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ABSTRACT The paper presents in detail a relatively simple implementation method of the hyperbolic
tangent function, particularly targeted for FPGAs. The research goal of the proposed method was to examine
the usage of the approximation of ordinary or Chebyshev polynomials for the implementation of the function.
Several miscellaneous implementation versions have been considered. They differ in the polynomial degree,
number of intervals for which the domain of the function is divided, etc. Both floating-point and fixed-point
implementations have been presented. An impact on the FPGA resources utilization and calculations time for
the implementation versions has also been briefly analyzed. Special attention has been paid to the accuracy
of the calculations of the function. It turned out that applying the proposed method, a very high calculations
accuracy can be achieved, while simultaneously maintaining reasonable resources utilization and short
calculations time. The proposed method can be an effective alternative to other encountered implementation
methods such as CORDIC. Additionally, the presented hardware architecture is more versatile and can be

easily adapted for the implementation of other mathematical functions.

INDEX TERMS Activation function, artificial neural network, FPGA.

I. INTRODUCTION

The concept of Artificial Neural Networks (ANNs) was
first introduced in the middle of the 20th century. Through
an increase of computation power and number of collected
data, ANNs have managed to undergo rapid development
in recent years. There are many applications of ANNs
found in areas including pattern recognition, image process-
ing, speech recognition, control systems, predictions, etc.
[1], [2], [3]. Depending on the specific architecture, ANNs
may consist of large number of neurons clustered into layers.
If neurons within the layer are able to process the signal
in parallel, this directly leads to significant acceleration
of the calculations speed, which might be important in
certain applications of ANNs. Parallelism of operations is the
natural feature of Field Programmable Gate Array (FPGA)
technology. Therefore, FPGAs are promising candidates
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for ANNs implementations in the areas where calculations
speed is the pivotal factor. The other advantage of FPGAs
might include the reduced cost of implementation [4],
particularly compared to high-performance computers
or GPUs.

The most important, expensive and hard to implement
part of any hardware realization of ANNs is a neuron’s
non-linear activation function [5]. The hyperbolic tangent
is commonly used activation function for ANNs. Besides
the calculations speed, the implementation method of the
hyperbolic tangent function has also an essential impact on
the calculations accuracy of the whole ANN. The activation
function accuracy might be very important particularly in
the case where the ANN is trained using PC software, such
as Matlab, and then the calculated neurons’ weights and
biases are used in the FPGA implementation of this ANN.
High accuracy of the activation function is also needed for
the correct implementation of a learning algorithm (e.g., the
backpropagation) for an ANN [6].
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There are a number of papers considering a hardware
implementation of activation functions. They differ in an
obtained accuracy, applied approximation method, imple-
mentation’s cost, type of used arithmetic (fixed or floating
point), etc. A frequently used approximation method for
the hyperbolic tangent function implementation is the piece-
wise linear (PWL) interpolation [3], [4], [7], [8]. In [9],
the 9 segments of Simplicial Canonical Piecewise Linear
model and Grey Wolf Optimizer has been used in order
to approximate the hyperbolic tangent function. A look-up
table (LUT) with 8192 elements has been exercised for the
hyperbolic tangent function implementation in CompactRIO
hardware platform [10]. A similar technique — a LUT with
linear interpolation between LUT’s points has been applied
in [1]. A Taylor series approximation of the hyperbolic
tangent function is considered in [11], [12]. The usage of the
COordinate Rotation DIgital Computer (CORDIC) algorithm
for implementation of the hyperbolic tangent function is
featured in [5], [13]. The implementation of this function
based on the Discrete Cosine Transform Interpolation Filter
(DCTIF) is presented in [14]. An approximation of the hyper-
bolic tangent function exercising Lagrange, Chebyshev and
least square method is considered in [15]. In [16], a piecewise
2nd degree polynomial approximation is applied for the
hyperbolic tangent function implementation. Four different
approaches for the hyperbolic tangent function implemen-
tation in FPGAs, namely the Taylor series expansion for
the exponential function, Elliot-2, Elliot-93, and CORDIC
LUT-based are examined in [17]. An interesting low-power
analog design for the hyperbolic tangent activation function,
dedicated for an implementation in CMOS technology,
is presented in [18]. A kind of a direct implementation
of hyperbolic tangent and sigmoid activation functions is
featured in [19], which is the authors’ previous work. In this
case, the main realization difficulty has been shifted to the
approximation of the exponent function. McLaurin series as
well as Padé polynomials combined with LUTs have been
proposed in order to accomplish this approximation.

It is worth noting that some of the papers (e.g., [7], [15])
did not revealed any details of the proposed implementation
method. Some others only portrayed a rough idea of how
the method was actually implemented (e.g., only simplified
block diagram of a data-path was featured). In this paper
the detailed FPGA implementation method of the hyperbolic
tangent function is presented. The proposed method is based
on the direct polynomial as well as Chebyshev polynomial
approximation. A number of slightly different realizations
are also featured in this paper. They differ in the type of
applied arithmetic (both fixed-point as well as floating-
point arithmetic are considered), and the degree of the
applied polynomial. Different number of intervals (including
relatively high number of intervals, exceeding 200) in which
the domain of the approximated function is divided, and its
impact on the implementation results has also been examined.
The proposed method is easy to realize and allows reasonable
implementation results to be obtained, both in terms of
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relatively low number of FPGA resources requirement and
short calculations time. The other substantial feature of the
proposed method is the ability to achieve both typically
reported calculations accuracy (i.e., at the level of E-3, E-
4) and very high accuracy (i.e., at the level of E-8 for
single precision floating-point arithmetic or higher for fixed-
point arithmetic), hardly encountered in other publications.
Additionally, the proposed method and hardware architecture
described in detail in the paper are more versatile and
can easily be adapted to the FPGA realization of other
mathematical functions.

Il. IMPLEMENTATION METHOD
The hyperbolic tangent activation function is given by the
following formula:

e — 1 2

h = = —
) X+l 14e ™

ey

The proposed implementation method of the hyperbolic
tangent function relies on direct interpolation of this function
utilizing polynomials. Both ordinary (direct) and Chebyshev
polynomials have been taken into consideration. Chebyshev
polynomials are typically applied for an approximation
of trigonometric, logarithmic, and other functions [20].
Ordinary polynomials were chosen, in turn, due to the
simplicity of the calculations. Since for an approximation
these polynomials are determined within the narrow range of
arguments, namely [—1, 1], the domain of the interpolated
function has to be divided into several intervals. In order to
achieve reasonable implementation results of the hyperbolic
tangent function, i.e., low FPGA resources requirement, short
calculations time, and high calculations accuracy, the number
of the aforementioned intervals, as well as the polynomial
degree, should be carefully determined. The increase of
the polynomial degree also increases the accuracy but
simultaneously decreases the calculations time and increases
the resources requirement. Similarly, increasing the number
of intervals improves the accuracy but also increases the
resources requirement.

The other factor which influences the choice of the
number of intervals is the length of the subsequent intervals.
Approximating a f (x) function, where x €[a, b], itis required
to convert the [a, b] domain into the z €[—1, 1] interval. It is
achieved by the formula:

2.-x—b—a
z= b

In order to avoid the division operation in (2), which is
costly in digital implementation in terms of both calculation
time and resources requirement, the interval length (the
denominator value in (2)) should be an integer power of 2.
In this case, the division operation can be replaced either by a
simple bit-shift operation or by arithmetic addition, depend-
ing on the type of applied arithmetic (fixed or floating-point).

It is also worth noting that the hyperbolic tangent function
is symmetric in the reference to the origin of the coordinate
system, and the function’s value is virtually constant (with

@
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suitable accuracy) for arguments range |x| >10. Therefore,
the arguments range of the hyperbolic tangent function,
considered for the proposed implementation method, can be
limited to the [0, 10) interval.

In order to determine the number of intervals for which
the domain of the hyperbolic tangent function should be
divided, as well as the lowest polynomial degree resulting
in the highest possible accuracy, several computational
experiments have been carried out taking advantage of the
Matlab software.

The [0, 0.25) interval was arbitrary chosen as the starting
point. In the next step, using Matlab standard functions,
the hyperbolic tangent function was approximated in this
interval by an ordinary polynomial of degree from 2 to 7.
For every polynomial degree, the maximum absolute error of
the approximated function was calculated. The values of the
approximated function were calculated using single precision
floating-point arithmetic (the coefficients of the polynomial
as well as the arguments of the approximated function were
converted to single precision variables, and using this type of
variables, the polynomial values were calculated). It turned
out that the maximum absolute error no lower than at the level
of E-8 can be achieved, whereas the lowest polynomial degree
at this error level accounts for 5. Therefore, for further exper-
iments, the 5th polynomial degree was chosen. In the next
steps, the subsequent intervals were sought so that the whole
range [0, 10) was covered. The boundaries of the subsequent
intervals were subjected to the following rules: 1) the initial
value of the next interval is the same as the final value for
the previous interval, 2) the final value of the next interval is
a sum of the initial value and the length of the interval. The
interval length, in turn, had to meet 2 conditions: a) it had to
be an integer power of 2, and b) it had to be as long as possible
while simultaneously maintaining the maximum absolute
error of the single precision approximation of the hyperbolic
tangent function at the level of E-8. To find an interval that
fulfils the second condition (b), the maximum absolute error
of the approximation has to be calculated for at least 2 or more
subsequent intervals meeting the first condition (a). Finally,
using this procedure, the following 15 intervals were found:
[0, 0.25),[0.25,0.5),[0.5, 0.75), [0.75 1.0), [1.0, 1.25), [1.25,
1.5),[1.5,2.0), [2.0,2.5), 2.5, 3.0), [3.0, 3.5), [3.5, 4.0), [4.0,
5.0), [5.0, 6.0), [6.0, 8.0), [8.0, 10.0).

In the next subsections, the details of the hardware
implementation of the hyperbolic tangent function are
presented. The described implementations are based on
the aforementioned, preliminary determined approximation
parameters.

A. CHEBYSHEV APPROXIMATION
A function approximation utilizing Chebyshev polynomials
is given by the formula:

N—-1
f@= a T, 3)
k=0
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where ¢ ...cy_1 are constant coefficients, and Ty (z) is the
Chebyshev polynomial such as:

T (2) = cos(k - arccos(z)), —1 <z < 1. )

Using some algebraic identities and manipulation, the
Chebyshev polynomial can be expressed in the following
form:

l <= k=0,
2 = k=1, 5)
2.2 Tk—1(1) = Tk—2(2) <= k=2

Ty(2) =

Calculating a function value using (1) and (3) might still be
a little inconvenient. Yet, the Clenshaw iterative formula [21]
can be applied instead:

dyy1 =dy =0,

dy =27 -dky1—dks2+ck, fork=N —1,N —-2,...,1,

f@=z-di —dr+ co. (6)

For example, for N = 6 the value of the approximated
function can be calculated as:

ds = cs,
dy=2-z-ds+ ca,
dy=2-z-d4 —ds+c3,
dy=2-7z-d3—ds+c2,
dy=2-z-dp—ds+cy,

f@=z-di —dr+ co. 7)

The essential issue pertaining to the approximation of
the function is the calculation of coefficients cp...cy—1.
A separated set of values of coefficients has to be calculated
for every interval for which the considered domain of the
approximated function is divided. In order to accomplish
the calculation of coefficients, several scripts in Matlab
and Python have been developed and applied. These scripts
directly generate a code in the Hardware Description
Language (Verilog HDL has been applied in this case),
which describes a read-only memory containing all of the
coefficients values.

Both floating-point and fixed-point implementations of
hyperbolic tangent function utilizing Chebyshev polynomials
approximation have been developed. In this subsection, only
the floating-point implementation will be described in detail.

A simplified block diagram of the digital circuit perform-
ing the calculation of the hyperbolic tangent function value is
depicted in Fig. 1.

Since single-precision floating-point arithmetic is applied,
most of signal lines visible on Fig. 1 are 32-bit buses. The X
line is the input argument of the hyperbolic tangent function,
whereas the Y line represents the calculated value of the
function. The scalar ND signal initiates the calculations.
When the result is ready for reading, the RDY signal is
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FIGURE 1. General architecture of the floating-point Chebyshev
approximation module.

TABLE 1. Truth table describing the RR block.

Range of X X[30:23] | X[22] | X[21]] 1 m
0<|X[<025 | <7Ch | z | =z |0 |BESh
0.25<|X|<05| 7Dh | = z | 1|BF4h
0.5<|X|<0.75| TEh 0 T 2 | BFAh
0.75<|X|<1.0| T7Eh 1 T 3 | BFEh
10<|X| <125 7Fh | 0 0 | 4] coin
125<|X|<15| 7Fh | 0 1 | 5] cosn
15<|X| <20 | 7Fh 1 z | 6| CO6h
20< X <25 80h 0 0 7 | CO9h
25<|X| <30 | 80h 0 1 |8 |coBh
30<|X|<35| 80h 1 0 | 9|coDn
35<|X| <40 80h 1 1 10| COFh
4.0<|X|<5.0 81h 0 0 11| C11h
50<|X|<6.0| 81k 0 1 |12] C13h
6.0<|X| <80 | 8lh 1 x |13| C16h
8.0 <|X|<10.0| 82h 0 0 |14| C19h

|X| > 10.0 other cases 15| Oh

activated for a single clock cycle (the clock signal has not
been shown in the diagram from Fig. 1). The module in Fig. 1
contains two arithmetic blocks ADD and MUL executing the
addition and multiplication operations, respectively, the range
recognition (RR) block responsible for the determination of
the intervals for which the input value is belonging to, the
coefficient memory (CM) block, and the control unit (CU).

For the implementation of the module from Fig. 1, the
ADD and MUL blocks can be obtained as IP cores delivered
by the vendor of the applied FPGA chip. For the ADD
block, the ADDA and ADDB lines represent two operands of
the addition operation, whereas the ADDY line contains the
operation result. The ADDND signal, activated for a single
clock cycle, initiates the operation. The ADDRDY indicates
whether the addition operation has been completed. The
ADD block can also perform a subtraction operation. In this
case, the ADDOP signal should be activated. Otherwise, the
addition operation is executed by the ADD block. Analogous
naming convention of signals lines applies to the MUL block
from Fig. 1.

The RR block is a purely combinational circuit. Its input
is a bit selection of the input value X (the 8 bits of the
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exponent and the 2 most significant bits of the mantissa in
the floating-point representation of the X). This block delivers
two outputs: the interval identifier (the i signal) and the value
referring to the ““—b —a”’ expression in (2), which constitutes
the m signal line. The truth table describing the operation
of the RR block is presented in Table 1. The CM block
takes the interval identifier from the RR block and delivers
a set of coefficients assigned to the specific interval. It is
implemented as a number of distributed read-only memories
(a single memory for a single coefficient).

The control unit block performs essential operations of
the module from Fig. 1. It is implemented as a state
machine. The sequence of operations performed by the CU
block is depicted in Fig. 2 as a form of an algorithmic
state machine (ASM) diagram. The diagram adopts syntax
elements similar to those used in Verilog HDL. Particularly,
Verilog operators (e.g., arithmetic, logic, concatenation, bit
selection operators) are directly used in the diagram. For
example, the expression “{1’b0, X[30 : 23] + 1, X[22 : 0]}”
denotes the concatenation of the 1-bit binary constant equal
to 0, partial selection of the bits for 30 down to 23 of the X
vector incremented by 1 and partial selection of the bits for
22 down to 0. The signals names denoted using capital letters
relate to external input/output buses and signals, whereas
non-capital letters are exploited to mark internal variables
(registers).

The sequence of operations described by this ASM directly
refers to the case where N = 6 and the 15 intervals mentioned
above are used. After activation of the ND signal, the CU
block goes to the S1 state. In this state, the calculation of
the numerator of (2) is initiated. It is worth noting that the
multiplication by 2 of a floating-point number is equal to
the addition of 1 to the exponent value (bits 23...30 of the
floating-point representation of this number). Therefore, the
first operand (ADDA) for the addition module receives the
input value (X) multiplied by 2, whereas the second operand
(ADDB) captures the value of the expression “—b — a” in
(2). In the S2 state, the final value of (2) is established. This
value depends on the “b — a” expression (the denominator
of (2)); thereby, it depends on the interval identifier (the i
variable) delivered by the RR block. Since the value of the
“b — a” expression is always divisible by 2, the result of the
division in (2) can be obtained by a simple addition of an
integer number to the exponent of the result of the addition
operation, initiated in the S1 state. Along with the calculation
of the z variable, its doubled value is also calculated in the
same state and assigned to the MULB (the second operand
of the multiplication operation). However, when the absolute
value of the input argument X is higher than or equal to 10.0
(in this case the interval identifier i amounts to 15), nothing
is calculated in the S2 state and the ASM goes to the S13
state. In this state, the final value is assigned to the output
Y, namely —1.0 or 1.0 depending on the arithmetic sign of
the input argument. In the S3 state, the ASM waits until the
multiplication of two operands, namely the doubled value of
the z variable and cs coefficient, is performed and initiates the
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S0 d4 < ADDY ADDA < c0
ADDA < ¢3 ADDB < d2
ADDB < c5 ADDOP < 1
ADDND < 1 MULA ¢ n

MULA <ADDY MULB < ADDY

1
S1

ADDA < {1'b0,X[30:23]+1,X[22:0]}
ADDB < {m,20'b0}
ADDOP < 0
ADDND ¢ 1

ADDND < 0

ADDA < c4
ADDB < MULY
ADDOP ¢ 0
ADDND <« 1

ADDA < MUL

ADDB < ADDY
ADDOP ¢ 0 ADDA < MUL
ADDND < 1 ADDB < ADDY

ADDOP ¢ 0

n<{ADDY[31],ADDY[30:23]+2,ADDY[22:0]}
MULB<-{ADDY[31],ADDY[30:23]+3 ADDY[22:0]}

n<-{ADDY[31],ADDY[30:23]+1,ADDY[22:0]}
MULB<-{ADDY[31], ADDY[30:23]+2, ADDY[22:0]}

n<ADDY
ULB<{ADDY[31,ADDY[30:23]+1 ,ADDY[22:0];)

n<{ADDY[31],ADDY[30:23]-1,ADDY[22:0]}
MULB<ADDY

Y < 32'h3f800000

9Xso

Y < 32'hbf800000

FIGURE 2. ASM diagram describing the control unit block from Fig. 1.

addition which leads to the calculation of the d4 in (7). When
the aforementioned addition is completed, two simultaneous
arithmetic operations are initiated in the S4 state, namely the
calculation of the expressions “—ds+c3”" (note that ds = cs)
and “2 - z - d4” (note that the value of ““2 - 7 is still stored
in the MULB), which leads to the calculation of the value
of d3 in (7). Similarly, the values of d>, dy, and finally f(2)
are computed in the states S5...S12 of the ASM. In the state
S12, the RDY signal is activated, as well as the final result is
established, depending on the sign of the input argument (if
the input argument is a negative value, the final result of the
calculation of the hyperbolic tangent function should also be
a negative value).

B. DIRECT POLYNOMIAL APPROXIMATION

Apart from the Chebyshev polynomial, a direct polynomial
has also been examined for the hyperbolic tangent function
approximation and hardware implementation. This approxi-
mation can be performed using the simple formula:

N—1
f@Q=> a2, ®)
k=0

where N — 1 is the degree of the polynomial and ag . . . ay—1
are the coefficients of the polynomial. A more convenient
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d3 < ADDY
ADDA ¢ c2
ADDB < d4
ADDOP ¢ 1
ADDND < 1
MULND < 1

ADDND < 0

ADDB < ADDY
ADDOP < 0
ADDND « 1

ADDND < 0
MULND < 0
A

d2 < ADDY ™\
ADDA < c1
ADDB ¢ d3
ADDOP ¢ 1
ADDND « 1

MULA <ADDY

ADDND <« 1

Y < ADDY

(Y < {~ADDY[31].ADDY[30:0]})

ADDB < ADDY
ADDOP < 0
ADDND < 1

S0
37 34
X e '
ND— ) L yRDY
ADDY 39 X(35:30] °
— >
38 ADDA 0 m
ADD |€——220A] €«——— RR
38 ADDB Cu 4
MULY 643
) B .0
MUL s «——— cM
32 vuLs : 33 15

FIGURE 3. General architecture of the fixed-point direct polynomial
approximation module.

formula for the calculation of a polynomial value is the
Horner scheme:

SN—1 =an-1,
Sk = Sk+1 -2+ ax, fork=N—-2,N—1,...0,
f @) = so. 9)

23705



IEEE Access

Z. Hajduk, G. R. Dec: Very High Accuracy Hyperbolic Tangent Function Implementation in FPGAs

v

p0 < ADDA[36:0] + ADDA[36:0]
p1 < ADDA[36:0] - ADDB[36:0]
p2 < ADDB[36:0] - ADDA[36:0]

ADDY <{ADDA[37],p0}

ADDA[37]*ADDBI[37]

ADDY <{ADDA[37],p1} )%

(_ ADDY<{ADDB([37],p2} )

4

FIGURE 4. Diagram describing the behavior of the ADD block from Fig. 3.

For example, using (9) for N = 6, the polynomial can be
expressed as follows:

f@=(as-z+as) - z+a3) - z+az) - z+ a1) - 2+ aop.
(10)

Similarly to the Chebyshev approximation, the values of
the polynomial’s coefficients can be computed using the
Matlab (or Python) software.

Contrary to Chebyshev approximation, in the case of
direct polynomial approximation, the fixed-point hardware
implementation of the hyperbolic tangent function will be
presented. A general architecture of the digital module
implementing this approximation is depicted in Fig. 3.
The architecture is very similar to the one from Fig. 1.
However, the essential difference is the word length of
subsequent signals. The other difference is that the addition
and multiplication blocks are purely combinational circuits.
Therefore, they do not require synchronization signals such
as ADDND, ADDRDY, MULND, MULRDY, etc.

In order to obtain high calculations accuracy, the 32-bit
fraction part of the fixed-point variables has been applied.
Additionally, the sign-magnitude representation has been
used. Therefore, for example, the total bit length of the input
word (the X signal) is 37 bits, which consists of the 1 sign bit,
4 bits for the integer part, and 32 bit for the fraction part. Since
the value of the hyperbolic tangent function is limited to the
narrow [—1.0, 1.0] interval, the ¥ output line needs only 1 bit
for the integer part.

The fixed-point addition block (ADD) has two 38-bit
operands (ADDA, ADDB) and a 39-bit result line (ADDY).
The behavior of the ADD block is not straightforward. The
details are described in Fig. 4 (similarly to the ASM, the
diagram also applies Verilog HDL operators). The variables
p0...p2 have 38 bits. The values of these variables are
either the addition of the magnitude of the ADDA and
ADDB operands or their subtraction. If the arithmetic signs
of the operands (the most significant bit - 37) are the same,
the magnitude of the whole addition result is the sum of the
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TABLE 2. Truth table describing the RR block from Fig. 3.

Range of X X[35-33] | X[32] | X[31] | X[30] | i m
0<|X|<0.25 000b 0 0 0 0 | 204h
0.25 < |X| <0.5| 0006 | 0 0 1 |1 |20Ch
0.5 < |X|<0.75| 000b 0 1 0 2 | 214h
0.75 < |X| < 1.0| 000b 0 1 1 3 |21Ch
1.0<|X] <125 0006 | 1 | 0 | 0 |4]|224n
1.25 < |X| < 1.5| 000b 1 0 1 5 |22Ch
15<|X|<20 | 0006 | 1 1 z | 6| 238K
20<|X|<25| 0016 | 0 | 0 | x |7]248h
25<|X[<3.0| 0016 | 0O 1 | z |8]|258h
30<|X|<35| 001b | 1 0 | = |9]268h
35<|X|<4.0 001b 1 1 z |10]| 278h
40<|X[<50| 0106 | 0 | = | x |11]298h
50<|X|<6.0]| 0106 | 1 | o | = |12]|2Boh
6.0 <|X|<8.0 011b T T z |13|2E0h
8.0 < |X|<10.0| 100b T x x 14 | 320h

|X| > 10.0 other cases 15| Oh

magnitudes of both operands (the p0 variable). Otherwise,
depending on which operand has higher magnitude (the
arithmetic sign of the p1 variable), the magnitude of the result
is the subtraction of the magnitudes of the operands (either the
pl or p2 variable).

The MUL block is a typical fixed-point multiplier with 32-
bit operands and 64-bit multiplication result. This block can
be implemented using dedicated DSP blocks inside an FPGA.

The truth table describing the operation of the RR block
is presented in Table 2. Based on the 6 most significant bits
of the input vector (excluding the sign bit), the RR block
designates the interval identifier (the i signal) as well as the
value referring to the “—b — @’ expression in (2), which
constitutes the m signal line.

Similarly to the Chebyshev realization, the CM block,
storing all polynomial coefficients, is implemented as a
distributed read-only memory. Since the absolute values of all
coefficients are less than 1.0 (they do not have integer parts),
33 bits suffice to represent their values (1 bit is needed for
the arithmetic sign, and the following 32 bits represent the
fraction part).

The ASM describing all operations performed by the CU
block is presented in Fig. 5. After the activation of the ND
signal in the SO state, the operands values for the ADD block
are determined. This operation is related to the calculation of
the “2-x —b—a” expression in (2). The multiplication by 2 is
obtained by the 1 bit shift left operation, which is equivalent
to the specific part select operation within a concatenation
operator for the ADDA operand. In the next state (S1), the
addition result is ready. The arithmetic sign of the result is
stored in the 1-bit w variable. In the same state, the final
value of the 39-bit z variable is established depending on the
denominator value in (2).

In the S2 state, the previously calculated value of the
z variable is assigned to the MULA operand. The ADDB
operand receives the value of the a4 coefficient, which is
related to the calculation of the “as - z + a4” expression in
(10). Since the ADDB (as well as ADDA) is a 38-bit variable
and the word length of the a4 coefficient is 33 bits, the five
of the least significant bits of the ADDB are filled with zeros.
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MULB < ADDY[36:5]

b < z ~ ADDY[39]
ADDB< {c3,5'b0}

b < z ~ ADDY[39]
ADDB< {c3,5'b0}

\ 4

MULB < ADDY[36:5]

(ADDA < {z*ADDY[38],ADDY[36:0]})

(ADDA ¢« {z*ADDY[38],ADDY(36:0]})

ADDA < {1'b0,X[35:0],1'00}
ADDB ¢ {m,28'0}

\4

S5 v S11

[ ADDA < {b,MULY[63:27]} |

| ADDA € {pMULY[63:27]} |

MULB < ADDY[36:5]

S6

Y
b <z~ ADDY[39]
ADDB < {c2,5'b0}

(ADDA < {z*ADDY[38] ADDY[36:0]})

S7

[ ADDA < {b,MULY[63:27]} |

ADDB < {c4,55b0}
MULA < v[31:0]

S13

MULB<c5[31:0] MULB < ADDY[36:5]

S8

A
b < z ~ ADDY([38]
ADDB < {c1,5'b0}

?SO

(ADDA < {z°c5[32],c5[31:0],5'b0})>

(ADDA ¢ {z*ADDY[38],ADDY/[36:0))

S9

Y S3
[ADDA < {z/c5[32],¢5[31:0], 500} }————!

[ ADDA < {b,MULY[63:27]; |

Y < {2'b01,32'b0}

FIGURE 5. ASM diagram describing the control unit block from Fig. 3.

If the value of the z variable is equal to 1.0 (the thirty second
bit of the z variable is 1), the value of the as coefficient
is directly assigned to the ADDA operand. Otherwise, the
multiplication “as - z” is accomplished first, and then the
multiplication result is assigned to the ADDA operand (only
37 the most significant bits of the multiplication result are
taken into consideration).

In the S4 state, the expression “as - z + a4’ is finally
calculated (the ADDY stores the result), and further calcu-
lations, such as the multiplication of the previous addition
result by the z variable and the addition of the a3 coefficient to
the multiplication result, etc., are performed. Since the sign-
magnitude representation of the fixed-point numbers has been
applied, special care must be paid to the calculation of the
arithmetic sign for the subsequent variables. For example,
the 1-bit ¢ variable, calculated in the S4 state as the XOR
operation of the w variable and the sign bit (38) of the addition
result, is used as the sign bit for the ADDA operand in the S5
state.

The final result of the calculations of the direct polynomial
approximation of the hyperbolic tangent function is estab-
lished in the S12 state. The RDY signal is activated for a
single clock cycle in order to signal the end of calculations.

>
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Although the presented ASMs from Fig. 2 and Fig. 5 relate
to the specific case where N 6 and 15 intervals are
involved, it is worth noting that they can easily be altered to
deal with other polynomial degree and different number of
intervals.

Ill. IMPLEMENTATION RESULTS AND DISCUSSION

Taking advantage of the approximation methods described
in the previous section, several miscellaneous implementa-
tions have been prepared and tested. Both single-precision
floating-point and fixed-point implementations have been
considered. These implementations also differ in the degree
of polynomial and in the number of applied intervals. The
obtained implementations results are featured in this section.

A. FLOATING-POINT IMPLEMENTATION RESULTS

Tables 3 and 4 show the number of obtained FPGA
resources, achieved accuracy, number of required clock
cycles, maximum clock frequency, and calculations time
for the single-precision floating-point hyperbolic tangent
function implementation. The 15 intervals introduced in the
previous section have been applied for the approximation. For
all cases considered in this section, the Artix-7 XC7a100t-
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3csg384 FPGA chip was applied. The FPGA resources are
indicated in terms of the number of look-up tables (LUTs) and
flip-flops (FFs) necessary for the particular implementation.
All implementations from Table 3 and 4 also require 4 FPGA-
specific digital signal processing (DSP) blocks. Two of four
of these blocks are used for the floating-point multiplier IP-
core block. The other two DSPs are exploited by the adder IP-
core block. The accuracy of the calculations is perceived here
as the value of the maximum absolute difference between the
reference value calculated by the Matlab “tanh()” function
and the result of behavioral simulation of the Verilog code
describing the considered implementations. The 1E6 values
equally spaced within the [—10, 10] interval were used for
accuracy calculations. The fifth column of Tables 3 and 4
indicates the number of clock cycles required to complete
the output value. It was assumed that for all implementations
from these Tables, the multiplier and adder IP-core blocks
need 2 clock cycles in order to calculate the result. The
maximum allowable clock frequency was obtained based
on the post-route static timing report delivered by the
FPGA implementation tool (the Xilinx ISE Design Suite
was used). The default balanced optimization strategy was
applied for the implementation tool. The calculations time
was designated, in turn, as the multiplication of the minimum
clock period time (the reciprocated value of the maximum
clock frequency) and the number of clock cycles.

The data from Tables 3 and 4 indicate that implementations
based on the Chebyshev approximation require a slightly
higher number of FPGA resources. They can also be clocked
with lower frequency, which entails longer calculations time
(the number of clock cycles required for the calculation of
the result is the same for both types of the approximation).
However, up to the fifth polynomial degree, the accuracy
of the implementations with the Chebyshev approximation
is a little bit better than for the implementations with the
direct polynomial approximation. Moreover, the software
simulations results carried out using Matlab suggest that
the accuracy of the Chebyshev approximation, for the
polynomial degree equal to or higher than five, should
be approximately as good as for the direct polynomial
approximation. Unfortunately, probably due to the rounding
errors of floating-point computations, particularly involving
the floating-point arithmetic IP-cores form Xilinx, the
actual accuracy of the FPGA implementations of the direct
polynomial approximation is considerably better for these
degrees of polynomial. The data also show that the increase of
the polynomial degree beyond the 5 degree virtually does not
improve the accuracy of the single-precision floating-point
implementations of the hyperbolic tangent function.

Apart from the 15 basic intervals for which the domain of
the approximated function is divided, the select number of
other intervals has also been considered for the hyperbolic
tangent function implementation. Only the direct polynomial
approximation has been included for this consideration.
As the data from Table 5 indicate, adding two additional
intervals (i.e., [1.5, 1.75) and [2.0, 2.25)) for the third degree
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TABLE 3. Implementation results of floating-point direct polynomial
approximation for the 15 intervals.

Poly- | Number | Number | Accuracy |Number | Max clock | Calc.

nomial | of LUTs | of FFs of clock | frequency | time [ns]

degree cycles [MHz]
7 821 341 |5.895F —8 46 130.3 352.9
6 781 341 |5.896F — 8 40 121.2 329.9
5 726 339 |6.656F —8 34 125.5 270.9
4 672 339 |5.216E -7 28 121.6 230.2
3 650 339 |2121E -5 22 129.0 170.4
2 564 338 |3.283E -3 16 127.5 125.4

TABLE 4. Implementation results of floating-point chebyshev
approximation for the 15 intervals.

Poly- | Number | Number | Accuracy |Number | Max clock | Calc.

nomial | of LUTs | of FFs of clock | frequency | time [ns]

degree cycles [MHz]
7 899 355 [1.192E —T7| 46 112.5 408.7
6 829 350 |1.192E—T7| 40 121.3 329.7
5 757 353 |1.192E—-T7| 34 116.9 290.8
4 744 347 |2.980E -7 28 112.9 247.8
3 692 323 |1.180E -5 22 113.9 193.0
2 566 288 | 2.700F — 4 16 118.5 135.0

TABLE 5. Implementation results of floating-point direct polynomial
approximation for different number of intervals.

Number | Poly- | Number | Accuracy |Number | Max clock | Calc.

of inter- | nomial | of LUTs of clock | frequency | time [ns]
vals | degree /FFs cycles [MHz]
17 3 616/3409.353FE — 6 22 129.8 169.4
17 2 553/339 | 2.439FE — 4 22 124.6 128.4
19 2 572/339 | 8.630FE — 5 16 121.9 131.2
59 3 744/341 | 7.630FE — 8 22 129.4 169.9
186 2 923/324 | 1.213E — 7 16 124.7 128.3
214 2 951/341(9.968F — 8 16 129.8 123.2
244 2 953/342 | 8.498E — 8 16 126.8 126.2

TABLE 6. Implementation results of direct polynomial approximation for
different parameters of floating-point arithmetic blocks.

No. of | Number | Number | Number | Overall no. | Max clock | Calc.

clock |of LUTs| of FFs |of DSPs| of clock | frequency |time [ns]

cycles cycles [MHz]
0 874 203 2 13 57.2 227.1
0 689 203 4 13 52.6 247.2
1 857 290 2 23 63.8 360.5
1 677 270 4 23 63.1 364.3
2 912 327 2 34 123.5 275.3
2 726 339 4 34 125.5 270.9
3 902 425 2 45 169.1 266.1
3 742 363 4 45 154.6 291.1
4 951 481 2 56 204.9 273.2
4 787 429 4 56 208.3 268.8

polynomial allows a noticeable increase of the accuracy.
Surprisingly, in this case, the number of required LUTs is
also lower than for the 15 intervals. A similar situation
takes place for the polynomial of the second degree where
the same 17 intervals were applied. Using the 19 intervals
(the [0, 0.125) and [0.125, 0.375) intervals were added to the
17 previously established intervals) for the polynomial of the
second degree causes a substantial increase of the accuracy,
maintaining a similar number of LUTs in reference to the case
where the basic number of intervals is involved.

Observing the obvious tendency of the increase of the
accuracy along with the increase of the number of intervals,
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one could ask the question of how many intervals are needed
for the polynomial of the third and second degree in order
to achieve the accuracy similar to that of the polynomial
of the fifth degree. In search of an answer to this question,
the dedicated Matlab script has been prepared. Based on
the required accuracy and the polynomial degree (the input
parameters), this script automatically generates the intervals
that comply with the rules described in the previous section.
The script also directly generates the Verilog code describing
the RR and CM blocks (Fig. 1, Fig. 3), which greatly facilitate
the implementation.

Using this script and then conducting the behavioral
simulation of the Verilog code describing the particular
implementation, it turned out that the 59 intervals suffice
for the 7.6E-8 accuracy (for the fifth polynomial degree,
the accuracy amounts to 6.7E-8). This allows a significant
reduction of the calculations time (170ns vs. 271ns) under
virtually negligible increase of the number of required LUTSs
(744 vs. 726).

For the second degree of polynomial, the following three
cases have been considered, namely the 186, 214, and
244 intervals. For the latter case, the accuracy reaches the
8.5E-8 value, and calculations time drops to 126ns (more
than 2 times shorter). However, the number of required LUTSs
is noticeable higher (953 vs. 726) compared to the fifth
polynomial degree with the basic 15 intervals.

For all of the implementations from Tables 3-5, the
floating-point multiplier and adder blocks needed 2 clock
cycles for the calculation of the result. Each block also
utilized 2 DSPs. Table 6 illustrates the impact of the
different number of clock cycles and DSP blocks on the
required FPGA resources and overall calculations time for
the implementation of the direct fifth degree polynomial
approximation with the 15 intervals. Apart from the base
case where each multiplier and adder block needed 2 DSPs
(4 DSPs are required for an implementation), only the case
where no DSP blocks are required for the adder block (2 DSPs
are needed for an implementation).

As expected, if more DSP blocks are used, the particular
implementation needs a lower number of LUTs (since an
FPGA chip usually contains two times more FFs than
LUTs, an attention can only be focused on the utilization
of LUTs). However, it seems that the utilization of the
DSPs by both of the arithmetic blocks does not noticeably
improve the maximum clock frequency. For some cases,
as a matter of fact, the maximum clock frequency for
the 4 DSPs is even lower than for the 2 DSPs, which might be
counterintuitive.

The maximum clock frequency is, in turn, strongly
determined by the number of clock cycles needed by the
arithmetic blocks. The more clock cycles are applied, the
higher is the maximum clock frequency. However, the total
number of clock cycles needed for the calculation of the result
of the hyperbolic tangent function is also higher. Therefore,
applying more than 2 clock cycles for the arithmetic blocks
virtually does not improve the overall calculations time.
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TABLE 7. Implementation results of fixed point direct polynomial
approximation.

Poly- Number Accuracy | Number | Calc. |Max clock
nomial | of LUTs of clock | time [ns] | frequency
degree | /FFs/DSPs cycles [MHz]

8 690/161/86.733E — 11 18 175.9 102.3

7 656/159/8 | 4.020F — 10 16 157.7 101.4

6 558/152/4 | 4.600E — 9 14 105.0 133.3

5 540/152/4 | 3.922E — 8 12 91.2 131.5

4 526/152/4 | 5.052E — 7 10 4.7 133.9

3 478/152/4 | 2.123F — 5 8 59.7 134.0

2 532/188/4 | 4.159E — 4 6 45.4 132.2

TABLE 8. Implementation results of fixed point chebyshev approximation.

Poly- Number Accuracy | Number | Calc. |Max clock
nomial of LUTs of clock | time [ns] | frequency
degree | /FFs/DSPs cycles [MHz]

8 1055/334/8 | 8.750FE — 11 20 199.3 100.3

7 844/267/8|2.158E — 10 18 194.2 92.7

6 684/269/4 | 3.890E — 9 16 137.6 116.3

5 665/285/4|1.925F — 8 14 123.3 113.5

4 656/234/4 | 2.540F — 7 12 106.6 112.9

3 571/162/4|1.200E — 5 10 77.0 129.8

2 550/173/4|2.700F — 4 8 61.0 131.2

The overall shortest calculations time is achieved for the
case where the arithmetic blocks are purely combinational.
However, in this case, the maximum clock frequency drops to
a very low value, which might not be acceptable in a typical
synchronous system (e.g., the hyperbolic tangent block may
unnecessary slow down the calculations speed of a whole
ANN implementation).

It is also worth noting that the maximum clock frequency
achieved by the floating-point implementations from Tables
3-5, where 2 clock cycles are chosen for the arithmetic
blocks, is quite similar to the value attained by the fixed-point
implementations.

B. FIXED-POINT IMPLEMENTATIONS RESULTS
Apart from floating-point, the fixed-point implementations of
the hyperbolic tangent function have also been considered.
The results of these implementations for the direct poly-
nomial and Chebyshev approximation with the 15 intervals
are presented in Tables 7-9. The implementations from
Tables 7-8 involve signed-magnitude coding for the fixed-
point representation, described in the previous section.
For a comparison purpose, Table 9 presents, in turn, the
implementations results of the Chebyshev approximation for
the two’s complement coding. It is important to note that
for all implementations from Table 7-9, for the polynomial
degrees 2...6, the word length of polynomial’s coefficients
amounted to 33 bits. However, in order to achieve higher
accuracy for the 7th and 8th polynomial degrees, the word
lengths of the coefficients had to be increased to 36 and
38 bits, respectively. For these two cases, the fraction length
of the output word was also higher and accounted for 35 bits.
As the results suggest, the direct polynomial approxima-
tion implementations require a noticeable lower number of
FPGA resources, both in terms of LUTs and FFs. However,
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TABLE 9. Implementation results of fixed point chebyshev approximation
for two’s complement coding.

Number | Calc. | Max clock
of clock | time [ns] | frequency
cycles [MHz]

Poly- Number
nomial [ of LUTs
degree | /FFs/DSPs

Accuracy

8 | 771/331/3| 55056 — 11| 20 | 202.6 98.7
7 |677/295/8|2.141E — 10| 18 171.6 | 104.9
6 |633/247/4|2.973E—9 | 16 122.9 | 130.2
5 |619/253/4|1.951E—8 | 14 | 106.2 | 131.8
4 |548/255/4|2482E—7 | 12 90.7 132.3
3 |497/252/4|1.177TE—5 | 10 75.2 132.9
2 |462/216/4|2.699E — 4 8 61.0 131.2

TABLE 10. Implementation results of fixed point direct polynomial
approximation for different number of intervals.

Number | Poly- Number | Accuracy Number | Calc. | Max clock
of inter- | nomial | of LUTs of clock | time | frequency
vals degree | /FFs/DSPs cycles [ns] [MHz]
17 3 527/152/4|9.347E — 6 8 58.8 136.0
17 2 559/188/4 | 2.439F — 4 6 46.0 130.4
19 2 595/189/4 | 8.631E — 5 6 44.7 134.2
59 6 676/167/8 | 7.500E — 11 14 131.1| 106.8
59 5 610/151/8 | 3.515E — 10 12 115.3 | 104.1
59 4 531/145/4 | 4.122E — 9 10 74.3 134.5
59 3 514/145/4 | 3.723E — 8 8 59.8 133.8
59 2 568/181/4 | 1.080F — 5 6 44.8 133.9
186 6 1055/168/8 | 7.034E — 11 14 137.4| 101.9
186 5 958/151/8 | 3.032E — 10 12 118.9 99.1
186 4 940/151/8 | 1.351FE — 9 10 97.5 102.6
186 3 811/145/4 | 6.579E — 9 8 60.4 132.5
186 2 837/181/4|6.937TE — 8 6 44.1 136.0
244 6 1137/167/8 | 1.376E — 10 14 135.6| 103.5
244 5 1099/165/8 | 1.376E — 10 12 119.2 100.6
244 4 992/151/8 | 6.178E — 10 10 97.3 102.8
244 3 869/145/4 | 3.237TE — 9 8 60.2 132.9
244 2 905/181/4 | 2.998E — 8 6 45.5 131.9

with an exception of the 8th polynomial degree for the signed-
magnitude coding, the Chebyshev approximation allows a
slightly higher accuracy to be achieved. Due to the fact that
the implementations based on the Chebyshev approximation
need 2 more clock cycles for the same polynomial degree,
and the maximum clock frequency is also slightly lower, the
overall calculations time is higher for these implementations.

It is worth noting that - as the data from Tables 8 and 9
show - the implementations with the two’s complement
coding require lower number of FPGA resources than the
implementations with the signed-magnitude coding.

Similarly to the floating-point implementations, the impact
of the select number of the other intervals on the results of
fixed-point implementations has also been considered. The
results for the direct polynomial approximation are presented
in Table 10. As the data indicate, the highest accuracy is
attained for the polynomial of the 6th degree with 186 and
59 intervals. Similar accuracy can be attained for the base
15 intervals and the 8th degree of the polynomial. However,
for the case where the 59 intervals are involved, both the
overall calculations time and the resources utilization are
better than for the other cases with similar accuracy.

It is also a bit surprising that the increase of the number of
intervals from 186 to 244 does not improve the accuracy for
the polynomial of the 6th degree.

If the short calculations time of the hyperbolic tangent
function would be an important factor, then again, the
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FIGURE 6. Calculations accuracy versus polynomial degree for the
15 intervals.

implementation with the 59 intervals and the polynomial of
the 2nd degree can be the choice. A much higher accuracy
with a very similar calculations time is attained, in fact,
for the implementation with the 244 intervals. However,
this implementation requires substantially higher number of
FPGA resources.

Figure 6 presents the relation between the calculations
accuracy and polynomial degree for the floating-point and
fixed-point implementations, including the direct polynomial
and Chebyshev approximations. A logarithmic scale was
used on the ordinate axis. As seen, for the same number of
intervals (i.e. the 15 intervals in this case), the increase of
the polynomial degree entails the increase of the accuracy,
regardless of the applied arithmetic and approximation type.
However, for the floating-point implementations, the increase
ends on the 5 polynomial degree, whereas for the fixed-point
implementations a higher accuracy for a higher polynomial
degree requires also the increase of the word-length for the
used variables.

C. COMPARISON WITH OTHER WORKS

The main design goal of the proposed implementation
methods of the hyperbolic tangent activation function was to
achieve high calculations accuracy. Therefore, the accuracy
(perceived as the maximum absolute error) constitutes an
essential criterion for the comparison with other pub-
lished results. Table 11 features such a comparison. The
Table includes solutions with the highest accuracy that the
authors were able to find. In fact, in [16] the maximum error,
which is not explicitly given but can be read from the graph,
drops to a very low value of around 2E-8 for single-precision
floating-point arithmetic. However, it seems that the errors
were calculated there based on software simulations instead
of tangible hardware implementation simulations. The other
work [15] did not revealed any implementation details (yet,
reported accuracy reached the 1.9E-7 value). Therefore, these
works were not included in Table 11.

As Table 11 suggests, the accuracy achieved by the
proposed implementation method is slightly higher for
the single-precision floating-point implementation and
significantly higher for the fixed-point implementation. It is
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TABLE 11. Comparison of the accuracy of the hyperbolic tangent function
calculation for different implementations methods.

Method Accuracy
LUT with linear approximation; fixed-point [1] 1.60E -7
PWL; floating-point [3] 7T40FE — 3
PWL,; floating-point [4] 2.18E -5
Linear approximation; fixed-point [8] 1.92E — 4
CORDIC; fixed-point [5] 1.70E -7
CORDIC; floating-point [13] 24TE -7
DCT interpolation; double-precision floating-point [14] 1.00E -5
Direct with McLaurin series; floating-point [19] 1.79E -7
Proposed, direct polynomial approximation; floating-point | 5.89FE — 8
Proposed, Chebyshev approximation; fixed-point 5.59F — 11

worth noting that, for example, a high calculations accuracy
was achieved for the proposed fixed-point implementation
method for an essentially shorter word length than in [16],
where the 64-bit precision was applied.

Itis also important to note that the majority of the published
solutions considered a shorter range of input values of the
hyperbolic tangent function. With the exception of [19], the
widest input range spanned from —8 to 8. The proposed
implementation (as well as [19]) applies a wider range,
namely (—10, 10). It is worth noting that the usage of a wider
input range usually entails a higher implementation cost (e.g.,
more FPGA resources are needed), and it is harder to achieve
high calculations accuracy.

Apart from the calculations accuracy, the other implemen-
tation parameters include the calculations time and resources
utilization. Unfortunately, these parameters are not always
featured in published papers.

Moreover, existing solutions apply different FPGAs with
different architectures, which have an important impact
on the achieved calculations time and number of required
FPGA resources. These two factors make the comparison
between solutions more difficult. Nevertheless, a very short
calculations time for the hyperbolic tangent function is
reported in [14]. However, the accuracy of this solution is
substantially lower than the proposed implementation and
amounts to 1.0E-4 for the reported calculations time of less
than 10ns (fixed-point arithmetic has been applied). The
solution also needs a relatively high amount of bits of the
internal Block RAM memory. A relatively short calculations
time (35ns) is also the feature of [9]. Yet, the accuracy in this
case is even lower than [14] and accounts for 1.5E-2.

The proposed implementations are definitely more effec-
tive than the solutions based on the CORDIC algorithm
[5], [13] and the direct method with the McLaurin series [19],
both in terms of the calculations time and resources utiliza-
tion. For example, for [5], the calculations time amounts to
2.7us and 1687 LUTs are required. For [19] these parameters
accounted for 0.97us and 1916 LUTs, respectively. The
proposed solution requires, in turn, only 514 LUTs and
produces the result in 60ns for fixed-point implementation
with the accuracy even better than [5] (3.7E-8 vs. 1.7E-07).
For floating-point implementation 744 LUTs are needed, and
the calculations time accounts for 170ns under the 7.6E-8
accuracy, which is substantially better than for [19].
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TABLE 12. Classification performance of 88 data records.

Activation function | Number of falsely
accuracy classified data records
1.0E -3 46

49F — 4 3

24F — 4 1

1.2E — 4 or higher 0

It is also worth noting that the accuracy of the single
precision software implementation in the Visual C++4
environment of the hyperbolic tangent function, measured
using the same methodology, amounts to 4.86E-8. It is very
similar to the accuracy obtained by the proposed FPGA
implementation.

D. IMPACT OF THE ACTIVATION FUNCTION ACCURACY
The proposed FPGA implementation method of the hyper-
bolic tangent activation function allows very high calcula-
tions accuracy to be achieved. Based on the authors’ previous
works, the impact of the accuracy of the activation function
on the classification performance of various neural networks
has also been briefly examined.

In [22] the LSTM neural network performing a clas-
sification task for failure detection in the cold forging
process [23], targeted for FPGA implementation, has been
presented. The network consisted of two layers. The first
layer included 44 LSTM cells, whereas the second contained
a single neuron. The activation function was implemented
taking advantage of the CORDIC based algorithm [13].
Various Verilog code simulations have been carried out in
order to determine the accuracy of the classification of
the previously developed LSTM network, depending on the
accuracy of the activation function. The activation function
accuracy was adjusted by an alteration of the number of the
CORDIC algorithm iterations. The 88 test data records have
been considered for the determination of the LSTM network
classification accuracy. The results presented in Table 12
show that the 1.2E-4 activation function accuracy (or higher)
is required for a classification without any error.

The other conducted experiment involved the training
process of the same LSTM network. The outline of the
training method of this LSTM, targeted for FPGA imple-
mentation, has already been briefly described in [24]. For
the determination of the impact of the activation function
accuracy on the training process, a Python script utilizing
standard libraries has been prepared. For the LSTM training
(the backpropagation trough time algorithm has been used),
176 data records - other than 88 previously applied records
- have been exercised. The training process itself consisted
of 15 epochs and 20 reiterations for each accuracy value
of the activation function. Once the computations for the
training process were completed, the validation was carried
out with the 88 test data records and the classification
accuracy was determined. For validation, the same activation
function accuracy was applied as for LSTM training. The
obtained classification accuracy of the LSTM network is
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FIGURE 7. Relation of the activation function accuracy and classification
accuracy.

presented in Fig. 7. The highest classification accuracy of
the 20 aforementioned reiterations was depicted in the figure.
As data indicate, 100% classification accuracy is achieved for
the activation function accuracy that amounted to 7.75E-6 or
higher. This is the accuracy value that is not often encountered
for the implementation of the hyperbolic tangent function.
A similar conclusion, namely that the activation function
accuracy must be high for the correct implementation of
the training algorithm (i.e., the backpropagation) for neural
networks, is contained in [6]. However, the authors of this
work applied an implementation of the activation function
with the maximum absolute error accounted for SE-4 (not so
high accuracy).

The impact of the activation function accuracy has also
been examined for the auto-associative neural network
performing novelty detection in the milling process [25].
Another auto-associative neural network has also been
developed and examined for the cold forging process [23].
Contrary to the previous findings, in both cases it turned out
that the activation function accuracy is virtually negligible
due to the fact that the arguments of the hyperbolic tangent
function took values for which the function value was
limited to 1.0 or —1.0. Similarly, a small impact of the
hyperbolic tangent activation function implementation with
the maximum absolute error around SE-2 on the classification
accuracy for the MNIST and Fashion-MNIST datasets has
also been reported in [18].

The above considerations may indicate that the accuracy
level of the activation function implementation, which is
needed for a reliable solution of a problem, depends on the
particular case and the processed data. Therefore, running
the simulation of the impact of the activation function
accuracy on the final results produced by ANNs seems
to be useful in order to make a choice between different
activation function implementation versions. However, there
are also versatile implementation methods of feed-forward
ANNSs, such as [26], where the structure of the ANN (i.e.
number of layers, number of neurons in subsequent layers,
weights values, biases, etc.) does not have to be statically
determined before FPGA synthesis and implementation
process, but can be changed even during system operation by

23712

a simple alteration of the BlockRAM memory content. These
implementations are able to deal with different ANNs for
which the actual requirement of activation function accuracy
may be unknown (potentially including a high accuracy
requirement). Therefore, the accuracy of the activation
function for these implementations should be high enough
in order to meet the requirements for a wide range of
applications. This is also the area where the proposed
implementation might be useful.

IV. CONCLUSION

It has been shown that the direct polynomial or Chebyshev
approximation allows for relatively simple and effective
implementation of the hyperbolic tangent function in FPGAs.
A very high calculations accuracy, relatively short calcula-
tions time, and moderate FPGA resources utilization can be
achieved applying this implementation method.

The conducted experiments show that implementations
based on direct polynomial approximation ensure lower
FPGA resources utilization than implementations exercising
the Chebyshev approximation. The latter implementations
enable, in turn, slightly higher accuracy to be achieved for
the same polynomial degree, particularly where fixed-point
arithmetic is applied. An exception constitutes the floating-
point implementations with the degree of polynomial equal
to or higher than 5, where implementations based on the
direct polynomial approximation feature considerably higher
calculations accuracy.

Taking the number of intervals into account, the implemen-
tation results suggest that the increase of this number within
a certain range (e.g. from 15 to 59) does not cause a relevant
increase of the FPGA resources utilization. Therefore,
in cases where the low resources utilization and the high
accuracy constitute important factors, the 59 intervals would
be recommended. When a short calculations time as well as
high accuracy are needed, and the resources utilization is less
important, the higher number of intervals (i.e., 186 or 244)
might be the choice. However, for a higher number of
intervals, the polynomial’s coefficients can be stored in
dedicated RAM blocks inside FPGA (if available), instead
of utilizing LUTs as a distributed memory. This would allow
the decrease of a number of required LUTs. It is also worth
noting that applying a higher number of intervals does not
deteriorate the timing of the circuit - the maximum allowable
clock frequency remains almost unaffected, particularly for
low degrees (i.e. 2 or 3) of polynomial.

As expected, the fixed-point implementations require a
lower number of LUTs and FFs than the floating-point
implementations of the polynomial of the same degree. They
also enables considerably shorter (even more than two times)
calculations time to be achieved. However, it turned out that
the floating-point implementations are able to be clocked
with higher clock frequency, particularly in the case where
more clock cycles are applied for the floating-point arithmetic
IP-core blocks.
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The fixed-point implementations allow higher calculations
accuracy to be achieved in comparison with single-precision
floating-point implementations. It also turned out that the
fixed-point implementations with two’s complement coding
seem to require a lower number of FPGA resources than the
implementations with sign-magnitude coding.

It is worth noting that the obtained accuracy of the
hyperbolic tangent function calculation for the proposed
implementation method is very high in comparison with other
published solutions. In fact, for the fixed-point implementa-
tions, the obtained accuracy is virtually the highest reported
so far.

On account of a high calculations accuracy as well as
a relatively short calculations time and moderate resources
utilization, the proposed implementation method might be an
effective alternative to the other methods of activation func-
tions implementation, particularly CORDIC-based methods.
The direct or Chebyshev polynomial approximation method
may also be easily applied for the implementation of not
only the other activation functions (e.g., sigmoid function)
but also for various mathematical functions. In these cases,
only the RR and CM blocks need to be adapted. The presented
hardware architecture as well as the essential part of the ASM
describing the control unit can remain unchanged.
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