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ABSTRACT Over the past few years, deep learning has been introduced to tackle hyperspectral image (HSI)
classification and demonstrated good performance. In particular, the convolutional neural network (CNN)
based methods have progressed. However, due to the high dimensionality of HSI and equal treatment of
all bands, the performances of CNN based methods are hampered. The labels of land-covers often differ
between edge and the center pixels in pixel-centered spatial information. These edge pixels may weaken the
discrimination of spatial features and reduce classification accuracy. Motivated by the attention mechanism
of the human visual system, the spatial proximity feature selection with residual spatial–spectral attention
network is proposed in this article. It contains a residual spatial attention module, a residual spectral attention
module, and a spatial proximity feature selection module. The residual spatial attention module aims to
select the crucial spatial information, which assigns weights to different features by measuring the similarity
between the surrounding elements and their central ones. The residual spectral attention module is designed
for spectral bands which are selected from raw input data by emphasizing the valuable bands and suppressing
the valueless. According to the spatial distribution of features, the spatial proximity feature selection module
is used to filter features effectively. Experiments on three public data sets demonstrate that the proposed
network outperforms the state-of-the-art methods in comparison.

INDEX TERMS Residual spatial attention module, residual spectral attention module, spatial proximity
feature selection, hyperspectral image classification.

I. INTRODUCTION
Unlike traditional RGB images, hyperspectral images (HSIs)
are composed of 1-D spectral signatures and 2-D spatial
information. The spectral signatures encompass hundreds of
continuous spectral bands. The spatial information contains
the detailed spatial distribution of objects. Based on such
abundant spectral bands, HSI has a wide range of appli-
cations, such as urban development [1], surveillance [2],
environment management [3] and etc. Hyperspectral image
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classification (HSIC) primarily aims to classify each pixel as
one of a given set of land-cover classes, such as land, forest,
rivers, and etc.

Numerous methods have been applied during the past
decades to obtain better classification accuracy. Early strate-
gies mainly focused on the spectral signatures. Represen-
tative approaches include support vector machine (SVM)
[4], extreme learning machine [5], and multinomial logistic
regression [6]. These methods mainly use the spectrum of a
pixel to determine its class. However, the accuracy is affected
by the spectral variability which is brought by many factors
such as incident illumination, atmospheric effects, unwanted
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shade and shadow, natural spectrum variation, and instrument
noises [7], [8], [9], [10], [11]. Therefore, the classification
results of the spectral-based methods are unsatisfactory.

Many methods introduce spatial information into the clas-
sification process. Some works extract the spatial features via
morphological operators [12], Gabor filters [13], and hyper-
graph structure [14] or Markov random fields [15]. These
spatial features are combined with spectral features for clas-
sification. Others directly extract the joint spectral–spatial
features using 3-D discrete wavelets [16], 3-D scattering
wavelets [17], 3-D Gabor filters [18], and so on. The spectral–
spatial methods attempt to utilize the neighboring pixels to
complement the spectral signatures. Based on Tobler’s First
Law of Geography, the adjacent pixels are assumed to share
the same land-cover label [19]. The spectral–spatial methods
can extract spectral–spatial features from the adjacent pix-
els and have shown outstanding classification performances.
Meanwhile, the influence of spectral variability on classifica-
tion results is reduced effectively. Nevertheless, these meth-
ods extract features in a shallow manner, which is difficult to
gain the performance substantially.

Recently, deep learning algorithms have made up for the
defects of traditional methods in feature extraction, which
has been achieving progress in computer vision tasks, includ-
ing object detection [20], semantic segmentation [21], and
image classification [22]. Furthermore, various deep learning
models have been investigated, such as multilayer perceptron
(MLP) [23], stacked autoencoder (SAE) [24], and convolu-
tional neural network (CNN) [25]. Feng et al. [26] proposed
a new adaptive spatial regularization edge SAE which used a
super-pixel segmentation method to segment the image into
multiple homogeneous regions. Shi and Pun [24] employed
SAE to fully use the spatial features between each super-
pixel through local and nonlocal similarity measures. In [27],
CNN was involved in deep spectral-spatial feature extraction
and classification. In [28], considering the abundance of unla-
beled samples, a novel self-supervised divide-and-conquer
GAN is proposed.

Among deep learning algorithms, CNN shows its effects
in feature extraction because the characteristics of local con-
nections and shared weights reduce the number of network
parameters [29]. According to the input of networks, exist-
ing CNN models can be grouped into two classes: spectral
CNNs [30], [31], [32], [33] and spectral–spatial CNNs [34],
[35], [36]. Spectral CNNs extract spectral features for each
pixel only. For example, Hu et al. [30] designed a 1-D CNN
model to extract features from the spectral information of
each pixel. Because of the small numbers of training pixels,
Hu’s model is not very deep, which limits the ability of
1-D CNNs to represent features. A novel pixel-pair method
[31] was proposed to regard the pixel learning problem as
the pixel-pair counterpart, by which the number of training
pixels is significantly increased. Wu and Saurabh [32] and
Hao and Prasad [33] proposed the combination of 1-D CNN
and RNN, which fed the spectral features learned by a 1-D

CNN into an RNN to enhance the discriminative ability of the
extracted features. However, the use of spectral information
alone is challenging to recognize the classes of land covers.
The spectral CNNs are lack of taking spatial features into
account. Spectral–spatial features that are properly extracted
can be more discriminative than the spectral features alone
for HSI processing tasks.

Unlike spectral CNNs, spectral–spatial CNNs extract spec-
tral and spatial features simultaneously. Both spectral sig-
natures and spatial information contribute clues for HSIC.
In some recent researches, 3-D CNNs have been used to
extract spatial-spectral features [37], [38], [39], [40]. Because
the training time of the spectral-spatial residual network
(SSRN) [41] was too long, Ahmad et al. [37] designed a fast
dense spectral-spatial convolutional network. In [42], a resid-
ual conv–deconv network was used to extract spectral-spatial
features from unlabeled HSI cubes. For the problems of
limited training samples and unbalanced classes, Chen et al.
[43] combined the virtual sample enhancement technology
with a CNN to effectively extract the spectral and spatial
information. However, the number of parameters in 3-D CNN
increased considerably, which will lead to the overfitting and
significantly increase the computational consumption [44].
Many works have attempted to design the dual-branch net-
works to alleviate this problem. One branch focuses on spec-
tral feature extraction, and the other focuses on spatial feature
extraction. For examples, Zhao and Du et al. [45] combined a
local discrimination embedding algorithm with a CNN. The
local discrimination was used to extract the spectral informa-
tion from images and the CNN was used to extract the spatial
information continuously. Yue et al. [46] combined a deep
convolutional neural network and logical regression by gener-
ating the spectral and spatial feature maps. Zhang et al. [47]
learned the spatial–spectral context-sensitivity using CNNs
in different regions and enhanced the recognition ability of
network by combining various distinguishable appearance
factors. Mei et al. [48] proposed a five-layer neural network
to integrate contextual information and spectral information.
Xu et al. [49] proposed a spectral-spatial unified network
which contains a CNN and a long short-term memory model
based on band grouping. The parallel two-branch frameworks
were proposed in references [50] and [51], which effectively
extract the spatial-spectral features and dramatically reduces
the number of parameters. Roy et al. [52] proposed a hybrid
spectral CNNwhich effectively reduces the complexity of the
model. Nevertheless, the above-mentioned methods utilize
all possible information in data regardless of whether the
information is helpful or not. Some useless information may
be considered, which will result in a waste of computing
resources.

Recently, the attention mechanism has been popularly
employed in language modeling [53], [54] and computer
vision tasks [55], [56], [57]. Its success mainly depends on
the reasonable assumption that human vision only focuses on
particular parts of the visual space when and where needed
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FIGURE 1. Architecture of the proposed SPFS-RSSAN. The Indian Pines database is utilized as an example to illustrate the architecture.

[58]. Common attention mechanisms, such as SENets [56]
and bottleneck attention module [59], use the global max
and average pooling to summarize the information carried
by every feature map. Yu et al. [60] developed a feedback
attention module that assembles the spectral-space features
in a compact connection. To reduce the loss in band selec-
tion, Feng et al. [61] took advantage of the band-independent
convolution and hard thresholding to integrate band selection,
feature extraction and classification. In [62], the Spectral-
Former was proposed to mine and represent the sequence
properties of spectral features. Roy et al. [63] introduced a
multi-modal fusion transformer that achieves superior perfor-
mance by using multi-modal information as external classifi-
cation markers.

In this paper, a spatial proximity feature selection with
residual spatial–spectral attention network (SPFS-RSSAN) is
proposed. Our goal is to enhance the representation capac-
ity using attention mechanism, by which the SPFS-RSSAN
will focus on more discriminative spectral bands and spa-
tial positions while suppressing the unnecessary. Three core
modules are designed: the residual spatial attention module
(RSaAM), the residual spectral attention module (RSeAM),
and the spatial proximity feature selection module (SPFSM).
The RSaAM is used to distinguish the importance of each
surrounding pixel to the central pixel classification by which
the contribution of pixels with the same label as the central
pixel to classification is enhanced. RSeAM is used to assign
weight to each spectral feature, which can be interpreted as a
band selector. The modified Minkowski distance is applied
to avoid overfitting and find pixels with the same label as
the central target. The effectiveness of SPFS-RSSAN has
been validated on three public data sets. Experimental studies
demonstrate that the proposal can achieve better classification
results.

The main contributions of this work are as follows.
1) An RSaAM is designed to exploit the spatial feature cor-

relation between the center pixel and its surroundings, which
improves the spatial feature representation related to the

center pixel specifically. In this module, the 2-D convolution
is used to extract the spatial features. The sigmoid activation
function is then in charge of generating the proper spatial
weights.

2) An RSeAM is designed to generate a spectral weight
vector that reflects the importance of different spectral bands.
This attention module exploits the pooling layers and sig-
moid function for producing a series of recalibrated spectral
information, which can effectively improve the classification
results.

3) An SPFSM is proposed to reduce the impact of useless
information. It consists of a proximity selection layer and a
tanh-derivative activation function. Tanh-derivative function
conforms the operation logic of the SPFSM to improve the
classification accuracy.

The rest of the paper is organized as follows. Section II
describes the proposed method in detail. The experimental
results are given in Section III. Finally, the paper is concluded
in Section IV.

II. METHODOLOGY
A. OVERVIEW OF THE PROPOSAL
As shown in Fig. 1, the network consists of the spatial
subnetwork, the spectral subnetwork, and the classification
part. For the spectral subnetwork, considering that each pixel
can be represented as a continuous spectral curve having a
rich spectrum character. The RSeAM is used to focus on
the inter-band relationship of features. The spatial features
are regarded as the complements in spatial dimensions. The
spatial subnetwork improves the representation of interests
and focuses on the inter-spatial relationships of features by
exploiting the RSaAM and the SPFSM. Then, the features
extracted by the spectral and spatial subnetworks are fed to
the fully connected layers to learn the high-level joint spatial-
spectral features and acquire a prediction by the softmax
function.

Let the HSI cube be denoted by I ∈ RH×W×B, where
I ,H , W , and B present the original input, the length, the
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FIGURE 2. Residual spatial attention module. It utilizes both max-pooling outputs and average-pooling outputs
pooled along the spectral axis and stacked horizontally as the input of a convolution layer.

width, and the number of bands, respectively. The label of
every HSI pixel P = {p1, p2, · · · , pN } forms a one-hot vector
Y = {y1, y2, · · · , yN ∈ R1×1×C

}, where N is the number of
labeled pixels and C is the number of categories. To reduce
the number of spectral bands and maintain the same spa-
tial dimension, the principal component analysis (PCA) was
applied to compress the original input. The reduced number
of bands is denoted as b. Only spectral bands are reduced to
preserve spatial information, which is very important for rec-
ognizing land-cover. After dimension reduction, for a pixel
pi(i = {1, 2, · · · ,N }), a spatial patch Ai ∈ RH×W×b centered
at pi is taken as the input of the spatial subnetwork. It passes
through a 2-D convolution, a Rectified Linear Unit (ReLU)
layer, the RSaAM, and an element-wise addition to produce
the spatial features. The spatial subnetwork can be formulated
as follows:

F = Co2DRL (Ai) (1-a)

Fsa = Ai ⊕ RSaAM (F) (1-b)

where Fsa denotes the features extracted by the spa-
tial subnetwork. ‘‘⊕’’ denotes the element-wise addition.
The RSaAM (·) represents the feature processed by the
residual spatial attention module. Co2DRL represents the
2-D convolutional and ReLU layers. The classification accu-
racy decreasing with the increasing of convolution layers
stems from the fact that the representation capacity of CNNs
is too high compared with the relatively small number of
training samples under the same regularization settings. How-
ever, this decreasing-accuracy issue can be alleviated by
adding the shortcut connections between every other layer to
build the residual blocks. The element-wise addition is the
core step in the shortcut.

The spectrum of pi is taken as the input of the spectral
subnetwork. The 1-D convolutional and ReLU layers are used
to extract spectral features. The spectral subnetwork can be
formulated as follows:

F ′
= Co1DRL (pi) (2-a)

Fse = pi ⊕ RSeAM
(
F ′

)
(2-b)

where Fse denotes features extracted by the spectral subnet-
work. Co1DRL represents the 1-D convolutional and ReLU
layers. RSeAM (·) represents the feature processed by the
residual spectral attention module. The spatial and spectral
features extracted are fed into the classification part to deter-
mine the category.

After the network is built, its parameters are initialized by
the normalization and regularized with the L2 weight decay
penalty. The network is trained in an end-to-end manner.
During the training process, the backpropagation algorithm
is used to update the parameters of the network.

B. RESIDUAL SPATIAL ATTENTION MODULE
The RSaAM aims to enhance the spatial information from
the neighboring pixels with the same label as the center pixel
and suppress those with a different class label. Thus, the ideal
output of the RSaAM should be a matrix with the same height
and weight as the input patch F , where the value of the pixel
in this location with the same label as the center is equal
to 1. Otherwise, it is 0. Fig. 2 shows the operations of the
proposed RSaAM. Given a feature map F ∈ Rh×w×b, where
h × w denotes the spatial size and b denotes the number of
channels. Two pooling operations are used to aggregate the
channel information of a feature map, thereby generating two
maps: Favg and Fmax , which can be expressed as follows:

Favg = Avg(F) =

∑H
i=1

∑W
j=1 Fi,j

H ×W
(3-a)

Fmax = Max(F) = max (F) (3-b)

where Fi,j is the position (i, j) of the input F . The max(F)
denotes the maximum value of F . The 2-D convolutional and
ReLU layers are used to limit the model complexity and aid
for generalization.

Firstly, the input features are extracted by:

FCoRl = CoRl (F) (4-a)

f = F ⊕ FCoRl (4-b)

whereCoRl(·) denotes that the features are processedwith the
convolutional and ReLU layers, respectively. f is processed
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FIGURE 3. Residual spectral attention module. This module utilizes both max-pooling outputs and
average-pooling outputs with a two-layer weight-shared bottleneck network.

FIGURE 4. SPFSM. It contains a proximity selection layer and a
tanh-derivative active function.

FIGURE 5. Comparison of the original distance (left) and the distance
with slack variable (right). Where R is a slack variable.

with the global max pooling and global average pooling
layers, respectively. The results are Fmax and Favg:

Fmax = Max (f ) (5-a)

Favg = Avg (f ) (5-b)

Then, the convolutional layer and ReLU activation function
are used for feature extraction and activation, which are rep-
resented as FCoRLmax and FCoRLavg , respectively:

FCoRLmax = ReLU (Con (Fmax)) (6-a)

FCoRLavg = ReLu(Con(Favg)) (6-b)

The two outputs are concatenated horizontally as the
input of a new convolutional layer followed by a

FIGURE 6. Tanh-derivative activation function.

sigmoid activation function:

FRSaAM = F ⊗ Sig(CoRl
(
FCoRLmax

)
⊕ CoRl(FCoRLavg )) (7)

where Sig(·) is the sigmoid activation function. ‘‘⊗’’ denotes
the element-wise multiplication.

C. RESIDUAL SPECTRAL ATTENTION MODULE
The RSeAM aims to increase the weight of those spectral
information that are helpful to represent features. The input
spectral feature vectors F ′

∈ Rl×c, where the length of the
spectral feature vectors and the number of channels are rep-
resented by l and c, respectively. The process of the RSeAM
is shown in Fig. 8:

F
′CBR

= CBR
(
F ′

)
(8-a)

f ′
= F ′

⊕ F
′CBR (8-b)

F
′CBR
max = Max

(
f ′

)
(8-c)

F
′CBR
avg = Avg

(
f ′

)
(8-d)

FRSeAM = F ′
⊗ Sig(CRC

(
F

′CBR
max

)
⊕ CRC(F

′CBR
avg )) (8-e)

where CBR(·) denotes that the features are processed with
convolution, Batch Normalization (BN), and ReLU activa-
tion function respectively. CRC(·) denotes that convolution,
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ReLU activation function, and convolution are combined in
sequence.

D. SPATIAL PROXIMITY FEATURE SELECTION MODULE
The module is designed to capture the spatial areas relevant
to the center pixel. The architecture is shown in Fig. 4. It is a
lightweight module which consists of two parts: the proxim-
ity selection and the tanh-derivative activation function.

FIGURE 7. Classification part.

The Minkowski distance is used to analyze the possibility
that the central pixel and its adjacent pixels belong to the same
category. As shown in Fig. 5, considering the influence of
environmental factors such as atmospheric transmittance and
steam, a Minkowski distance with slack variable is proposed.
When the distance between a pixel and the center pixel is
smaller, they are more likely to belong to the same category.
The extent of the contribution of a pixel to classification is
inversely proportional to the distance between itself and the
central pixel. The tanh-derivative activation function is used
to allocate a proper weight for each pixel. The functional
graph is shown in Fig. 6, and the formula is as follows:

TanDe (x) = 1 −

(
ex − e−x

ex + e−x

)2

(9)

Specifically, the process of SPFSM is as follows:

S = MD
(
Pcenter ,Pneighbor

)
− R (10-a)

Fsp = TanDe (S) ⊗ Fsa (10-b)

whereMD(·) denotes the Minkowski distance, and R is slack
variable.

Table 1 displays the parameters of the layers of the
proposal.

E. CLASSIFICATION PART
As shown in Fig. 7, this part receives and adds the inputs from
the two subnetworks. The features are fed to the FC, dropout,
and ReLU layers. The number of neurons in the last FC layer
is equal to the number of classes, and the value of each neuron
can be regarded as a class-specific response. The process can
be expressed as follows:

F ′
sp = FC(FDR(Fsp)) (11-a)

TABLE 1. Detailed architecture of the proposed SPFS-RSSAN model.

F ′
se = FC(FDR(Fse)) (11-b)

Fout = Sof (F ′
saFse) (11-c)

where Sof (·) denotes the softmax function. FDR(·) is the
combination of the FC, dropout, and ReLU layers. Fsp and
Fse are the outputs of the spatial and spectral subnetwork,
respectively.

III. EXPERIMENTS AND DISCUSSIONS
Three public data sets are employed for experiments. The
factors that may influence the performance of the proposal
are analyzed. The proposal is compared with the state-of-the-
arts based on deep learning methods. Finally, the results are
discussed.

A. DATA SETS
The data sets of Indian Pines (IN), Loukia (LK), and
Botswana (BW) are shown in Fig. 8. IN is one of the most
classical data sets. LK and BW are two newly published
data sets. Data set IN includes 16 vegetation classes and has
145 × 145 pixels with a resolution of 20 m by pixel. The
20 bands corrupted by water absorption effects have been
discarded. The remaining 200 bands are adopted for analysis
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FIGURE 8. IN, LK and BW data sets: (a), (c) and (e) False-color images;
(b), (d) and (f) Ground-truth maps.

and range from 400 to 2500 nm. Details of these classes and
the number of training and testing samples in each category
are shown in Table 2.

Data set LK includes 14 vegetation classes and has 250 ×

1376 pixels with a resolution of 30 m by pixel. Two hundred
twenty bands are used in experiments. Details of the land-
cover types and the number of training and testing samples in
each class are listed in Table 3.

Data set BWconsists of 1476× 256 pixels and 242 spectral
bands ranging from 0.4 to 2.5 µm. The spatial and spectral
resolutions are 30 m/p and 10 nm. By removing the uncali-
brated and noisy bands that cover water absorption features,
145 bands remain. Details of the land-cover types and the
number of training and testing samples in each class are listed
in Table 4.

B. EXPERIMENTAL CONFIGURATION
The experiments are implemented on a computer with
Intel(R) Xeon(R) Gold 5218 CPU at 2.30 GHz with 64 GB
RAM and an NVIDIAGeForce RTX 3090 graphical process-
ing unit (GPU) with 24 GB RAM. The software environment

is the system of Ubuntu 14.04 ultimate 64-bit with deep
learning frameworks of Pytorch.

To quantify the classification performance of the proposal,
the overall accuracy (OA), average accuracy (AA), and kappa
coefficient (Kappa). The higher scores they get, the superior
the performance of the model. The values of OA, AA, and
Kappa can be calculated as follows:

OA = sum(diag(M )/sum(M )) (12-a)

AA = mean(diag (M) /sum(M , 2)) (12-b)

Kappa =
OA− (sum(M , 1)sum(M , 2))/sum(M , 2)2

1 − (sum(M , 1)sum(M , 2))/sum(M , 2)2

(12-c)

where M represents the error matrix of classification results,
diag(M ) is a vector of diagonal elements of M, sum(·) is the
sum of all elements, sum(·, 1) is the vector of the sum of
elements in each column, sum(·, 2) is the vector of the sum
of elements in each row, mean(·) is the mean of all elements
and represents the elementwise division.

TABLE 2. Amounts of training and test data on the IN data set.

C. PARAMETERS SETTING
For PCA-based dimensionality reduction, the number of the
preserved principal components is set to 30. The network is
trained for 100 epochs with a batch size of 128 and a learning
rate of 0.001. In particular, the optimization is performed by
the diffGrad optimizer [64] which can control the learning
rate based on the optimization phase.

1) EFFECT OF THE NUMBER OF CONVOLUTIONAL LAYERS
Fig. 9 shows the effect of the number of convolutional lay-
ers on the OA of the proposed network. The number of
convolutional layers is calculated within each subnetwork,
excluding those in the attention modules. Deeper networks
generally have more powerful feature representation ability,
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TABLE 3. Amounts of training and test data on the LK data set.

TABLE 4. Amounts of training and test data on the BW data set.

but too deep networks may cause gradient instability and
network degradation. The highest accuracy can be obtained
by selecting ‘‘3-3’’ convolution layers as shown in Fig. 9.
‘‘3-3’’ represents that the SPFS-RSSAN combined with
3 convolutional layers in the spatial and spectral subnetworks,
respectively. Therefore, the number of convolutional layers in
the following experiments is set to ‘‘3-3’’ for all data sets.

2) EFFECT OF THE INPUT PATCH SIZE
The effect of patch size is investigated as shown in Fig. 10.
It can be seen that the OA shows an upward trend, while
getting slower decrease after the size of 25. Generally, the
larger patches contain more spatial information conducive to
classification. However, when the patch size is too large, it
may include negative information. On the other hand, a large
patch will increase the computational load. Therefore, the
patch size is set to 25 for all the data sets.

3) EFFECT OF THE TRAINING SAMPLE PROPORTION
In this session, the performance of the proposal with different
proportions of training samples is investigated. For each data
set, 1%, 2%, 5%, 10%, 15%, 20%, 25% and 30% of samples
are randomly selected from each of land-cover categories as
the training set. The experimental results are shown in Fig. 11.
The OAs increase as the proportions of training samples on
three data sets increasing. When the proportions of training
samples of three data sets are more than 20%, separately, the
OAs will keep in high level.

FIGURE 9. OAs of SPFS-RSSAN with several convolutional layers on the
three datasets. ‘‘1-1’’ represents the SPFS-RSSAN model combined with
one convolutional layer in the spatial subnetwork and one convolutional
layer in the spectral subnetwork. The output of each layer is activated by
the ReLU activation function.

FIGURE 10. OAs of different sizes of HSI patches on three data sets.

D. ABLATION STUDY
In this section, a series of experiments are used to analyze the
contribution of the proposed RSaAM, RSeAM and SPFSM.

To explore the correlations between the three modules and
the impacts of them on the classification performance, eight
schemes with different combinations of three modules are
implemented on three data sets. The OAs of these schemes
on the test sets are presented in Table 5. The spectral-spatial
residual network (SSResNet) is the basic network. The last
scheme is a complete SPFS-RSSAN model. The numbers
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FIGURE 11. OAs (%) of different proportions of training samples on three
data sets.

reported in bold-type denote the best results for each data
set. Compared with SSResNet, the OAs of other schemes
are improved, which shows the effectiveness of the proposed
modules. Different from single module, higher OAs can be
obtained whenmultiple modules are combined. Scheme 8 is a
complete proposal. It receives the best classification accuracy
on three data sets compared with the other combinations.
Compared Scheme 6 and Scheme 7with Scheme 8, the model
using both RSaAM and SPFSM obtains better results than
thosemodels with separatemodulewhich shows the necessity
of these two modules at the same time.

E. COMPARISON WITH STATE-OF-THE-ART METHODS
To evaluate the performance of the proposed method for
HSIC, the proposal is compared with other existing methods,
such as SVM [65], CNN [66], a deep feature fusion network
(DFFN) [67], a CNN with mapping layers (MCNN) [68],

TABLE 5. OAs (%) with different module embedding.

SSRN [41], fast dense spectral-spatial convolution
(FDSSC) [69], localized spectral features and multiscale spa-
tial features network (LSMSC) [70], adaptive spectral–spatial
multiscale network (ASSMN) [71], double-branch multi-
attention mechanism network (DBMA) [72], double-branch
dual-attention mechanism network (DBDA) [73], cross-
attention spectral–spatial network (CASSN) [74], and

attention-based adaptive spectral–spatial kernel improved
residual network (A2S2KResNet) [75].Specifically, CNN is
a traditional spectral–spatial network. SSRN and FDSSC
are based on ResNet and DenseNet, respectively. LSMSC
and ASSMN are the spectral–spatial multiscale net-
works. DBMA, DBDA, CASSN and A2S2KResNet are the
spectral–spatial attention networks.

1) QUANTITATIVE EVALUATION
The quantitative metric comparisons of different methods are
shown in Tables 6-8. The proposed method achieved higher
classification accuracy than other methods. For example, in
Table 6 the proposedmethod achieved the highest accuracy of
99.74%, which exceeds SVM, CNN, DFFN, MCNN, SSRN,
FDSSC, LSMSC, ASSMN, DBMA, DBDA, CASSN and
A2S2K ResNet by 18.07%, 2.33%, 4.36%, 8.03%, 0.55%,
0.16%, 3.03%, 1.44%, 3.19%, 1.44%, 1.22% and 0.96%,
respectively. In Tables 7 and 8, the proposal also achieved
the highest accuracy in OA, AA, and Kappa.

Comparedwith the SVM, the deep learning-basedmethods
perform better. This is due to the fact that deep learning
combines hierarchical feature learning with classifier learn-
ing, so the deep learning-based methods can learn more dis-
criminative and abstract high-level features. It can be seen
from the tables that the accuracy for CNN is lower than
those of other deep learning-based methods since it only
uses a weak 2-D CNN to extract the spatial features. Com-
pared with CNN, the accuracy of SPFS-RSSAN is improved
because it uses the spectral and spatial residual blocks to
learn spectral and spatial features consecutively. Especially,
the proposal outperforms the 3D-CNN-based model of SSRN
which shows that the spectral feature is essential for HSIC.
FDSSC uses densely connected structures to learn features
deeply, obtaining better results than SSRN. LSMSC fuses
localized spectral features.

ASSMN employs a multiscale strategy in spectral and spa-
tial simultaneously. However, FDSSC, LSMSC, and ASSMN
have different performances on all datasets. For example,
FDSSC achieved good results on the IN and BW data sets,
but its accuracy is low on the LK data sets. Among DBMA,
DBDA, CASSN and A2S2KResNet that use attention mod-
ules, A2S2KResNet achieved the best results. The proposed
model uses the RSaAM and RSeAM to strengthen these
valuable features and weaken those useless or harmless infor-
mation, so the proposed model achieved better accuracy than
A2S2KResNet. Overall, the proposed SPFS-RSSAN model
achieves better performance on all these three data sets.

In Tables 6-8, the last two rows record the training time and
testing time of different models. Overall, the SPFS-RSSAN
achieves the best balance between the computation time and
the classification performance.

2) QUALITATIVE EVALUATION
Figs. 12–14 visualize the false-color images of the original
HSI, their corresponding ground- truth maps, and the best
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TABLE 6. Classification results of different methods for labeled pixels of the IN data set.

TABLE 7. Classification results of different methods for labeled pixels of the LK data set.

classification results of different methods on three data sets.
On three data sets, the classification maps of SVM, CNN,

DFFN, MCNN, and DBMA have some dot noises in some
classes. DBDA, CASSN and A2S2KResNet generated more
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TABLE 8. Classification results of different methods for labeled pixels of the BW data set.

FIGURE 12. Classification maps for the IN data set. (a) SVM. (b) CNN. (c) DFFN. (d) MCNN. (e) SSRN. (f) FDSSC. (g) LSMSC. (h) ASSMN.
(i) DBMA. (j) DBDA. (k) CASSN. (l) A2S2K ResNet. (m) SPFS-RSSAN.

FIGURE 13. Classification maps for the LK data set. (a) SVM. (b) CNN. (c) DFFN. (d) MCNN. (e) SSRN. (f) FDSSC. (g) LSMSC. (h) ASSMN.
(i) DBMA. (j) DBDA. (k) CASSN. (l) A2S2K ResNet. (m) SPFS-RSSAN.

smooth classification maps than these methods. Compared
with other methods, the SPFS-RSSAN model generated the

most accurate and smooth classification maps, especially in
the boundary of two different classes. Our model uses the
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FIGURE 14. Classification maps for the BW data set. (a) SVM. (b) CNN. (c) DFFN. (d) MCNN. (e) SSRN. (f) FDSSC. (g) LSMSC. (h) ASSMN. (i) DBMA. (j) DBDA.
(k) CASSN. (l) A2S2K ResNet. (m) SPFS-RSSAN.

spectral-spatial attention to learn the relationship between
the center pixel and its surrounding pixels. So, the proposed
model can correctly label almost all categories.

TABLE 9. Classification results on the disjoint train–test data set for the
IN data set.

F. EXPERIMENTAL RESULTS ON DISJOINT TRAIN/TEST
SAMPLES
The results of the disjoint train-test [76] for the IN data set
provided by the IEEEGRSSDASE are shown in Table 9. The
superior classification performances demonstrate the excel-
lent classification ability of the proposal.

IV. CONCLUSION
In this article, a novel SPFS-RSSAN model is proposed for
HSIC, which uses the RSeAM, RSaAM, and SPFSM to
implement the selection of spectral bands and spatial infor-
mation. The RSeAM is used to distribute the weight of each
spectral band of different original input data. The RSaAM
enhances the spatial information related to the central pixel

while suppressing the unnecessary, which can improve the
recognition of central pixel. Compared with the existing
methods, the proposal is improved in terms of accuracy and
efficiency. In particular, a proximity selection-based SPFSM
is played a key role. In the SPFSM, a tanh-derivative acti-
vation function is used to convert each spatial similarity to
the appropriate weight. Such an operation can analyzes the
characteristics of land-cover more sufficiently. The exper-
imental results on three public data sets demonstrate the
effective classification performances of the proposal. In the
future, we plan to reduce the time cost brought by the iterative
process to enhance the efficiency of the algorithm.
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