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ABSTRACT Microwave hyperthermia (MH) treatment for breast cancer is a research interest due to its
capability to initiate cell necrosis in malignant tumor or to enhance the effect of other treatment modalities
such as chemotherapy. The goal of MH treatment is to increase temperature of malignant tumor up to 45◦C
based on the treatment plan; however, microwave energy focusing is a challenging problem and may cause
unwanted hotspots on healthy tissues; therefore, there is a need to monitor the temperature. In this paper,
an iterative differential microwave imaging algorithm for temperaturemonitoring is presented. The algorithm
is based on Born iterative method (BIM) and Tikhonov regularization. Feasibility of the algorithm is shown
by a large computational study using realistic digital breast phantoms via TMz polarized 2-D scattered
fields. Also, some results are given for calibrated scattering parameters, which are obtained from both a 3-D
electromagnetic simulation program and a simple measurement setup. An approach for selection of matching
medium in hyperthermia monitoring applications is also presented. The reconstructions are performed with
scattered field data collected at 11 discrete frequency points uniformly taken from the 0.5-1.5 GHz range.
For a specific heating scenario in 2-D problem, reconstruction error is lower than 0.3% with ±10% noise
on reference dielectric property distribution and 40 dB signal to noise ratio (SNR). The results show that the
proposed approach provides up to 3◦C and 0.1◦C resolution in temperature estimation with ±10% noise on
reference dielectric property distribution for 30 dB and 60 dB SNR values, respectively.

INDEX TERMS Breast imaging, hyperthermia, electromagnetic inverse scattering, microwave imaging,
temperature monitoring.

I. INTRODUCTION
Microwave hyperthermic treatments aim to increase the
temperature of the malignant tumor for cell destruction and
can be categorized under two main approaches microwave
hyperthermia (MH) and microwave ablation (MWA)
[1], [2], [3]. Microwave hyperthermia (MH) is a non-
invasive technique that can either be used as a sole treatment
method to raise the tumor temperatures up to 45◦C or
as a complimentary treatment method to other therapies
such as chemotherapy for heating the target tissue to
relatively lower temperatures (below 42◦C) [4], [5], [6], [7].

The associate editor coordinating the review of this manuscript and
approving it for publication was Chan Hwang See.

Non-invasive focusing in MH is achieved trough the
optimization of the antenna excitations surrounding the
target tissues [8]. Relatively higher dielectric properties of
tumor tissues, particularly conductivity, in comparison to
normal tissues also contribute to the effective heating [6],
[9]. Despite the inherent conductivity discrepancy and source
optimization, the spreading propagation behavior of EM
waves and tissue heterogeneity in the target region may
prevent the effective heating of the tumor tissue. Especially,
undesirable hotspots, commonly accepted as higher than
40◦C [10], [11], may occur on healthy tissues, which leads
to unwanted destruction of healthy cells. Therefore, it is
vital to monitor the heating at the target region to ensure
safe and effective treatment [10]. Towards this goal, many
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different thermal monitoring techniques have been proposed
in the literature that can be categorized as passive and active
techniques.

Among passive microwave techniques radiometry was
utilized to monitor temperature variations; however, such
techniques provide only surface temperature values and
suffer from poor sensitivity. Therefore, passive techniques are
challenging to be utilized for real-time imaging [12]. Active
techniques are ultrasound (US) [13], [14], [15], magnetic
resonance imaging (MRI) [16], [17], [18], and microwave
tomography (MWT) [19], [20], [21] have been proposed to
be used for temperature monitoring applications. Limitations
of these methods are similar to their use in diagnostics based
imaging applications. For example, MRI based methods
generally provide good accuracy but MRI is known to be
very costly and bulky [22], [23]. While the US based methods
are low-cost and can be implemented for real time imaging,
they are known to suffer from major drawbacks related with
motion artifacts and water vaporization [24], [25]. Among
active techniques,MWT is emerging as a promising approach
for thermal monitoring.

It is known that MWTmethods tend to be computationally
expensive; however, in comparison to other active methods
MWT is relatively low-cost and can be implemented as
a portable device [22], [26]. Similar to the conventional
use of MWT for biomedical diagnostics, MWT exploits
the inherent dielectric property discrepancy occurring in
tissues due to temperature change during thermal treatment.
One such application where MWT is applied in a similar
manner is contrast-enhanced breast tumor imaging [27], [28],
in which it is assumed that the tumor dielectric properties
are modified via an external effect named contrast agent.
Then, the dielectric property discrepancy before and after
the injection of the contrast agent is reconstructed through
differential imaging. Although the contrast enhancement
successfully applied to reconstruction of tumor location and
the shape, the methods are still unable to provide quantitative
imaging with accurate dielectric profile of the target medium.
The MWT is also applied to monitor the microwave ablation
(MWA) applications. Different from MH, in MWA, the
tissue is heated to larger temperatures where the dielectric
property variation is also large. Another difference from MH
is MWA performs invasive and local heating. Therefore,
focused MWT is often used for thermal monitoring during
MWA. The proposed MWT studies either fail to reconstruct
the accurate dielectric values of the target tissues [22]
or do not address small variations in temperature [20].
In another study [2], experimental results with a simple
breast phantom are presented where the feasibility of thermal
monitoring approaches is investigated. The study generally
focuses on qualitative estimation of temperature, even though
a few results are also given to correlate temperature and
dielectric properties. Nevertheless, the study does not focus
on inhomogeneous targets; therefore, the issues originating
from highly inhomogeneous structure of a breast are not
addressed. In [21], an updated version of [2], is proposed

where dielectric properties of the target medium were
quantitatively reconstructed using distorted Born iterative
method (DBIM). However, this approach is shown towork for
localized large temperature discrepancies similar to thermal
monitoring of MWA. Instead, we also focus on temperature
variations, which are very small and distributed over the
imaging domain. Additionally, the method in [21] requires
solution of direct scattering problem for each iteration step
in the reconstruction process. To overcome this limitation,
the study utilized cutting-edge GPUs for parallel computation
but the approach increases the cost of the monitoring system.
Contrary to this, our BIM based algorithm does not need to
solve direct scattering problem during the iterative process,
which highly decreases the computational cost.

Considering the previously reported studies and the
requirements of the thermal monitoring for MH, it can be
concluded that the success of the thermal monitoring can
be determined by evaluating three main indicators. First,
the proposed method must provide quantitative information
with sufficient accuracy to ensure the effective treatment
via establishing a feedback loop between the MWT and
MH systems. Next, algorithm must enable real-time thermal
monitoring since a lagged detection leads to safety concerns.
Finally, modelling of the temperature variations must be
compatible with the target temperatures in MH applications.
Since the temperature change is rather smaller in MH, the
corresponding dielectric property change is also expected to
be small. Therefore, there is a need to develop algorithms
and measurement setup sensitive to the small dielectric
property changes. To enable sensitive MWT during imaging
of inhomogeneous medium such as biological tissue, usually
a matching medium is utilized. The matching medium
is known to improve the imaging sensitivity. Previously
reported studies used different mediums including non-
conductive ones; however, the reported ones are not suitable
for MH monitoring due to high sensitivity requirements
[29], [30], [31]. Therefore, to meet the thermal monitoring
requirements during MH, there is a need to investigate
the matching medium properties in order to increase the
sensitivity of the MWT system.

This paper presents an approach based on Born iterative
method (BIM) for monitoring temperature variations and
its feasibility in breast cancer hypertermia treatment. Two
dimensional (2-D) analysis with TMz polarization is applied
to realistic numerical breast phantoms utilizing temperature-
dependent dielectric properties. Feasibility of the method is
also shown by calibrated scattered field data from a 3-D
simulation software and a simple measurement setup. The
contributions of this paper are as follows:

• A model representing the relationship between the
temperature and dielectric properties of biological
tissue is proposed for hyperthermia applications. This
enables us to construct a certain relation between
temperature and dielectric properties of the tissues over
the highly inhomogeneous imaging domain. Therefore,
the proposed method can also detect simultaneous

VOLUME 11, 2023 38681



H. Onal et al.: BIM-Based Algorithm for Quantitative Monitoring of Temperature Distribution

temperature changes in different regions of the imaging
domain.

• The equations are modified to produce maps of tem-
perature distributions, and we have experienced that
this approach improves the results in comparison to the
external mapping of dielectric properties to tempera-
ture. This is because the temperature dependencies of
dielectric constant and effective conductivity are directly
inserted into the inversion equations.

• The issues originating from tiny variations in dielectric
properties due to temperature are addressed. The analy-
sis reveals the importance of matching medium for such
a problem. Based on this, an approach for matching
medium selection specifically for hyperthermia moni-
toring applications is also presented.

The paper is organized as follows. In Section II-A,
frequency and temperature dependencies of some tissues
presented in literature are given and a modelling approach
for temperature effect on breast tissues is proposed. The
mathematical formulations for the direct and inverse scat-
tering methods are given in Section II-B. A method for the
selection of a matching medium is given in Section II-C. The
results obtained from 2-D data are given in Section III-A,
and the results for the data, which are calibrated from the
3-D simulation software and the measurement setup, are
given in Section III-B and Section III-C, respectively. The
paper is ended with conclusion in Section IV. Note that e−jωt

time dependency is used throughout the paper.

II. METHOD
A. MODELLING OF THE IMAGING DOMAIN AND
THERMAL VARIATIONS
1) BREAST MODEL
In this work, realistic breast phantoms presented in [32]
and [33] by University of Wisconsin Cross-Disciplinary
Electromagnetics Laboratory are used. The main disribution
used in this study is the 96th vertical cross section from
a heterogeneously dense phantom with Breast ID: 062204.
Another distribution is 159th vertical cross section from a
scattered fibroglandular phantom with Breast ID: 012204.
Dielectric constant and effective conductivity distributions
for these cross sections are given in Fig. 1.
As it is seen from the Fig. 1, the selected cross sections

serve different properties in terms of density of the glandular
tissues. This is important to present a more comprehensive
computational study because it can be considered that each
distribution belongs to a different patient having different
breast properties. All models have 1.5 mm resolution and
same resolution is used during direct scattering simulation
that are performed for data acquisition. However, during the
inversion procedure, 2 mm resolution is used in order to avoid
inverse crime case.

2) BREAST TUMOR
Tumor is modelled as a homogeneous circle with a given
radius ranging from 0.5 cm to 1 cm for all simulations. These

FIGURE 1. Dielectric constant (left column) and effective conductivity
(right column) distributions of 2-D cross sections from the selected breast
phantoms at 1 GHz: (a)-(b) ID: 062204, (c)-(d) ID: 012204.

FIGURE 2. Dielectric property variation of breast tumor with respect to
frequency between 0.5-1.5 GHz. (a) Dielectric constant, (b) effective
conductivity.

values can be seen as suitable dimensions to represent breast
tumors [34].

The dielectric constant and effective conductivity varia-
tions with respect to frequency for breast tumor are tabulated
in the literature [33], [35]. Both studies provide Cole-Cole
parameters which models the frequency dispersive dielectric
properties when inserted to the Cole-Cole equation [36]. For
this work, model given in [35] is used, and we note that both
studies provide similar results. The data presented in [35] are
given in Fig. 2.

3) TEMPERATURE DEPENDENCY OF TISSUES
It is known that dielectric properties of tissues depend on
temperature. However, to the best of the authors’ knowledge,
there is no study providing a model for temperature-
dependent breast tissue dielectric properties due to the
challenges associated with performing experiments on real
breast tissues. Nonetheless, there are studies reporting the
temperature-dependent dielectric properties of animal tissues
such as bovine and porcine [37], [38]. Since tissues can
be classified based on the water content, the animal tissue
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FIGURE 3. Dielectric property variation of some animal tissues with
respect to temperature at specific frequencies. (a)-(b) Liver presented
in [38]. (c)-(d) Liver presented in [37]. (e)-(f) Fat represented in [37].

models are used in this work [37]. In [38], bovine and porcine
liver tissues are investigated and Cole-Cole parameters are
given as polynomials of temperature. A similar study is
presented in [37], Cole-Cole parameters as polynomials with
temperature as a variable also given for liver, muscle, fat, and
blood tissues of porcine. Among these models, we focused
on the data given for liver and fat tissues. Both the liver tissue
and tumor tissues are categorized under high water content
tissues. Similarly, fat and breast fat are categorized under low
water content tissues. Thus, the dielectric properties of these
tissues are similar. Therefore, temperature-dependent data on
porcine fat tissue given in [37] is considered for breast fat.
Temperature-dependent dielectric properties of liver and fat
given in [38] and [37] are shown in Fig. 3.
On the other hand, it must be noted that the realistic

breast models used in this work have a very large variety of
the dielectric constant and effective conductivity. Therefore,
it is not possible to match these values with data given the
references directly. For the sake of simplicity, a common
approach for temperature dependency of all cells in breast
model has been accepted for this study. Firstly, if variations
in Fig. 3 are considered, it can be said that dielectric
properties are almost linearly correlated with the temperature
for all type of tissues in relevant frequencies. If these

relationships are accepted as linear, dielectric constant
and effective conductivity changes per temperature can be
computed. If Fig. 3(a)-(b) is considered, total percentage
changes from 37◦C to 45◦C at 0.5, 1, and 1.5 GHz can
be computed as −1.997%, −1.975%, −1.951%. Also for
conductivity variation, percentage values can be computed
as +13.408%, +12.860%, +12.256%. If Fig. 3(c)-(d) is
considered, the variations can be computed as −0.867%,
−1.073%, −1.219% for dielectric constant, and +10.669%,
+10.199%, +9.689% for effective conductivity. Lastly,
if Fig. 3(e)-(f) is considered, the variations can be computed
as−1.264%,−1.453%,−1.590% for dielectric constant, and
+16.312%,+15.391%,+14.843% for effective conductivity.
Based on these observations, it is reasonable to choose
approximate coefficients associating dielectric properties
with temperature. These coefficients are selected as -2%
for dielectric constant and +10% for effective conductivity.
This means we assume that -0.25% change on dielectric
constant and +1.25% change on effective conductivity per
1◦C increase on the temperature. Thus, the temperature-
dependent dielectric constant and conductivity of the breast
tissues are given as follows.

ϵr (r,T ) = ϵr (r, 37◦) ×

(
1 −

T − 37◦

8◦
×

2
100

)
(1)

σ (r,T ) = σ (r, 37◦) ×

(
1 +

T − 37◦

8◦
×

10
100

)
(2)

4) GENERATION OF A HEATING SCENARIO
The approach relating temperature and dielectric properties
has been defined in previous section. Based on this way,
heating scenarios are generated. As stated before, geometry
of the tumor is circle, and it is replaced on a specific location
for a specific model. Geometry of heated regions on the
breast are also selected as circles. To prevent abrupt heat
jumps on boundary of heating regions, heating effects on the
selected regions are modelled with 3 cylindrical layers such
that when temperature increases on inner layer the amount
of T ◦C, the temperature rise on the second (intermediate)
layer is 0.75T ◦C and third (outer) layer is 0.5T ◦C. It is
important to note that the heating studies in the literature
demonstrate the plausibility of our temperature change
model [8], [39], [40].

An example heating scenario where temperature raises
from 37◦C up to 45◦C on 062204 model is given in Fig. 4.
First, a hotspot location is selected on a glandular dense
region where dielectric properties are higher than fatty tissue
regions. Another high temperature location is assumed to
be the tumor. Then, temperature map for the heated case
is obtained as in Fig. 4(b). In this figure, 45◦C indicates
the top temperature value on the heated regions and there
is a gradual decrease in temperature due to the layered
modelling. For this specific figure, the temperature level
for the inner layer is 45◦C and corresponding dielectric
constant and effective conductivity changes are -2% and
+10%, respectively. For the intermediate layer dielectric
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FIGURE 4. (a) Dielectric constant distribution of 062204 model with
tumor inclusion. (b) Temperature distribution in an example heated
scenario (◦C). Corresponding change in value of (c) dielectric constant
and (d) effective conductivity due to the variation of temperature from
37◦C up to 45◦C.

FIGURE 5. General configuration of 2-D EM scattering problem. The cross
shaped circles show transmitter/receiver locations.

constant and effective conductivity changes are (−2%) ×

(0.75) = −1.5% and (+10%) × (0.75) = +7.5%,
respectively. Finally, for the third layer dielectric constant and
effective conductivity changes are (−2%)×(0.5) = −1% and
(+10%)× (0.5) = +5%, respectively. The map of variations
in the values of dielectric constant and effective conductivity
are given in Fig. 4(c) and Fig. 4(d), respectively. Same rates
are valid for radius of layers. That is, for a 1 cm tumor,
inner layer comprises circular region with a radius of (1) ×

(0.5) = 0.5 cm, intermediate layer comprises intermediate
region between 0.5 cm and (1)× (0.75) = 0.75 cm, and outer
layer comprises the region between 0.75 cm and 1 cm.

B. MATHEMATICAL FORMULATION
1) DIRECT SCATTERING SIMULATIONS
In order to simulate the measurement data, a commonly used
numerical technique named as Method of Moments (MoM)
is used. MoM is implemented using a well-known method

based on the pulse basis functions described in [41]. The
MoM reduces the integral equation to a matrix equation.
Then, total field on the each cell in the computation domain
can be determined by solving this system of equations.
General configuration for 2-D electromagnetic scattering
problem can be seen in Fig. 5. In this figure, S denotes
discrete points on a circle where transmitter and receiver
antennas have been settled, and cross shaped circles indicate
the antennas. D is computation domain containing breast
interior. Then, following equation indicating that total field
is equal to sum of incident and scattered fields is satisfied
every point in computation domain D [42].

E(r, r ′
; ω) = Ei(r, r ′

; ω)

+ k20 (ω)
∫
D
G(r ′′, r; ω)ξ (r; ω)E(r, r ′

; ω)dr,

r ′′
∈ D (3)

Discretization of (3) leads to the N × N linear system of
equations where N denotes number of cells in computation
domain, and solution of this equation gives the total field E
on every point in the computation domain D. Once the total
field is computed, scattered field can be easily determined by
the following equation.

Es(r ′′, r ′
; ω) = k20 (ω)

∫
D
G(r ′′, r; ω)ξ (r; ω)E(r, r ′

; ω)dr,

r ′′
∈ S (4)

In these equations, r ∈ RN denotes the source points
indicating the locations of induced current sources on domain
D. The vector r ′

∈ RT denotes locations of transmitters,
in which T denotes number of transmitters. And, r ′′ can
be called as observation points, which denotes the points in
domain D in (3), i.e., r ′′

∈ RN , and receiver locations in (4),
i.e., r ′′

∈ RR, where R denotes number of receivers.
These two main equations (3) and (4) given above can be

written in a compact form as shown below.

E = Ei + k20GD (Eξ) (5)

Es = k20GS (Eξ) (6)

Here, E is a N × T matrix carrying the total field values
on every cell caused by each transmitter. Ei is also a N × T
matrix representing incident field values on every cell. Es is
the scattered field matrix with R×T dimension.G is Green’s
function given by G(r ′′, r; ω) = (i/4)H (1)

0 (kb|r ′′
− r|) where

kb(ω) =
√

ω2ϵrbϵ0µ0 + iωµ0σb is wavenumber in matching
medium. In (5), the Green’s function GD relates the source
cells and observation cells in computation domain; thus, it is
a N × N matrix. In (6), GS relates the receivers in domain S
and the source cells in domain D, and it is a R × N matrix.
k0 is the wavenumber of free-space given by k0(ω) = ω/c
where c is speed of light. Note that all of these quantities
are frequency dependent; therefore, they have also one more
index F which shows the frequency dependency, but it is not
written here for simplicity. ξ is aN×1 contrast vector defined
as ξ (r) = ϵcr (r; ω)− ϵcrb (ω) where ϵcr and ϵcrb denote complex
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dielectric constant of cells in domain D and in matching
medium, respectively. Complex dielectric constant is given
as ϵcr = ϵr + iσ/(ωϵ0). Here, ϵr and σ denote dielectric
constant and effective conductivity, respectively. Throughout
this paper, dielectric properties of a material or tissue refer
these two quantities.

In this study, there are 16 antennas [30] placed on a circle
with a radius of 7.5 cm, and they are modelled as line
sources. While one antenna transmits, others are considered
as receivers. This means R = T = 16; therefore, obtained
scattered field data are 16 × 16 matrix. During this work,
multi-frequency data are used, and number of frequency
points is selected as F = 11 between 0.5 and 1.5 GHz
with 100 MHz resolution. We have observed that higher
frequencies decrease the accuracy of the results due to lower
penetration of EM waves into breast as also reported in [30],
and frequency resolution does not have remarkable effect on
the accuracy.

2) INVERSION VIA THE PROPOSED METHOD
After obtaining the scattered field through the solution of
direct scattering problem, these data are used to reconstruct
the temperature maps on the investigation domain via solving
the inverse scattering problem. This problem is ill-posed [43],
similar to other medical imaging problems, and the approach
used to solve the problem at hand is explained in the
remainder of this section.

Before the inversion procedure, it is assumed that a
dielectric property distribution was obtained through MRI.
This is generally common assumption in studies about
quantitative estimation of temperature on inhomogeneous
scatterers [21]. Besides, it is not a strict assumption if it
is remembered that the breast models used in this study
are also derived from MRI. The reference distribution is
patient specific, and allows us to compute a reference
total field distribution using the direct solver. Based on
these assumptions, kernel of the linearized version of the
scattering equation is constructed with Green’s function of
the background and total field of the reference distribution of
patient’s breast. This linearization can be considered as Born
approximation [44] which is carried out with a reference total
field distribution instead of incident field. To write the system
in standard form, the matrices are concatenated as [45],

A1+(m−1)R:mR,:,f = k02f Gs:,:,f ⊙ Eref
:,m,f

T
(7)

b1+(m−1)R:mR,f = 1Es:,m,f (8)

where m ∈ {1, 2, 3, . . . , 16} indicates transmitters and
receivers. 1Es = Ehots − Erefs represents the difference
between measured scattered field from heated breast and
the breast at the normal temperature, respectively. And, Eref

denotes the total field obtained via the direct scattering
solution of reference distribution ξ ref . Subscript f indicates
frequency dependent nature of these elements. In addition,
⊙ symbol denotes element-wise multiplication where each
row of Gs matrix are multiplied by mth column of Eref

matrix. After these operations, A becomes RT × N × F
matrix, and b becomes RT × F matrix. Multi-frequency
reconstruction is performed in this work because it enhances
the accuracy of the solution [46]. Also, the dielectric
properties of biological tissues are inherently frequency
dispersive; thus, it is also important to arrange the equation
such that dispersive effects are also considered. This approach
mitigates the complications arising from the ill-posed nature
of the problem [30], [47]. Therefore, it is expected to increase
accuracy of the solution. New form of the equation is given
below.



Re{A1} −
Im{A1}
ω1ϵ0

Im{A1}
Re{A1}
ω1ϵ0

Re{A2} −
Im{A2}
ω2ϵ0

Im{A2}
Re{A2}
ω2ϵ0

...
...

Re{AF } −
Im{AF }

ωF ϵ0

Im{AF }
Re{AF }

ωF ϵ0



δϵr

δσ

 ≈



Re{δb1}

Im{δb1}

Re{δb2}

Im{δb2}
...

Re{δbF }

Im{δbF }


(9)

And, in compact form

[
B
]
2RTF×2N

[
δρ

]
2N×1 ≈

[
δc

]
2RTF×1 . (10)

In equation (10), δρ = [δϵr , δσ ] is a 2N × 1 vector. Since
the relations between temperature and dielectric properties
are known, this equation can be rearranged to give the
temperature difference. Based on (1) and (2), tissue dielectric
property and temperature relations can be expressed as
follows:

δT (r) = δTϵr (r) = −

(
δϵr (r)

ϵr (r, ω)
100

)
8
2

(11)

δT (r) = δTσ (r) =

(
δσ (r)

σ (r, ω)
100

)
8
10

(12)

Then, vectors combining dielectric properties and tempera-
ture variation can be written as follows:

κ
ϵr
f (r) =

δϵr (r)
δTϵr (r)

= −0.25 × 10−2ϵr (r, ω) (13)

κσ
f (r) =

δσ (r)
δTσ (r)

= 1.25 × 10−2σ (r, ω) (14)

Notice that, δT ϵr = δTσ = δT . In these equations,
all the quantities are vectors with length of N . And, κ

ϵr
f

and κσ
f are coefficient vectors defining the relation between

temperature and dielectric property changes for each cell
in computation domain. Once these expressions are inserted
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to (9), the equation takes the form of (15).

κ
ϵr
1 Re{A1} −

κσ
1

ω1ϵ0
Im{A1}

κ
ϵr
1 Im{A1} +

κσ
1

ω1ϵ0
Re{A1}

κ
ϵr
2 Re{A2} −

κσ
2

ω2ϵ0
Im{A2}

κ
ϵr
2 Im{A2} +

κσ
2

ω2ϵ0
Re{A2}

...

κ
ϵr
F Re{AF } −

κσ
F

ωF ϵ0
Im{AF }

κ
ϵr
F Im{AF } +

κσ
F

ωF ϵ0
Re{AF }



[
δT

]
≈



Re{δb1}

Im{δb1}

Re{δb2}

Im{δb2}
...

Re{δbF }

Im{δbF }


(15)

Equation (15) can be expressed in compact form as follows:[
C

]
2RTF×N

[
δT

]
N×1 ≈

[
δc

]
2RTF×1 (16)

The problem given by (16) is ill-posed; therefore, it is
required to apply regularization to obtain expected results.
We use Tikhonov regularization which is given as fol-
lows [48], [49]:

δT =

N∑
i=1

σi

σ 2
i + α

(uTi · δc)vi (17)

where σi, ui, and vi denote singular values, left singular
vectors, and right singular vectors of matrix C , respectively.
Also, α indicates the regularization parameter. The solution
may highly depend on this parameter [50]; consequently,
selection of this parameter is a crucial task. In this work,
we have used the L-curve method [51] to determine appro-
priate value for regularization parameter. The implementation
given in [52] generally provides stable results, and decreases
required number of iteration significantly in an iterative pro-
cess because it searches optimum value for the regularization
parameter. Another method for selection of regularization
parameter would be the Morozov’s discrepancy principle.
However, this method requires a priori knowledge about the
noise level, and the solution highly depends on the estimation
of the noise level. This is highly undesirable for applications
where the signal and noise level are very close to each other,
as in this study. Therefore, the L-curve method has been
preferred.

Equation (17) gives the temperature difference. Never-
theless, it is generally not possible to obtain an accurate
quantitative result with single solution. Therefore, BIM [53]
which is an iterative algorithm is applied here. In every
iteration step, total temperature difference vector is updated
by solving (16),

1T (n)
= 1T (n−1)

+ δT (n) (18)

where n = 1, 2, 3, . . . ,Nmax . Thus, n indicates iteration
step, and Nmax is the maximum number of iteration. 1T (0)

denotes the total temperature variation vector at the start of
the iteration; therefore, it is a zero vector. Also, δT indicates
constrained temperature difference. The constraint can be
given as,

δT (n)
⪰ 0 (19)

FIGURE 6. Flowchart of the approach presented in this paper.

where ⪰ symbol denotes element-wise inequality. Accord-
ingly, any cell with a decreasing temperature will be avoided
during the heating process. Next, by using equations (13)
and (14), corresponding changes in dielectric properties can
be computed. Then, the change in contrast vector which is
also equal to change in complex dielectric constant can be
determined by the following expression.

δξ f
(n)

= δϵr f
(n)

+ i
δσ f

(n)

ωf ϵ0
(20)

After that, scattered field is updated for every frequency as a
direct multiplication of δξ f as in (21) and (22).

δE (n)
sf = k20f Gsf

(
Ereff δξ f

(n)
)

(21)

E (n)
sf = E (n−1)

sf + δE (n)
sf (22)

Note that Es
(0)
f is the scattered field matrix at the start of the

process; therefore, it indicates measured scattered field from
patient breast at normal temperature level or namely cold
case. After the update of the scattered field, the cost function
is computed with the following equation,

e(n)(%) =

∥Ehotsf − E (n)
sf ∥

2

∥Ehotsf ∥
2

× 100 (23)
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where ∥.∥2 symbol denotes Euclidean norm. The iteration
process is terminated when the residual error starts to increase
or maximum number of iterations is reached; otherwise, the
iterative process continues with updated differential scattered
field given with Ehotsf − E (n)

sf . Once the iterative process
is finalized, the temperature distribution for a time t is
determined by,

Tt (r) = Tref (r) + 1T (r) (24)

where Tref denotes the temperature distribution at reference
or normal temperature and is assigned the temperature value
of 37◦C.
The system repeats the process for scattered field measure-

ment at every time t to determine the temperature distribution.
The simplicity and speed of the approach stem from its ability
to omit the direct scattering computations since each element,
except from the scattered field measured at time t, are taken
from reference distribution in which elements are computed
or measured before the treatment process. The flowchart
summarizing the steps stated in this section is given in Fig. 6.

C. MATCHING MEDIUM SELECTION
It is vital to determine proper matching medium in order to
increase penetration of the EM waves into the breast interior.
In problems similar to hyperthermia monitoring, selection of
matching medium is of high importance due to the limited
change in dielectric properties with temperature. During this
work, we observed that if difference in scattered fields from
normal and heated cases is under a certain level, obtained
solution using this difference vector directly diverges or does
not give any meaningful result. This is potentially due to the
below noise level signal of the differential scattered field that
corrupts the solution [50], [54]. The low level differential
signal is originating likely from poor penetration of the EM
waves into the breast. Therefore, we proposed an approach
based on sweep analysis focusing on differential signal level
using the function given in (25).

Edifs (%) =
∥Ehots − Erefs ∥2

∥Erefs ∥2

× 100 (25)

Here, Erefs and Ehots are scattered field from breast at the
normal temperature and the breast after heating process,
respectively. A sample heating scenario consisting of realistic
breast phantom with tumor and one hotspot region is used for
generating Ehots matrices. Based on this scenario, Ehots quan-
tities for different dielectric constant-effective conductivity
pairs of matching medium are computed by direct scattering
solution. Frequency of operation is selected as 1 GHz which
is the central frequency for the multi-frequency solutions
performed in this paper. Ten values are selected from 5 to
50 with an interval of 5 for dielectric constant, and six values
are selected from 0 to 1 with an interval of 0.2 for effective
conductivity. For these values of the matching medium,
60 direct scattering solutions are performed at 1 GHz. Next,
the difference values are computedwith (25), and these values

FIGURE 7. Computed difference values by (25) at 1 GHz for each
dielectric constant-effective conductivity pair for models with ID number
(a) 062204 (b) 012204.

are plotted as 2-D colored images for the distributions used
in this paper. Fig. 7 shows said distributions for the selected
two breast types.

In Fig. 7, while the blue regions indicate that the dielectric
property pair for matching medium giving poor results, the
dielectric property pairs corresponding to the red colored
regions indicate a better penetration. In [29] and [30],
2.6 value for dielectric constant of matching medium is used.
However, when used in this work this value does not give a
physically meaningful result. Also, this is consistent with the
obtained results in Fig. 7. In addition, a method to determine
proper matching medium is presented in [31]. Since a lossless
medium is assumed in this work, specified dielectric property
values does not provide accurate results. As it can be seen
from Fig. 7, non-conductive matching mediums decrease the
accuracy and correspond to the blue regions. We should note
that this conclusion is also consistent with our experiences.

Based on Fig. 7, we selected matching media as
ϵrb = 20 and σb = 0.6 for the model 062204, and ϵrb =

10 and σb = 0.4 for the model 012204. Note that it can
not be said that these values are optimal because proposed
algorithm depends on different factors such as regularization
parameter andmaximum number of iteration. However, it can
be inferred that these values are one of the best values among
all possible choices.

The proposed approach for matching medium selection in
this paper can be considered as costly from computational
aspect since direct scattering simulations must be performed
for each dielectric constant-conductivity pair. Particularly
for 3-D simulations, computational cost will be larger
than 2-D case. However, as stated before, changes on
dielectric properties due to temperature are limited. Thus,
penetration of the EM wave into breast interior is of vital
importance to obtain accurate results. This means that match-
ing medium selection deserves a special attention. From
another perspective, simulations performed for matching
medium selection process are realized before the treatment
application; therefore, it has not any effect on computational
cost of the imaging algorithm.

III. RESULTS
A. 2-D BREAST PHANTOM
The iterative process in the proposed algorithm has two
termination criteria. Firstly, when value of the cost function
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FIGURE 8. Different heating scenarios and reconstruction results on model with ID: 062204 for noise free case. (a),(e),(i),(m) Temperature map on
the breast for different heating scenarios in which top temperature is 38◦C. Corresponding changes on (b),(f),(j),(n) dielectric constant and
(c),(g),(k),(o) effective conductivity due to the temperature variation from 37◦C to 38◦C. (d),(h),(l),(p) Reconstruction results (◦C) obtained by the
algorithm. Note that the black circles enclose the regions in where temperature was changed.

starts to increase, the algorithm stops the iteration, and the
temperature estimation in the previous step is accepted as
final estimation of the algorithm. Second criteria is the
maximum number of iterations, which is denoted by Nmax
and fixed to 20 for all the scenarios presented in this paper.
However, the algorithm converges in a few iteration steps
for almost all investigated scenarios thanks to the optimum
parameter selection performed via the L-curve method.

As a figure of merit for the imaging results, a well-known
error function given below with (26) is used.

eT (%) =
∥T exact − T t∥2

∥T exact∥2
× 100 (26)

Here, T exact ,T t ∈ RN denote exact and reconstructed
temperature distributions, respectively. In addition, it is also

important to give another figure of merit based on the
maximum values of estimated temperature on the heated
regions. Because maximum values of estimated temperature
are indicators of danger on healthy tissue or proper heating on
the tumor. Therefore, we define another error function indi-
cating the relative difference between exact and reconstructed
temperature maxima on all heated regions as follows:

eTmax (%) =
∥T exactmax − T tmax∥2

∥T exactmax∥2
× 100 (27)

in which T exactmax ,T tmax ∈ Rk are the vectors of exact and
estimated maximum temperatures, where k denotes the total
number of heated regions (the tumor and hotspot/s).
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TABLE 1. Reconstruction errors for noise-free cases given in Fig. 8.

First results are obtained for the heterogeneously dense
model with Breast ID: 062204 in noise-free case. A circular
tumor with a radius of 1 cm is added to the location
(x, y) = (2, 0) cm. Reconstruction results for different
heating scenarios are given in Fig. 8. In the first case
given in Fig. 8(a)-(d), there is one hotspot region with a
radius of rh = 1 cm located at (x, y) = (−1, −1) cm.
In second case which is given in Fig. 8(e)-(h), there are
two hotspots on glandular dense tissue regions located at
(x, y) = (−1, −1) cm and (x, y) = (1, −2) cm where radii
of both regions are rh = 1 cm. In the third case given
in Fig. 8(i)-(l), a hotspot with same size is replaced on a
highly fatty region located at (x, y) = (−1, 2) cm. Finally,
in the fourth case given in Fig. 8(m)-(p), there is also one
hotspot but its radius is reduced to rh = 0.5 cm, and it is
located at (x, y) = (−1, −1) cm. Based on the given results,
it can be inferred that temperature is poorly estimated for
heated regions emerged on fatty tissues because temperature
variation model used in this paper is based on percentage.
That means changes due to temperature on dielectric property
of tissue regions with low dielectric profile such as fat tissues
may be very low. This can be especially seen from the figures
in second and third columns in Fig. 8. As a result, the
algorithm does not ‘see’ effect of these regions since their
contribution on the scattered field data are very low. It is
reasonable to think that the inversion method filters this small
changes. Especially, there are greater fatty regions for the
second and third cases; therefore, calculated reconstruction
errors (eT (%)) for these cases are higher than others as it is
seen from Table 1.
As second example, noisy cases are also investigated.

Firstly, in a practical scenario, the digital phantom derived
via MRI should have an error. Thus, we add uniform error to
the reference electrical property distribution:

ξ̃ f = (1 + rvf )ξ f . (28)

Here, rvf ∈ RN is error coefficient vector in percentage in
which upper bound is denoted by ae, and it is given by

rvf =
−ae + 2aera

100
(29)

where ra ∈ RN is a vector containing random numbers
between 0 and 1. Secondly, measured scattered fields from
normal and heated breast are also assumed to be noisy. These
noises are taken as white Gaussian noise (AWGN), and same
dB value is used for both the scattered field matrices.

First examination with noise is based on the heating
scenario given in Fig. 8(a)-(d). Reconstructions at 38◦C for

FIGURE 9. Reconstruction errors calculated by (a) (26) and (b) (27) for
different ae and SNR values.

different SNR-ae pairs are performed, and error functions
given with (26) and (27) are calculated. In order to obtain
more reliable results, this process is repeated 10 times, and
mean value of these 10 results is used as final result. The
reconstruction errors are given in Fig. 9. Firstly, a safety zone
can be determined from these error distributions. We have
observed that good estimations are generally obtained for
eT < 0.3% and eTmax < 0.5%. Then, 35-40 dB SNR
value can be considered as a lower bound for a good
reconstruction result for 1◦C resolution with the model ID:
062204. Therefore, we can define the safety zone as SNR
≥ 40 dB. Secondly, in the safety zone, both errors are
almost independent from the uniform error on the reference
distribution (ae). (It should be noted that we do not focus
on the region under the safety zone because these high error
values are originated from divergent solutions, which do
not give any physically meaningful estimation.) The main
reason for this situation is that the algorithm does not use any
computed scattered field from solution of the noisy dielectric
property distribution from MRI (̃ξ f ). (The breast is assumed
to be measured at both normal and hot states. Thus, there
is no need to evaluate the scattered field for normal state.)
Dielectric property distribution fromMRI (̃ξ f ) is only used in
computation of the reference total field, which can be denoted
by Ẽreff in noisy case.

Reconstruction results at different temperatures and dif-
ferent SNR values are also given in Fig. 10(a)-(d) for
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FIGURE 10. Reconstructions (◦C) in noisy case at 40◦C, 38◦C, 37.5◦C, and 37.1◦C (from left to right), respectively. (a)-(d) The model with ID:
062204 for (a) 30 dB, (b) 40 dB, (c) 50 dB, and (d) 60 dB white Gaussian noise. (e)-(h) The model with ID: 012204 for (e) 40 dB, (f) 50 dB, (g) 60 dB,
and (h) 70 dB white Gaussian noise.

FIGURE 11. Noise-free reconstructions obtained by DBIM for the heating scenario given in Fig. 8(a)-(d). (a) The reconstructed dielectric constant
(δϵr ) and (b) the estimated temperature distribution (◦C) mapped from (a). (c) The reconstructed effective conductivity (δσ ) and (d) the estimated
temperature distribution (◦C) mapped from (c).

062204 model, and in Fig. 10(e)-(h) for 012204 model.
We selected four different temperature values as 40◦C,
38◦C, 37.5◦C, and 37.1◦C; thus, these values indicate the
resolutions 3◦C, 1◦C, 0.5◦C, and 0.1◦C since reference
distribution is assumed at 37◦C. In here, we search minimum
SNR value for good reconstructions at each resolution.
(E.g., Fig. 10-(a), for 3◦C temperature difference, good
reconstructions can be obtained with minimum SNR of
30 dB; thus, the result for 30 dB is given.) The upper bound
of distribution error is fixed at ae = 10, which means noisy
values of each cell can change between -10% and +10%
of noiseless distribution. From the Fig. 10, it can be seen
that tumor and hotspot regions are distinguishable, and the
results are comparable with noise-free case. In addition, the
012204 model is more sensitive to noise. This is probably
originated from differences in size of the cross sections and
glandular/fat ratio between the models.

We mentioned that rearranging the equations to directly
obtain the temperature difference improves the results. To see

this, the transition from dielectric property estimation to
temperature estimation, which is a general approach in the
literature, is also considered. The DBIM is utilized for the
estimation of the real and imaginary parts of the contrast
difference vector (δξ ), and the obtained solutions are mapped
to temperature by the temperature variation model assumed
during the study. The results are given in the Fig. 11. It is
worth noting that the inversion is performed to obtain the
real and imaginary parts of the δξ . We have treated the
imaginary part as unknown instead of effective conductivity
because small values of effective conductivity can cause
large numerical errors. (However, the distribution given in
Fig. 11(c) belongs to effective conductivity.) Firstly, it can
be said that the dielectric properties, especially the effective
conductivity, are estimated with reasonably good accuracy.
On the other hand, the accuracy of the results for temperature
distributions is very low, and this is mainly due to the
overestimated temperatures, especially on the fatty tissues.
Since our temperature model is based on a relative percentage
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FIGURE 12. Variation of some parameters of the dipole antenna used in
the simulations. (a) S11 and S21. (b) Radiation efficiency.

change, even if the dielectric property change values are
small, these values can be mapped to large values in terms
of temperature due to the low dielectric properties of the fatty
tissues. Therefore, there are many overestimated temperature
values in Fig. 11(b) and Fig. 11(d). The reconstruction errors
are eT = 1.0171% and eTmax = 9.1012% for Fig. 11(b) and
eT = 1.1635% and eTmax = 0.7571% for Fig. 11(d). If these
values are compared with the first row of Table 1, it can be
said that the proposed approach is superior to the common
approach in the literature, in which temperature estimation
is carried out by external mapping of dielectric properties to
temperature. Another disadvantage of the external mapping
is ambiguity about which temperature distribution will be
accepted, i.e., Fig. 11(b) or Fig. 11(d). The given results
show that the temperature distribution mapped from effective
conductivity is more accurate, especially when only heated
regions are considered; however, it is questionable whether
this can be generalized.

We did not perform detailed exploration for speed of the
algorithm. However, as it is stated before, the BIM-based
algorithm does not need to solve direct scattering problem
during the inversion process, which is main advantage of the
algorithm in terms of computation time. To obtain the results
given in the paper, a laptop with Intel Core i7-11800H @
2.30 GHz processor has been used. The algorithm converges
to minimum error in a few iteration step. Mean values of
the computation time for temperature estimation have been
approximately calculated as 0.191 s and 0.273 s for the
models with ID: 062204 and ID: 012204, respectively. These
values show that the proposed method can be considered as a
candidate for real-time monitoring applications.

B. 3-D BREAST PHANTOM
The proposed algorithm is also applied to the scattered
field data calibrated from S-parameters computed via CST

FIGURE 13. The breast model imported to the CST program. (a) Front view
and the antennas. (b) Top view of the cross-section at z = 20 mm.

Studio software. For this purpose, the breast model with ID:
062204, is imported as a voxel data to the CST. Number of
different material can not be greater than 255 in the CST
program; therefore, a rounding process is applied to the
actual breast model to reduce the number of materials. This
is simply rounding the real and imaginary parts of complex
relative permittivity value of each cell to nearest integer value.
Matching media is selected with the same value in 2-D case,
i.e., ϵr = 20 and σ = 0.6. The antennas used in the
simulations are identical dipole antennas having resonance
frequency around 1 GHz. As an example, S11 and S21
variations are given in Fig. 12(a). From this variations, it can
not be said that the antennas have a perfect matching at these
frequencies. Radiation efficiency plot given in Fig. 12(b)
shows that the very low S11 values are originated from the
high losses due to highly conductive matching medium.
Therefore, a significant part of the power is converted into
heat, and the radiation efficiency is only around 13%. This
is main disadvantage of high loss matching mediums from
practical aspect. The analysis frequencies are same with
2-D case, i.e., from 500 MHz to 1500 MHz with 100 MHz
step size. Length, radius and the gap in excitation port
are 57.65 mm, 1 mm, and 3.352 mm for the antennas,
respectively. The centers of the antennas are on plane of
z = 20 mm, which is also the cross-section used for
2-D analysis performed for themodel 062204 in Section III-A.
The imported model and the antennas can be seen in
Fig. 13.
Four different S-parameter data are calculated via time

domain simulations in the CST and exported as touchstone
files. First one is when there is no scatterer in the investigation
region, and it is denoted as Sempty. Another one is from a
long perfectly conducting circular cylinder with a radius of
5 cm, which is denoted by Smetal . Third and fourth one is
denoted by Sref and Shot indicating S-parameter data obtained
at normal temperature and the temperature after the heating
process, respectively. Then, scattered S-parameters for each
measurement are calculated as follows:

Sscattmetal = Smetal − Sempty (30)

Sscattref = Sref − Sempty (31)

Sscatthot = Shot − Sempty (32)
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FIGURE 14. Reconstruction results (◦C) obtained from the calibrated
scattered field data from CST program. (a) Maximum temperature is 38◦C
and SNR is 85 dB. (b) Maximum temperature is 45◦C and SNR is 65 dB.

Then, calibrated differential scattered electric field between
heated and normal breasts can be calculated as,

Escattdif =
Sscatthot − Sscattref

Sscattmetal
Escattmetal (33)

where Escattmetal indicates the scattered field from 2-D perfectly
conducting cylinder with a radius of 5 cm, when it is
illuminated with infinitely long current sources positioned
on a circle, whose center is at origin and radius is 7.5 cm.
Note that all of these quantities are frequency dependent, but
frequency index is omitted to simplify the notation. At the end
of this operation, Escattdif has dimension of 16×16×11, similar
to the scattered electric fields used in 2-D case examples.

We consider the same case given in Fig. 8(a) where there
is one tumor, and one hotspot in the breast interior. (The only
difference from Fig. 8(a) is that the tumor and hotspot is a
sphere with a radius of 1 cm, not a cylinder.) Two different
heating cases are considered in which maximum temperature
value inside the breast are 38◦C and 45◦C. Simulations are
performed for each case, and the calibrated scattered matrices
are processed by the proposed algorithm. The SNR values are
85 dB and 65 dB for 38◦C and 45◦C cases, respectively. (Note
that we do not add any noise on reference distribution for
CST simulations because there are already round-off errors
on the distribution due to the limited number of imported
material to the program.) The obtained results are given
in Fig. 14. The results show that locations of the heated
regions are accurately estimated. However, the estimated
temperature values highly differ from the exact temperature
values. This is possibly due to differences between 2-D and
3-D field computations. 2-D inversion ‘averages’ the 3-D
contrast difference in z-direction. Thus, it is normal to have
underestimated temperature value. Also, we see that the good
results are obtained for higher SNR values than 2-D case. This
is also originated from the same reason, which is discrepancy
between 3-D data and 2-D inversion algorithm. On the other
hand, the ratio of the estimated and the exact temperature
differences for Fig. 14(a) and Fig. 14(b) are 0.35/1 =

0.35 and 2.95/8 ≈ 0.368, respectively. These results are very
close each other; therefore, it can be considered that theremay
be an approximate linear relation between the estimated and
real temperature differences.

FIGURE 15. (a) A photograph and (b) drawing of the top view of the
measurement setup. The antennas are shown with green rectangles and
buried in region I, which is filled with triton. The large beaker encloses
the region II, which is used to mimic breast phantom and filled with
sunflower oil. The thin beaker, which represents the heated tumor,
encloses the region III, which is filled with NaCl solution. The heating
scenario is handled by changing the concentration of NaCl. Distances are
r1 = 11 cm, r2 = 6 cm, and r3 = 0.79 cm.

C. EXPERIMENT RESULTS
Feasibility of the algorithm is also shown by experiments
performed with a measurement setup given in Fig. 15(a).
The measurement setup consists of beakers, which are placed
inside a container. The container is filled with triton, which
is used as a matching medium. A large beaker with a radius
of 6 cm is used to mimic the breast phantom, and it is
filled with sunflower oil. Also, a thin beaker with a radius
of 0.79 cm is used to mimic the breast tumor, and this beaker
is filled with NaCl solution. In the measurement setup, there
are 24 antennas in total; however, we use 16 of them for this
work. The ports of the antennas are on a circle with a radius
of 11 cm, which is radius of the container. The antennas are
identical antipodal Vivaldi antennas. Top view of the setup is
given in Fig. 15(b).

Dielectric properties of sunflower oil and triton are
measured by a commercially available 3.5 mm dielectric
assessment kit from the speag [56] and a network analyzer
(Keysight FieldFox). These variations with respect to fre-
quency can be seen in Fig.16(a)-(d). Dielectric properties
of NaCl solutions with different concentrations are adopted
from [55], and given in Fig. 16(e)-(f). Like the given
temperature variations in Section II-A3, dielectric constant
decreases and effective conductivity increases with increase
on concentration of the solution. Therefore, NaCl solutions
with different concentrations are used to model temperature
variation on the tumor. The thin beaker is filledwith 0.1mol/L
solution to imitate the normal (reference) case, and filled with
0.2 mol/L solution to imitate the heated case. On the other
hand, the coefficient vectors, which are previously denoted as
κ

ϵr
f and κσ

f , must be determined for this model. We calculated
the changes on dielectric constant and effective conductivity
at 1 GHz as ((76.0425−77.4721)/76.0425)×100 = −1.88%
and ((2.14135 − 1.19837)/1.19837) × 100 = +78.6886%,
respectively. We assume that this variations indicate the 8◦C
change; therefore, percentage changes per 1◦C are calculated
as −0.235% and +9.836%. Then, the coefficient vectors for
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FIGURE 16. Dielectric property variations between 0.5-1.5 GHz.
(a) Dielectric constant of triton (measured). (b) Effective conductivity of
triton (measured). (c) Dielectric constant of sunflower oil (measured).
(d) Effective conductivity of sunflower oil (measured). (e) Dielectric
constant of NaCl [55]. (f) Effective conductivity of NaCl [55].

this model are approximately given as

κϵr
exp = −0.235 × 10−2ϵexpr (34)

κσ
exp = 9.836 × 10−2σ exp (35)

where the frequency indices are omitted for simplicity of the
notation. In addition, ϵexpr and σ exp denote dielectric property
distributions at normal (reference) case for the experimental
setup.

Multi-static measurements are collected by the Keysight
M9370A PXI Vector Network Analyzers [57] with input
power of 10 dBm, and the calibrated scattered field data
are obtained via the same approach given in Section III-B.
The measurements are carried out for two different scenario,
in which the thin beaker is either located at (x, y) = (3, 1)
cm or (x, y) = (−1.5, 2.5) cm. The results can be seen
in Fig. 17, and they show that location and the radius of
the heated regions are determined well. On the other hand,
the estimated temperature values are quite far from the true
value, which is 45◦C. However, this is probably due to the
same reason stated in Section III-B. In a 2-D problem, the
scatterers are assumed to be infinitely long cylinders, but
they have finite length in practice even though they have a

FIGURE 17. Reconstruction results (◦C) for the experimental data in
which the temperature on the tumor (the thin beaker), which is enclosed
by the black circle, is 45◦C. The tumor is located at (a) (x, y ) = (3, 1) cm,
and (b) (x, y ) = (−1.5, 2.5) cm.

cylindrical structure. These results can also be compared with
the result given in Fig. 14(b), and it can be deduced that the
underestimation of the temperature value is originated from
the similar reasons in addition to modelling errors.

IV. CONCLUSION
In this paper, a study is presented for quantitative estima-
tion of temperature distribution during breast hyperthermia
treatments. Firstly, a model defining the relation between
temperature and dielectric properties for breast tissues is
given. Based on this model, a BIM-based approach, in which
temperature changes are obtained directly, is presented.
In addition, an approach to determine proper matching
medium in hyperthermia monitoring applications is also
given. Feasibility of the algorithm is also shown via calibrated
data from CST program and a simple measurement setup,
which mimics a breast structure.

The results show that the method provide quantitative
information about temperature distribution, which is our
main focus in this paper. The computation times during the
inversion method show that the algorithm is a candidate
for real-time imaging. The analysis about matching medium
indicates that a highly conductive matching medium may be
necessary to extract information from interior of a realistic
breast structure. However, a conductive matching medium
will decrease the received signal level; therefore, the system
may be very sensitive to noise, which is main issue in a
practical implementation.

Our future work will focus on more realistic scenarios,
where reconstructions are directly carried out with 3-D
scattered field data.
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