩽ 1+ τ̄ = η̄, and η, η̄ represent the minimum
and maximum allowable communication delay, respectively.
Then, according to (15), the feedback control law is given by:

u (t) = K̃ (ρ (t − ηt) + ξ (t − ηt)) , t ∈ Il (16)

Considering the impact of delay on the system, the
adaptive event-triggering condition can be written as:
ρT (t − ηt)W1ρ (t − ηt) < σ (t) ξT (t − ηt)W2ξ (t − ηt) ,

t ∈ Il , with ρ (t − ηt) = ξ (tkh) − ξ (t − ηt).
Combining (12) and (16), one can derive an augmented

closed-loop time-delay system based on the internal model
control and adaptive ETM:

ξ̇ (t) = Ãξ (t) + B̃1K̃ξ (t − ηt)

+ B̃1K̃ρ (t − ηt) + B̃2w (t) + Ẽyr (t)

e (t) = −C̃ξ (t) + yr (t) (17)

where the system matrices are defined in (12).
According to the closed-loop system (17), the networked

tracking control system (1) that based on the internal model
principle, and the adaptive ETM is modeled as a time-varying
time-delay system that depends on the sampling state error.
Therefore, the time-delay-dependent method is suitable for
the analysis and synthesis of the system.

IV. MAIN RESULTS
The following two Lemmas will be essential for the proof.
Lemma 2 [41]: For any vectors a, band positive definite

matrix Z , the following holds:

2aT b ≤ aTZ−1a+ bTZb
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Lemma 3: For any constant matrix M ∈ Rn×n, M =

MT > 0, scalar r ≤ 0 , vector function ς̇ : [−r, 0] → Rn,
the following holds:

− r
∫ 0

−r
ς̇T (t + α)M ς̇ (t + α) dα

≤
(
ςT (t) ςT (t − r)

) [−M M
M −M

](
ς (t)

ς (t − r)

)
Proof: Note that Jensen’s inequality

r
∫ r

0
wT (β)Mw (β) dβ

≥

(∫ r

0
w (β)dβ

)T
M
(∫ r

0
w (β)dβ

)
Then, according to Jensen’s inequality, we have

− r
∫ 0

−r
ς̇T (t + α)M ς̇ (t + α) dα

= −r
∫ r

0
ς̇T (t + α − r)M ς̇ (t + α − r) dα

≤ −

(∫ r

0
ς̇ (t + α − r)dα

)T
M
(∫ r

0
ς̇ (t + α − r)dα

)
= −

(
ς (t + α − r)

∣∣r
0
)TM (

ς (t + α − r)
∣∣r
0
)

= −[ς (t) − ς (t − r)]TM [ς (t) − ς (t − r)]

=
(
ςT (t) ςT (t − r)

) [−M M
M −M

](
ς (t)

ς (t − r)

)
This completes the proof of the Lemma 3.

Assuming that the coefficient matrices Ã, B̃1, B̃2, Ẽ and the
controller gain matrix K̃ are known, we study the conditions
for the augmented closed-loop system to achieve non-static
error tracking control. Theorem 1 shows that if some matri-
ces can satisfy certain LMIs, then the system can achieve
non-static error tracking control.
Theorem 1: Consider closed-loop system (17), given

scalars η̄ ⩾ δ ⩾ η ⩾ 0, γ > 0, σl ⩾ 0, l = 1, 2 and
matrix K̃ , if there exist symmetric positive definite matrices
P,Q1,Q2,Mi(i = 1, 2, 3),W1,W2, such that[

511l 512
∗ 522

]
< 0 (18)

where

512=

[
η8T

1M
T
1

(
δ−η

)
8T

1M
T
2 (η̄−δ) 8T

1M
T
3 8T

2 8T
3

]
522 = diag

{
−M1 −M2 −M3 −I −W1

}
81 =

[
Ã 0 0 B̃1K̃ 0 B̃1K̃ B̃2 Ẽ

]
82 =

[
−C̃ 0 0 0 0 0 0 I

]
83 =

[
K̃TB̃T1P 0 0 0 0 0 0 0

]
01 = ÃTP+ PÃ+ Q1 + Q2 −M1

511l =



01 M1 0 PB̃1K̃
∗ −Q1 −M1 −M2 M2 0
∗ ∗ −M2 −M3 0
∗ ∗ ∗ σlW2
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 0 PB̃2 PẼ
0 0 0 0
M3 0 0 0
0 0 0 0

−M3 − Q2 0 0 0
∗ 0 0 0
∗ ∗ −γ 2I 0
∗ ∗ ∗ 0


then the closed-loop system (17) is asymptotically stable and
has the H∞ performance γ .

Proof: Firstly, based on the idea of time-delay seg-
mentation, the Lyapunov-Krasovski functional candidates are
chosen as follows:

V (ξ, t) = V1 (ξ, t) + V2 (ξ, t) + V3 (ξ, t) , t ∈ Im (19)

with

V1 (ξ, t) = ξT (t)Pξ (t)

V2 (ξ, t) =

∫ t

t−η

ξT (α)Q1ξ (α)dα +

∫ t

t−η̄

ξT (α)Q2ξ (α)dα

V3 (ξ, t) = η

∫ 0

−η

∫ t

t+β

ξ̇T (α)M1ξ̇ (α)dαdβ

+

(
δ − η

) ∫ −η

−δ

∫ t

t+β

ξ̇T (α)M2ξ̇ (α)dαdβ

+ (η̄ − δ)

∫
−δ

−η̄

∫ t

t+β

ξ̇T (α)M3ξ̇ (α)dαdβ

The time derivatives of V (ξ, t) can be calculated as

V̇1 (ξ, t) = 2ξ̇T (t)Pξ (t)

= 2
(
Ãξ (t) + B̃1K̃ξ (t − ηt) + B̃1K̃ρ (t − ηt)

+B̃2w (t) + Ẽyr (t)
)T
Pξ (t)

= ξT (t)
(
ÃTP+ PÃ

)
ξ (t)

+ 2ξT (t − ηt) K̃TB̃T1Pξ (t)
+ 2ρT (t − ηt) K̃TB̃T1Pξ (t)
+ 2wT (t) B̃T2Pξ (t) + 2yTr (t) ẼTPξ (t)

Combining Lemma 2 and adaptive ETM (13), we have:

2ρT (t − ηt) K̃TB̃T1Pξ (t)

≤ ρT (t − ηt)W1ρ (t − ηt)

+ ξT (t)PB̃1K̃W
−1
1 K̃TB̃T1Pξ (t)

≤ σ (t)ξT (t − ηt)W2ξ (t − ηt)

+ ξT (t)PB̃1K̃W
−1
1 K̃TB̃T1Pξ (t)

23536 VOLUME 11, 2023



X. Pan et al.: Networked Tracking Control Based on Internal Model Principle and Adaptive ETM

V̇2 (ξ, t) = ξT (t) (Q1 + Q2) ξ (t) − ξT
(
t − η

)
Q1ξ

(
t − η

)
− ξT (t − η̄)Q2ξ (t − η̄)

V̇3 (ξ, t) = η2ξ̇T (t)M1ξ̇ (t) − η

∫ t

t−η

ξ̇T (α)M1ξ̇ (α) dα

+

(
δ − η

)2
ξ̇T (t)M2ξ̇ (t)

−

(
δ − η

) ∫ t−η

t−δ

ξ̇T (α)M2ξ̇ (α) dα

+ (η̄ − δ)2ξ̇T (t)M3ξ̇ (t)

− (η̄ − δ)

∫ t−δ

t−η̄

ξ̇T (α)M3ξ̇ (α) dα

Furthermore, by Lemma 3, it yields

V̇3 (ξ, t) ≤ ξ̇T (t)
(

η2M1+

(
δ−η

)2
M2 +(η̄ − δ)2M3

)
ξ̇ (t)

+

(
ξT (t) ξT

(
t − η

) )
M1

(
ξ (t)

ξ
(
t − η

))

+

(
ξT
(
t − η

)
ξT (t − δ)

)
M2

(
ξ
(
t − η

)
ξ (t − δ)

)

+
(
ξT (t − δ) ξT (t − η̄)

)
M3

(
ξ (t − δ)

ξ (t − η̄)

)
where, Mi =

[
−Mi Mi
Mi −Mi

]
, i = 1, 2, 3.

V̇ (ξ, t) ≤ χT(t)5χ(t) − eT (t) e (t) + γ 2wT (t)w (t)
(20)

where, χ (t) =

[
ξT (t) ξT

(
t − η

)
ξT (t − δ) ξT (t − ηt)

ξT (t − η̄) ρT (t − ηt) wT (t) yTr (t)
]T and 5 = 511 −

5125
−1
22 5T

12, 511, 512, 522 are given in Theorem 1.
By (18), Lyapunov-Krasovski functional(19) and (20), the

augmented closed-loop system (17) is asymptotically sta-
ble when w(t) = 0. Considering zero initial conditions,
it yields ∥e (t)∥2 ≤ γ ∥w (t)∥2. This completes the proof of
Theorem 1.
Remark 5: The construction of the Lyapunov-Krasovski

function in Theorem 1 is based on the idea of time lag par-
titioning, thus it can make use of the time-delay information
and reduce the conservativeness of the stability condition to
some extent.

Based on Theorem 1, we give the following sufficient
conditions for the design of the internal model compensation
controller (16) and the adaptive ETM (13).
Theorem 2: Consider closed-loop system (17), given

scalars η̄ ⩾ δ ⩾ η ⩾ 0, γ > 0,σl ⩾ 0, l = 1, 2, if there
exist symmetric positive definite matrices Q̃1, Q̃2, M̃i(i =

1, 2, 3), W̃1, W̃2,X and matrix Y , satisfying the following
LMIs (21), the closed-loop system (17) is asymptotically
stable and has the H∞ performance γ .

5̃l =

[
5̃11l 5̃12

∗ 5̃22

]
< 0 (21)

where,

5̃11l =



0̃1 M̃1 0 B̃1Y
∗ −Q̃1 − M̃1 − M̃2 M̃2 0
∗ ∗ −M̃2 − M̃3 0
∗ ∗ ∗ σlW̃2
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 0 B̃2 Ẽ
0 0 0 0
M̃3 0 0 0
0 0 0 0

−M̃3 − Q̃2 0 0 0
∗ 0 0 0
∗ ∗ −γ 2I 0
∗ ∗ ∗ 0


5̃12 =

[
η8̃T

1

(
δ − η

)
8̃T

1 (η̄ − δ) 8̃T
1 8̃T

2 8̃T
3

]
5̃22 = diag

{
M̃1 − 2X M̃2 − 2X M̃3 − 2X

−I −W̃1
}

8̃1 =
[
ÃX 0 0 B̃1Y 0 B̃1Y B̃2 Ẽ

]
8̃2 =

[
−C̃X 0 0 0 0 0 0 I

]
8̃3 =

[
Y TB̃T1 0 0 0 0 0 0 0

]
0̃1 = XÃT + ÃX + Q̃1 + Q̃2 − M̃1

Moreover, the controller (16) can be obtained by K̃ = YX−1

and adaptive ETM (13) by W1 = X−1W̃1X−1 and W2 =

X−1W̃2X−1.
Proof: Denote XMiX = M̃i (i = 1, 2, 3), XQiX =

Q̃i (i = 1, 2), XWiX = W̃i (i = 1, 2),K̃X = Y , X̄ =

diag
{
X X X X X X I I M−1

1
M−1

2 M−1
3 I X

}
then left-multiplying and right-multiplying

by to LMIs (21) in Theorem 1, respectively, it yields
∏̃

< 0.
This completes the proof.
Remark 6: In this paper, the nonlinear term linearization is

used to deal with the nonlinear terms −XM̃−1
i X (i = 1, 2, 3).

If there exist any matrix X and positive definite matrix M ,
satisfying XM−1X ⩾ 2X − M , then there is −XM̃−1

i X ⩽
M̃i − 2X (i = 1, 2, 3).
To further explain the rigorous modeling process of the

combined method, we added the algorithm of non-static error
tracking control.

Algorithm 1 : Algorithm to Non-Static Error Tracking
Control
S1: Check the condition dim(u) ≥ dim(y). If the condition
holds, continue to next step; otherwise, go to S8.
S2: Check if {A,B} is fully controllable. if {A,B} is fully
controllable, continue to the next step; otherwise, go to S8.
S3: Determine the unstable parts dw(s) and dy(s) of the dis-
turbance signal w(t) and the output signal yr (t). Determine
frequency domain structural properties φw(s) and φy(s) of
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dw(s) and dy(s), then take the least common multiple of the
common unstable signal model φ(s) = φw(s).φy(s).
S4:Calculate the roots of φ(s) = 0. Check if the following
equation holds for each root λi

rank
[

λiI − A B
−C D

]
= n+ q, i = 1, 2, . . . , l

If the equation holds, continue to the next step; otherwise,
go to S8.
S5: Determine block coefficient matrices

0 =


0
...

0

Il−1

−a0 −a1 · · · −al−1


l×l

, β =


0
...

0
1


l×1

Determine the coefficient matrices of the common unstable
model

Ac =

0

. . .

0


ql×ql

,Bc =

 β

. . .

β


ql×q

S6: Construct the state equation of the (n + ql)-dimensional
series system[

ẋ (t)
ẋc (t)

]
=

[
A 0
BcC Ac

] [
x (t)
xc (t)

]
+

[
B1
BcD

]
u (t)

+

[
B2
0

]
w (t) +

[
0

−Bc

]
yr (t)

u (t) =
[
K Kc

]
ξ (t)

S7: Solve the gain of controller by stability condition
Theorem 2.
S8: Stop calculate.

V. NUMERICAL EXAMPLES
In this section, two examples are given for the networked
tracking control problem where both the external distur-
bances and the reference inputs are sinusoidal signals. it will
confirm that the proposed method can save network band-
width resources and enable the networked control system to
achieve non-static error tracking control.
Example 1: Consider a continuous-time linear time-

invariant controlled system (1) and a reference trackingmodel
(2) with the following coefficient matrices.

A =

[
1 1

−2 1

]
,B1 =

[
0
1

]
,B2 =

[
0
1

]
,

C =
[
1 1

]
,D =

[
0
0

]
,G = −10,H = −1.

Here, n = 2, p = 1 and q = 1. First of all,
we know that the controlled system (1) is fully controllable
from rank[B1 AB1] = 2, and the dimensionality relation-
ship dim(u)≥ dim(y) between input and output is satisfied by
dim(u) = dim(y) = 1. From the above analysis, the common

unstable model of the external disturbance and the reference
tracking system (i.e., the internal model) obtained is:

ẋc (t) =


0 1 0 0
0 0 1 0
0 0 0 1

−ω2
1ω

2
2 0 −

(
ω2
1 + ω2

2

)
0

 xc (t)

+


0
0
0
1

 [y (t) − yr (t)]

yc (t) = xc (t)

From rank
[
Bc AcBc A2cBc A

3
cBc

]
= 4, we know that the

internal model is controllable. Assuming that the external
disturbance is given as w(t) = 5sin0.1t , the external input
of the reference system is r(t) = sin0.5t , based on which the
coefficient matrices of the series system is obtained as:

Ã =


1 1 0 0 0 0

−2 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

−1 −1 −0.0025 0 −0.26 0

 ,

B̃1 =


0
1
0
0
0
0

 , B̃2 =


0
1
0
0
0
0

 , Ẽ =


0
0
0
0
0
1

 .

In addition, the sampling period h = 10ms, the network
induction delay η = 10ms, η̄ = 30ms, δ = 20ms, the adaptive
event triggering parameters σ = 0.1, σ̄ = 0.5, and the state
of the controlled objects is initialized by x0 = [−0.1 0.1]T ,
and the initial state of the reference model is xr0 = 0.5.
By solving the LMI (21) in Theorem 2, the gain matrices of
the internal mode controller and the state feedback controller
are obtained as: Kc = [ - 100.7269 - 279.8896 - 414.1911 -
197.8802] , K = [243.7811 105.3280] . The power matrices
of the adaptive ETM are:

W1 =


302.2090 - 282.4243 5.3640
- 282.4243 279.8309 - 4.8350
5.3640 - 4.8350 294.12
- 0.2660 - 0.3105 - 0.6407
0.4195 - 0.4308 - 79.3431
0.3100 1.6804 - 0.6501

- 0.2660 0.4195 0.3100
- 0.3105 - 0.4308 1.6804
- 0.6407 - 79.3431 - 0.6501
78.8644 - 0.0326 - 24.7977
- 0.0326 24.5654 0.2813
- 24.7977 0.2813 10.93621


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FIGURE 4. Network-induced delay.

FIGURE 5. Inter-event interval of adaptive ETM.

W2 =



321.5418 - 294.3152 6.9218
- 294.3152 285.7625 - 6.1652
6.9218 - 6.1652 374.2215
- 0.1408 - 0.2982 - 1.1138
0.2484 - 0.2600 - 100.2892
0.7196 1.5215 - 0.3078

- 0.1408 0.2484 0.7196
- 0.2982 - 0.2600 1.5215
- 1.1138 - 100.2892 - 0.3078
100.0238 0.0603 - 31.0592
0.0603 30.5980 0.4994
- 31.0592 0.4994 13.2425


The network-induced delay is shown in Fig.4. Fig.5 shows
the inter-event interval of adaptive ETM. From Fig.5, we can
see that when the adaptive event-triggering parameter is σ =

0.1, σ̄ = 0.5, the update rate of the control signal under
the adaptive ETM is 5.9 %, which illustrates a reduction in
the transmission of data packets. Fig.6 depicts the tracking
curve of the system under the action of the internal mode
compensation controller when the input of the reference sys-
tem and the external disturbance are sinusoidal signals; From
Fig.6 we can see that, due to the addition of the internal
model controller, the common unstable modes of the external
disturbance and the reference system is canceled, and the
networked control system realizes the trackingwithout steady
error.

FIGURE 6. The tracking curves of the system under the action of the
internal model compensator.

FIGURE 7. Schematic of the satellite.

Example 2: Take the satellite control problem from [42],
[43], [44], and [45] as an example, and Fig.7 shows a
schematic diagram of the satellite.

The satellite system consists of two rigid bodies connected
by a flexible linkage. This linkage is modeled as a spring
with a torque constant k and a viscous damping constant f .
Denoting the yaw angles of the two bodies by θ1 and θ2,
the control torque by u(t), the moments of inertia of the two
bodies by J1 and J2, and the torque disturbance by w(t), then
the dynamic equations are given by (22):

J1θ̈1 (t) + f
(
θ̇1 (t) − θ̇2 (t)

)
+ k (θ1 (t) − θ2 (t)) = u (t)

J2θ̈2 (t) + f
(
θ̇2 (t) − θ̇1 (t)

)
+ k (θ2 (t) − θ1 (t)) = w (t)

(22)

If we choose the state variable x (t) =
[
θ1 θ2 θ̇1 θ̇2

]T and the
output y (t) = θ2, then the state space model of the satellite
system can be described as

1 0 0 0
0 1 0 0
0 0 J1 0
0 0 0 J2




θ̇1 (t)
θ̇2 (t)
θ̈1 (t)
θ̈2 (t)

 =


0 0 1 0
0 0 0 1

−k k −f f
k −k f −f


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×


θ1 (t)
θ2 (t)
θ̇1 (t)
θ̇2 (t)

+


0
0
1
0

 u (t)

+


0
0
0
1

w (t)

y (t) =
[
0 1 0 0

]
θ1 (t)
θ2 (t)
θ̇1 (t)
θ̇2 (t)


where J1 = J2 = 1, k = 0.09, f = 0.04.

Suppose the reference model is given by:

xr (t) = −xr (t) + r (t)

yr (t) = 0.5xr (t)

It is assumed that the network-induced delay η = 5 ms,
η̄ =10 ms, δ = 7 ms, adaptive event-triggering parameter
σ = 0.1 , σ̄ =0.5. The state of the satellite system is initial-
ized by x0 =

[
−0.5 1.3 0.3 −0.3

]T , and the initial state of
the reference model is xr0 = 0.5.
Our goal is to design a control law (16) based on the

internal-mode principle and the adaptive ETM to guarantee
the output of the satellite system to track the output of the
reference model well while reducing the communication fre-
quency. In addition, the update rate of the control signal under
the adaptive ETM is evaluated by fk =

(
ns
/
nk
)

× 100 %,
where ns and nk represent the number of packets sent and
sampled, respectively.

We assume that both the disturbance signal and the external
input signal of the reference system are sinusoidal signals:

w (t) = 0.5 sin 0.1t, r (t) = sin 0.5t (23)

By solving the LMIs (21) in Theorem 2, we obtained the
gain matrices of the internal mode controller and the state
feedback controller:

Kc = 1.0e + 004 * [−0.0002 0.0393 − 0.0054 0.2224] ,

K = 1.0e + 004* [ - 0.0036 - 1.5199 - 0.0017 - 0.3699] .

The weight matrices of the adaptive ETM are:

W1 =



0.2888 0.0805 0.1181 - 0.2365
0.0805 0.4162 - 0.4403 0.5463
0.1181 - 0.4403 0.8595 0.6235
0.0351 0.1733 - 0.2256 0.2859
0.6354 0.2378 0.5637 - 0.8569
0.8616 0.1754 0.8745 0.6952
0.2135 -0.5412 0.8654 0.2145
-0.754 10.1245 0.8123 - 0.3251

0.3874 0.0351 0.2365 0.1452
0.1784 0.1733 0.2584 -0.0125
0.2479 - 0.2256 0.2541 0.2147
0.6354 0.1523 -0.8512 -0.3512
0.4125 0.4353 0.8745 0.5423
- 0.5367 0.9201 0.6241 0.7324
0.8741 -0.1745 - 0.3541 0.2174
-0.1745 0.7152 -0.6854 -0.3526



W2 =



0.6354 0.2378 0.5637 0.8569
0.1181 - 0.4403 0.8595 0.6235
0.5281 3.3589 0.0128 0.8547
0.9359 0.3532 0.8564 0.2647
0.2888 0.0805 0.1181 0.2365
0.8616 0.1754 0.8745 0.6952
- 0.2816 0.1926 0.3325 0.1735
0.3287 0.5439 0.9513 0.5583

0.4125 0.4353 - 0.2584 0.3354
0.2479 0.2256 0.8521 0.2147
0.2653 0.3365 -0.8554 0.6542
3.2756 0.3265 0.2543 0.8465
0.3874 0.0351 0.1563 -0.1349
0.5367 0.9201 0.3254 0.2465
0.1146 0.8741 0.2314 0.8167
- 0.5546 0.6322 - 0.2541 0.5943


The network-induced delay is shown in Fig.8. Fig.9 shows
the inter-event interval of adaptive ETM. From Fig.9, we can
see that when the adaptive event-triggering parameter is σ =

0.1, σ̄ = 0.5, the update rate of the control signal under
the adaptive ETM is 6.39 %, which illustrates a reduction in
the transmission of data packets. Fig.10 depicts the changing
trend of adaptive parameter σ (t). We can see that the thresh-
old value of the adaptive ETM is constantly changing accord-
ing to the system parameters. When the system parameters
change drastically, the threshold value also changes drasti-
cally. Furthermore, when the control input of the system tends
to be stable, that is tracking error approaches zero at about
7s, and the threshold value also tends to be constant. Fig.11
compares the results between tracking curves under the action
of a general controller in [42], [44], and [45], and tracking
curves under the action of the internal model compensation
controller at the same time. From Fig.11 we can see that,
compared with the general controller, the tracking error of the
system under the proposed controller goes to zero asymptot-
ically. This indicates that the satellite tracking system based
on the internal model principle not only makes the tracking
error of the yaw angle zero and improves the tracking control
accuracy, but also enhances the anti-interference capability
and has certain robustness, which is conducive to further
improving the accuracy and stability of the satellite tracking
system.

In addition, Table 1 compares the transmission rate of
the existing literature with that of the adaptive ETM in this
paper. From Table 1, it can be seen that the data transmission
rate is 16.6 % in [44] and 11 % in [45] for the external
disturbance and the reference input (23) respectively; while
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FIGURE 8. Network-induced delay.

FIGURE 9. Inter-event interval of adaptive ETM.

TABLE 1. The transmission rate of adaptive ETM.

TABLE 2. The computational complexity of proposed method.

FIGURE 10. The adaptive change trend of parameter σ(t).

in this paper, the data transmission rate is 6.39 %. This also
indicates that the controller based on the adaptive ETM and
internal model principle designed in this paper can better save
network bandwidth resources on the premise of ensuring the
tracking performance of the system. Furthermore, the number

FIGURE 11. The tracking curves of the system under different controllers.

TABLE 3. Minimum value of γ for different delay interval.

and dimension of LMIs and the number of variables that are
applied to scale the computational burden for solving feasible
solution of K̃ are listed in Table 2.

To illustrate the feasibility of the proposed LMI problems,
the minimum guaranteed H∞ output tracking performance γ

for different delay intervals η(t) is listed in Table 3. From
Table 3, it can be seen the obtained results in this paper is
considerably less conservative than the previous results. In
addition, the number of free variables in [44] is 6n2 + n, and
that of variables in this paper is 8(n+ql)2 + (n+ql). Hence,
the range of solutions of the proposed method in this paper is
larger.

VI. CONCLUSION
The problem of non-static error tracking control for a net-
worked control system is investigated in a situation where
both external disturbance and reference input are sinusoidal
signals. Considering the influence of network-induced delay
and limited bandwidth resources, and at the same time, to off-
set the common unstablemodes of external disturbance signal
and the output signal of the reference system, a compensa-
tion controller based on the internal model principle and an
adaptive ETM is proposed in this paper. Firstly, the problem
of non-static error tracking control for the networked control
system is transformed into the stability problem of the closed-
loop time-varying time-delay system. Then, by constructing
a Lyapunov-Krasovskii functional with the delay segmen-
tation technique, we derive a sufficient condition such that
the closed-loop system is asymptotically stable and satisfies
the H∞ output tracking performance. Finally, the simulation
results verify the feasibility and effectiveness of the proposed
method.
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