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ABSTRACT To avoid inefficient movement or the freezing problem in crowded environments, we previously
proposed a human-aware interactive navigation method that uses inducement, i.e., voice reminders or
physical touch. However, the use of inducement largely depends onmany factors, including human attributes,
task contents, and environmental contexts. Thus, it is unrealistic to pre-design a set of parameters such
as the coefficients in the cost function, personal space, and velocity in accordance with the situation.
To understand and evaluate if inducement (voice reminder in this study) is effective and how andwhen it must
be used, we propose to comprehend them through multiagent deep reinforcement learning in which the robot
voluntarily acquires an inducing policy suitable for the situation. Specifically, we evaluate whether a voice
reminder can improve the time to reach the goal by learning when the robot uses it. Results of simulation
experiments with four different situations show that the robot could learn inducing policies suited for each
situation, and the effectiveness of inducement is greatly improved in more congested and narrow situations.

INDEX TERMS Autonomous mobile robot, multiagent deep reinforcement learning, inducing policy
acquisition, collaborative robot navigation.

I. INTRODUCTION
Path planning for autonomous mobile robots has been widely
studied for various applications [1]. Robot navigation in
dynamic environments is actively investigated, including the
velocity obstacle methods [2], social force models [3], and
machine learning-based methods [4]. However, these studies
focus on using passive-avoidance strategies (PAS) to enable
the robot to avoid humans passively, so the robot often gets
stuck in crowded and dynamic spaces [5]. To move ade-
quately in such environments, the robot must use an active-
inducible strategy (AIS) that can voluntarily make a path
for it by encouraging an obstructing human to move. Thus,
we previously proposed a human-aware interactive naviga-
tion method [6] that uses inducement, i.e., voice reminders,
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e.g., ‘‘Let me pass,’’ or physical touch [7], [8]. We then
developed a dynamic waypoint navigation (DWN) method
[9] as a model-based path planning method and an inducible
social force model (iSFM) [10] for efficient proximal crowd
navigation.We confirmed that thesemethods enable the robot
to move in crowded and dynamic spaces without being stuck
by using inducement.

The navigation systems that we previously developed
adopt a rule-based deterministic approach, so the robot’s
behavior is largely affected by parameter settings, e.g., coef-
ficients in the cost function, personal space, velocity, and
inducement. So far, we adjusted the above parameters to be
suitable for the situations from exploratory experiments. For
example, the cost of using physical touch is prettily large
so that the robot hardly uses it [10], but the value does not
have versatility. In the situation as shown in Fig. 1, the use
of inducement depends on many factors, including human
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attributes, e.g., looking at a painting, task contents, e.g., the
need to hurry due to an emergency evacuation, and environ-
mental contexts, e.g., quiet museum, which are difficult for
the robot to recognize. Thus, it is unrealistic to pre-define a
set of parameters in accordance with the situation.

FIGURE 1. Two typical situation policies; inducement or non-inducement,
which basically differ in social accommodation and robot efficiency.

To understand and evaluate if navigation with active
inducement is effective and how and when it must be used,
we propose to analyze them through a multiagent reinforce-
ment learning framework in which the robot voluntarily
acquires an inducing policy suitable for the situation. Learn-
ing systems enable the agent to define its own rules based
on the obtained data. To develop a decision-making sys-
tem for our purpose, multiagent deep reinforcement learning
(MDRL) [11] would be effective. Recently, MDRL has been
used to learn both the control and strategic aspects in soccer
games [12], to learn crowd dynamics and determine effi-
cient paths [13], and to develop an intersection management
system for automated vehicles [14]. These studies consider
the relationship between agents but do not consider how
agents could directly interact with one another to reach their
goal nor active inducement. As a similar idea to inducement,
an approach that incorporates learning communication for
multiagent cooperation was proposed [15], [16], [17], [18],
[19]. In this approach, agents share or receive action inten-
tion through a dedicated communication channel, but in our
approach, agents can directly use inducement as a voluntary
action, which enables the robot to acquire a more realistic
cooperative inducement policy.

In summary, no learning systems that can evaluate the
effectiveness of using inducement exist.Wemodel navigation
as a cooperative task that focuses on the convergence of
the entire group rather than the individual. We thus modify
an MDRL-based navigation method that follows partially
observable Markov decision processes [20] by introducing
an inducement system. We also measure when and how often
inducements are used to examine how the environment affects
an agent’s desire to use inducement. Our main contributions
are:

• To be the first trial to evaluate an inducement strategy
in robot navigation through a multiagent deep reinforce-
ment learning framework.

• To evaluate if inducement, i.e., voice reminder, can
improve overall efficiency and goal convergence by
comparing collective goal convergence times.

• To determine when to use voice reminders by recording
their usage frequency and examining inference models.

II. DEVELOPMENT TOOLS AND SETTINGS
In this section, we introduce the tools, frameworks, and net-
work parameters used while training and testing our policies.

A. PRIMARY TOOLS
The primary tools for development are Unity’s ML-Agents
Toolkit (Release 18), Unity’s game engine, and PyTorch
(1.10.1). The Unity ML-Agents Toolkit enables Unity to act
as an environment for training agents. It includes state-of-
the-art algorithms, a Python API for training agents, a gym
wrapper, and a built-in inference engine to test trained poli-
cies. Unity’s engine is used for the simulation environment
[21], and PyTorch is themachine learning framework. Unity’s
scripting API is used to create the random generation of agent
positions and spawns and determine an agent’s arrival to their
goal and their collision with another object.

TABLE 1. Network settings of MA-POCA trainer.

B. METHODS
1) TRAINING ALGORITHM
For the training algorithm and architecture, we used Unity’s
Multi-Agent Posthumous Credit Assignment (MA-POCA),
which is a multiagent trainer that trains a centralized critic
for a group of agents [22]. The benefit of using MA-POCA is
that it enables group rewards alongside individual rewards.
Group rewards are imperative when recreating a coopera-
tive task such as path planning since it incentivizes agents
to take selfless actions that prioritize the teams’ goal over
their own individual goals. MA-POCA’s novel architecture
for COunterfactual Multi-Agent Policy Gradients (COMA)
[23] utilizes self-attention in place of a fully connected layer
with absorbing states over active agents in the critic network
to address issues of posthumous credit assignment. More-
over, MA-POCA enables a variable number of inputs, and
the network can compute a counterfactual baseline using
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self-attention [24]. MA-POCA uses temporal difference [25]
to calculate targets for the value function and baseline
updates. The above algorithm and architecture use a frame-
work of centralized training and decentralized execution that
enables policies to use extra information during training.

2) NETWORK SETTINGS
We used the hyper-parameters as listed in Table 1. The values
were basically chosen based on the common configurations
for POCA in ML-Agents’ training configuration documenta-
tion [26], followed by tuning the hyperparameters until policy
statistics (value estimates and entropy) were stable. For the
network settings, we used 256 hidden units, three layers,
and HyperNetworks [27], which is a conditioning type for
the policy using goal observations. Alongside our extrinsic
rewards, which are explained in the reward function section,
we also utilized curiosity [28] for training our agents as our
reward policy is sparse.

FIGURE 2. Agent model and observations. (a) RayCast perception sensor,
(b) relative goal distance and angle, (c) agent on goal state, (d) inducer
state, and (e) inducee state.

C. TRAINING AND TESTING
The models were trained on a computer with an NVIDIA
RTX 3090 graphics card, an AMD Ryzen 9 5950X 16-Core
processor, and 128 GB of RAM. All models were trained
in a variant of the scenario with randomly generated agent
spawns, agent orientations, and goal spawns to converge
with a minimum of 45 million training steps, each episode
lasting 30 seconds unless all agents do not crash (1st train-
ing). As Unity’s engine runs at 60 frames per second and
each episode is 1800 steps long, this equates to 25,000
episodes of training. After training the agents on the ran-
domly generated variants, we trained the non-inducement-
and inducement-based models equally for 3,000 episodes
on the set spawn variant (2nd training). This was a small
training duration to avoid overfitting. After training, we ran
a final test or inference on the policy for 1,000 episodes and
evaluated the group convergence time, collision count, and
inducement usage across all 1,000 episodes. The training was
executed in parallel with 16 environments and a 20× time
scale. Initial training, secondary training, and the inference

test took approximately 6 hours, 45 minutes, and 12 minutes,
respectively.

TABLE 2. Agent action space.

III. IMPLEMENTATION
This section elaborates on the agent model and action space,
the types of observations, the environments to evaluate the
effectiveness of inducement, and explains how the induce-
ment interaction is rewarded and punished.

A. AGENT MODEL AND ACTION SPACE
1) AGENT MODEL
One of the limitations of using the combination ofMA-POCA
and group rewards is that it requires all agents in a group
to be homogenous. Thus, all agents are identical as they are
modeled as a group of agents that try to reach their own goals.
All agents, as shown in Fig. 2, are modeled to be human-like
in terms of fields of vision and velocity. Each agent has a
collider of 0.85 (width)× 0.65 (depth)× 1.90 (height) m that
uses a collider and collision Unity classes to check when the
agent is either on their goal or colliding with another agent or
wall.

2) AGENT ACTION SPACE
All agents feature a discrete action space with three branches,
i.e., linear movement, rotation, and inducement, as listed
in Table 2. The agent has five possible actions in the lin-
ear movement branch, including forward, backward, right,
left, and no movement. The forward movement speed was
determined based on the average adult human walking speed
(1.4 m/s), while the other values were halved as humans
typically walk forward and rotate as necessary. The rotation
branch has both clockwise and counterclockwise rotations.
The inducement enables agents to explicitly interact with
other agents. There are no direct velocity implications behind
the use of a voice reminder, but agents will be rewarded
and punished based on their reactions. To reach the above
velocities, the agent selects the respective action repeatedly
throughout the 60 frames.

B. OBSERVATIONS
1) RAYCAST OBSERVATION
RayCast observation comes from the Unity ML-Agents
toolkit. The RayCast perception sensor has a 200◦ band
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FIGURE 3. Simulation environments (15 × 15 m), which includes five agents, their corresponding goals, and walls. (a) S1: Baseline (open). (b) S2-1:
Small detours (similar path distances). (c) S2-2: Large detours (divergent path distances). (d) S3: Convergence (passage blocked by two other agents).

horizontal band of vision to replicate human vision and has
15 equally spread 5-m-long rays, as shown in Fig. 2 (a). The
sensors send out a set of rays and output values based on the
relative distance between the sensor and the tagged object
(e.g., the blue agent is tagged as Tag 1).

2) VECTOR OBSERVATION
There are five vector observations, which are necessary for
the agents’ ability to learn how to reach their respective goals,
use voice reminders, and react to them. The first two vector
observations are the agent’s relative distance to their goal
([0, 1]) and the agent’s relative angle to their goal ([−1, 1]),
as shown in Fig. 2 (b). Unlike other models that give abso-
lute positions of both the agents and their goals [29], [30],
the agents are only provided relative scalar values, to meet
conditions in a real environment. Fig. 2 (c) shows a state when
the agent has reached their respective goal.

3) INDUCEMENT OBSERVATION
As shown in Figs. 2 (d) and (e), the agents’ inducer and
inducee states are represented by green and red exclamations,
respectively. The inducer state indicates that the agent has
used a voice reminder and initiated the inducement event,
while the inducer state indicates that they are a recipient of
a voice reminder. Agents are rewarded and punished based
on their reaction to an inducement, so the agents must be
provided information when they are being induced.

The rationale behind these observations is to replicate
human acknowledgment when being addressed. Notably and
comparative to real life, the agents are oblivious to the goal
position of all the other agent’s respective goals.

C. ENVIRONMENT
Our training and test environments have four different situa-
tions: a baseline, efficiency (×2), and convergence.

1) BASELINE (S1)
This situation simulates a standard open environment with
plenty of space to move around, as shown in Fig. 3 (a).

As most conventional multiagent path planning studies focus
on this open environment [29], [30], this model will examine
the effects inducements can have on the standard setting.

2) EFFICIENCY (S2)
This situation will test the efficiency in two different situa-
tions. In the first one, as shown in Fig. 3 (b), the agent is
tasked to take the most efficient route when small detours are
presented. In the second one, as shown in Fig. 3 (c), the agent
is limited to two paths, i.e., an inefficient detour route or the
shortest route but blocked by the blue agent.

3) CONVERGENCE (S3)
This situation will simply test the agents’ ability to overcome
a single passage blocked by two agents by encouraging them
to move with voice reminders, as shown in Fig. 3 (d).

D. INDUCEMENT INTERACTION
Inducement is modeled as an event that rewards and pun-
ishes agents based on how they react over the inducement
duration. Inducement begins whenever an agent uses the
voice reminder action and there are other agents within a
2.5-m radius to be induced and lasts 2 seconds, as shown in
Fig. 4 (a). Conditions to start the inducement include:

• The agent is not already being induced.
• 8 seconds of voice reminder cooldown is available.

Acceptable values for how often agents can use induce-
ment have a heavily subjective range, but in this study, to eval-
uate the effectiveness of inducement and its proper use of
them, we selected the above cooldown time. Agents cannot
use voice reminders when they have already received another
agent’s inducement, but agents can be induced by multiple
agents simultaneously. Once the inducement event begins, the
algorithm temporarily logs the relative distance between rel-
evant agents and the distance that the inducee moved during
inducement before and after the event. Paired with relative
distances between each agent and their respective goals, the
reward function determines if the inducer and inducee(s)
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acted properly. The conditions for successful voice reminders
are:

FIGURE 4. Interaction using inducement. (a) standard inducement event
and (b) simultaneous usage situation.

• The inducer can move at least 1 m closer toward its goal
and the inducer’s goal is farther than the recipients.

• At least one other agent must have been part of the
inducement event.

The conditions for a successful response are:
• An increase in relative distance between both agents so

that the inducer can pass (at least 0.5 m).
• The inducee contributed to the inducement event by

moving at least 1 m.
Both agents can be the inducer and inducee when they use

voice reminders at the same time, as shown in Fig. 4 (b). This
scenario is indicative of real-world interaction. In this case,
the agents can obtain the rewards for being both an inducer
and inducee, if all requirements are satisfied.

E. REWARD FUNCTION
The reward function is set to focus on group convergence
over the individual by prioritizing agents with further goals.
The reward and punishments except for those for inducement
were set based on the best practices for stable training [31].
The best practices are a max reward magnitude of no greater
than 1.0 and a small penalty to help faster convergence.

Table 3 lists the relationship between actions and rewards.
Agents are rewarded for each step when they remain on their
goal, and the reward is linearly distributed across that time.
Specifically, if an agent stays on its goal for 180 frames
(3 s), it receives a reward of 0.1, and the max is 1.0 (30 s).
Collisions are an immediate penalty. Proper usage of voice
reminders rewards the inducer, while poor usage punishes
it. The response to voice reminders is also rewarded and
punished accordingly. The values for the inducement usage
and responses were scaled to be slightly more impactful than
the reward for goal arrival since it is inducement to a sub-
missive movement that is away from their goal. The reward
for goal arrival at 3 s is 0.1, so the reward for a successful
reaction to a voice reminder (2 s) is 0.12 to compensate
the inducee for relocating off their goal. Moreover, we set a
group punishment for each agent of −0.0055 for every step
that all agents are not on their goals to ensure timely group
convergence, and the max is −1.0 (≈1800 steps ×−0.0055).
Ending the punishment requires that all agents are on their
goal, so an agent must learn to avoid crashes since group
convergence would no longer happen.

IV. EXPERIMENTS
The results are based on the collective group of agents,
but the primary purpose of evaluating the effectiveness of
inducement is on the white agent as they are presented with
the most complex routes, specifically in S2 and S3. The
numbers of collisions are those that occur over one episode
summary (50 episodes). The success rate was calculated by
checking if all agents were on the goal before the end of the
episode (30 s).

TABLE 3. Reward function. (I: individual, G: Group, R: Reward, and
P: Punishment.)

A. OPEN ENVIRONMENT (S1)
We ran three experiments, ideal, non-inducement, and
inducement, as shown in Figs. 5 (a)–(c). In ideal, the agents
are trained on the set spawn positions for the entire training
time to examine the effects of training on the test envi-
ronment as well as find the lower bound for arrival times.
As shown in Fig. 5 (a), the agents learned the trends of all
the other agents’ movements, which led to a spiral movement
toward the goal. This movement is ideal but quite unrealistic
for a group of agents to move with such synchronization.
Fig. 5 (b) shows a more normal movement with all agents
moving directly toward their goal until they were close to
one another. Once the agents were close to one another,
several agents waited while others continued to move toward
their goal. In Fig. 5 (c), while several agents simply avoided
the others due to a bountiful amount of space, others used
inducement to help get a better path. Fig. 5 (d) shows the
average arrival time and the number of collisions. The results
show convergences time of 5.3, 7.4, and 8.0 s for ideal,
non-inducement, and inducement, respectively. Collisions
only occurred twice in the non-inducement and inducement
throughout 1000 episodes, and the success rates were 98.4%
for non-inducement and 97.9% for inducement.

In summary, the introduction of inducement was not ben-
eficial to agents in an open environment. In fact, it slightly
harmed the overall efficiency of the group by 7.9%.

B. EFFICIENCY ENVIRONMENT–SMALL DETOUR (S2-1)
We tested two experiments, inducement and non-inducement.
In non-inducement, we found that the agent took multiple
routes despite having the same spawn location and goals.
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FIGURE 5. Results in S1 (open). (a) Ideal: perfect collaborative
movement. (b) Non-inducement: standard movement of agents who have
not been allowed to learn tendencies of other agents and are incapable
of explicit actions. (c) Inducement: movement of agents who are capable
of voice reminder. (d) Arrival time and number of collisions.

In the first route, which was most selected (>90%), as shown
in Fig. 6 (a), the target agent took the upper path and passed by

FIGURE 6. Results in S2-1 (small detours). (a) Non-inducement (common
path (>90%)): white agent takes upper path and avoids agents to get to
its goal. (b) Non-inducement (rare path): white agent waits until mutual
awareness with blue agent then proceeds accordingly. (c) Inducement:
white agent uses voice reminder to avoid waiting and proceeds
accordingly. (d) Arrival time and number of collisions.

the other three agents before reaching its goal. While in Fig. 6
(b), in rare cases, the agent decided to wait for the blue agent’s
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FIGURE 7. Results in S2-2 (large detours). (a) Non-inducement: white agent decides that waiting on mutual awareness is better than taking the bottom
path. (b) Inducement: white agent uses voice reminder to avoid waiting and reached goal smoothly. (c) Arrival time and number of collisions.

FIGURE 8. Results in S3 (convergence). (a) Non-inducement: blue and purple agents cannot learn importance of letting white agent pass naturally when
there is only one path. (b) Inducement: white agent directly conveys its needs, makes enough space to pass through, and arrives at goal. (c) Arrival time
and number of collisions.

awareness and take the shorter route. In inducement, Fig. 6 (c)
shows that the target agent always took the center route and
induced the blue agent once it was in range. The results in
Fig. 6 (d) show that inducement was 37% more efficient than
non-inducement. In addition, agents with a voice reminder
(3.16) had less than half the average collisions compared with
non-inducement (8.08). The primary reason for collisions for
non-inducement was that four out of the five agents were
consistently interacting within a closed space, which led to
agents backing up into walls due to their limited field of
vision. Overall, the success rates for non-inducement and
inducement were 83.5 and 92.2%, respectively.

The main outcome of the experiment was that in cases
where there are small detours, the use of inducement could be
beneficial but is highly dependent on the degree of the detour.

C. EFFICIENCY ENVIRONMENT–LARGE DETOUR (S2-2)
We ran another test with the upper path closed off to see how
agents would react. We found that both policies defaulted
to taking the center route every time. In non-inducement,
the agents never explored the inefficient route located at the
bottom of Fig. 7 (a), rather they decided that the best course

of action was to ‘wait’ on the blue agent’s awareness or try to
squeeze by. For inducement, as we expected, Fig. 7 (b) shows
that agents took the same route as the one in S2-1 as the target
agent never has to wait for awareness. By closing the top path,
the arrival time for non-inducement increased by 126.2% to
that of inducement. In inducement, the agents arrived at 5.5 s
on average, while in non-inducement, it took 12.4 s, as shown
in Fig. 7 (c). The collisions were similar to S2-1, but the
success rate for the non-inducement (92.2%)wasmuch closer
to that of inducement (92.7%) at the expense of efficiency.
This increase in success rate is due to the reduction of agents
who pass through the highly congested upper path.

In scenarios with few paths and large detours, the integra-
tion of inducement had a much more noticeable effect on the
average convergence time of agents.

D. CONVERGENCE ENVIRONMENT (S3)
This scenario was designed to mimic a situation with two
unaware people talking in front of the only passage, but the
agents were able to detect the target agent. The mutual aware-
ness alone was insufficient for the model to converge to a pol-
icy where all agents could regularly reach their goals. In most
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episodes for non-inducement, the blue and purple agents
would block the path, unaware of the target agent’s desire,
as shown in Fig. 8 (a). For inducement, Fig. 8 (b) shows that
the agent could explicitly interact with the other agents to
create a space sufficient to pass. Fig. 8 (c) shows that with a
voice reminder, the agents could collectively reach their goal
in 17.4 s. The agents with non-inducement were seldom able
to reach all three goals simultaneously. A 30-s arrival time
indicates that the agents could not lower their arrival time
and the episode timed out. The average collisions were higher
for inducement (13.2) than those for non-inducement (10.2).
As this environment was the most restrictive, agents had little
space to move when being induced. The main factor for failed
convergence and the larger number of collisions was when
induced agents would back up into the wall. For the success
rates, non-inducement was 2.45% (there were extremely rare
cases where the agent squeezed through the gap), and that
for inducement was 66.2%. The major reason for lowering
the success rate is that one of the two induced agents crashed
during inducement. An approach to solve this issue would be
to model the action of people looking around when the agent
is induced.

E. DISCUSSION
1) INDUCEMENT USAGE
Along with evaluating the effectiveness of voice reminders
in various settings, we also measured how often the voice
reminder was used throughout all four environments. Fig. 9
shows the number of voice reminder usages per episode for
the target agent in all the environments. The figure shows that
inducement was used the least in the open environment (S1),
usedmore as alternative paths were limited, and used themost
in the convergence environment (S3). Note that each agent
can use inducement up to three times per episode. We con-
firmed from the result that the effectiveness of inducement
differs in environments.

FIGURE 9. Voice reminder usage per episode for four different situations.
The number of voice reminder usages is larger in order of S3, S2-2, S2-1,
and S1.

2) CONTRIBUTION AND LIMITATIONS
We here summarize the contribution as well as limitations.
This study is a preliminary trial to acquire an inducing policy

using a multiagent deep reinforcement framework. The con-
tribution is to obtain an interpretation of the effectiveness and
necessity of using inducement, which can be a large forward
step for updating interactive navigation. This study proved
that inducement is effective in the time efficiency of a mobile
robot. It also shows that the agents can learn the importance of
inducements in restrictive environments over open ones. This
is possible because the multiagent reinforcement learning
framework clarifies when the agents use inducement and
when they accept it. The results can be applied to parameter
settings for rule-based navigation methods [10]. Meanwhile,
the model we used is limited in how it rewards inducement
responses. Agents are rewarded and punished for reacting and
not reacting to inducement, respectively. In some situations,
reacting to inducement is not suitable for an agent, so we
need to define and incentivize a proper reaction. For future
improvement, we will focus on heterogeneous agents since it
would enable variable responses andmodeling different types
of agents that would reinforce the need for other inducements
and responses.

V. CONCLUSION
To understand and evaluate if inducement (voice reminder)
is effective and how and when it must be used, we propose
to comprehend them through multiagent deep reinforcement
learning (MDRL) in which the robot voluntarily acquires an
inducing policy suitable for the situation. We introduced an
inducement-based multiagent path planning algorithm that
enables agents to use voice reminders to help convey their
desires while traversing to their goals. We developed four
different situations to evaluate how agents would implic-
itly and explicitly interact with one another. Experimental
results validated our preconceptions that inducement can
greatly improve group efficiency in situations where agents
are unaware of another agent’s presence. Inducement in open
environments could be harmful to the group’s efficiency.
Meanwhile, inducement increases agent efficiency and detour
severity in environments with more severe detours. Finally,
in a single blocked passage, inducement was the determining
factor for group convergence. The results also conveyed that
the agents were more prone to using voice reminders when
there was a lack of open space.

In future works, we plan on extending the types of explicit
inducement actions by adding physical touch, enriching input
information such as attention to collision risk [32], and inte-
grating this framework into physical multi-robot systems.
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