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ABSTRACT Singer recognition plays a vital role in music information retrieval systems. Most songs
in the singer recognition system are mixed audios of music and voice. In contrast, there is a lack of
labeled a cappella solo singing data suitable for singer recognition. Text-independent singer recognition
systems successfully encode audio features such as voice pitch, intensity, and timbre to achieve good
performance. Most such systems are trained and evaluated using data from music with accompaniment.
However, due to the influence of background music, the performance of the singer recognition model was
limited. Contrarily, a powerful singer identification system can be trained and evaluated using a cappella
solo singing voice with a clear and broad range of qualities. There needs to be labeled clear singing
data suitable for singer recognition research. To address this issue, we present Vocal92, a multivariate a
cappella solo singing and speech audio dataset spanning around 146.73 hours sourced from volunteers.
Furthermore, we use three models to construct the singer recognition baseline system. In experiments,
the singer recognition model developed by a cappella solo singing data performs well in both single-
mode and cross-modal verification data, significantly improving related works. The dataset is acces-
sible to everyone at https://pan.baidu.com/s/1Pn62DHfal2OOZ_5JqgGBdQ with jnz5 as the validation
code. For non-commercial use, the dataset is available free of charge at the IEEE DataPort (https://ieee-
dataport.org/documents/vocal92-multimodal-audio-dataset-cappella-solo-singing-and-speech).

INDEX TERMS Singer recognition, deep learning, singing voice dataset.

I. INTRODUCTION
Singing is an exclusive sound art produced by a rhythmic
combination of one or more vocal organs [1]. Singing voice
has always been an exciting and abundant area of research.
There is a variety of singing styles and techniques. Dif-
ferent singing styles can produce proper coordination and
control of vocal organs such as the lungs, throat, pharynx,
nose, and mouse [2]. To analyze and study different singing
styles, we need to analyze the generalization process of
singing sincerely. The analysis of singing sounds is challeng-
ing. It enables exploring various areas of study (e.g., song
emotion analysis, lyric recognition, separation of singing
sounds, classification of singing types, singer identification,
and singer tracking in duet songs) only through songs [3].
Singer recognition is one of the leading research areas of the
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singing voice. Speech and singing are different expressive
entities of human beings. Even though the organs involved
in producing sound are the same, their extended frequency
domain information is different. Speech is a natural use of
vocal organs, but singing involves precise control of various
organs. E. A. Zveglic proposed a comprehensive study of the
relationship between speech and singing [1]. The research
shows that singing stretches or lengthens acoustic features,
while speech sacrifices acoustic features. Medeiros et al.
invited three speakers and three singers to give a lecture
and sing on a book of modern Brazilian literature [4]. They
tested the hypothesis that singing is more stable than speech,
particularly pitch and duration. Livingstone et al. observed
that singing exhibits longer duration, higher pitch, and greater
sound intensity than speech [5].

Singer recognition based on speaker recognition requires
comparing two audio samples and evaluating whether the
voices belong to the same person [6]. Most research in singer
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recognition focuses on modeling the features of singers from
hybrid entities of music and voice [7]. However, accompanied
songs only exhibit a limited range of the singer’s possible
dynamic vocal range [8]. As a result, such singer recognition
systems can be less generalized to various singing styles and
pronunciation effects. The voice of the a cappella solo singing
is a speaking style that clearly demonstrates the singer’s mul-
tiple features [9]. There are significant differences between
the spoken language and a cappella solo of the same speaker.
Apart from the perceived differences in pitch, intensity, and
timbre, there are also differences in the physiological for-
mation of sung speech [10], [11]. Different singing styles
and languages further enrich the acoustic differences between
spoken and sung sounds, bringing some challenges to the
speaker recognition system [12]. Due to intentional voice
modulation, singing voice increase intra-speaker variance
and decrease inter-speaker variance, resulting in a broader
acoustic spectrum, which is one of the main challenges in
identifying a singer from a singing voice [13]. In addition,
the presence of background music and choruses in existing
music datasets increases the uncertainty of the task [8]. Thus,
the ability of a singer recognition system to correctly evaluate
whether it belongs to the same person in multiple songs can
be used to assess its robustness.

Althoughmany audio datasets exist, speech-singingmodes
audio datasets, especially those containing a cappella solo
singing, still need to be improved. Therefore, a sizeable
dataset containing a cappella solo singing and speech is
necessary. In this study, we collected a new audio dataset,
Vocal92, to study singer identification from speech and a cap-
pella singing voice. We also explore the influence of taking
singing data into training and testing on the generalization
ability and robustness of the singer recognition model.

The structure of this paper is as follows. First, we compare
Vocal92 with existing datasets, including existing work on
singing sound analysis and application. Then, we record the
collection and collation of Vocal92 and describe the struc-
ture of the dataset in detail. Finally, we construct a singer
recognition baseline system to prove a broader range and
richer feature information of the a cappella solo and achieve
better performance, which also shows the practicability of
this dataset.

II. RELATED WORK
Some early literature classified singing as a speech style and
used speaker clustering algorithms to cluster it [5], [9], [16].
In another paper [14], the author used the singing voice for
speaker recognition. However, cross-modal experiments were
not committed in which models were trained on the speaking
data and tested on the singing voice (and vice versa).

Those works were extended in [15] and [16] to evalu-
ate cross-modal speaker recognition; moreover, the results
of it needed to be more satisfactory. The JukeBox dataset
expanded cross-modal experiments and facilitated speaker
recognition research on singing voice data.

TABLE 1. A list of music datasets compared to Vocal92.

A key reason for the lack of research on singer recogni-
tion is the need for adequate developmental and evaluation
data [17], [18]. Although there have been some singing voice
datasets in the field of singer recognition, they have yet to be
able to evaluate the robust performance of singer recognition
systems across modals.

The Artist20 dataset [19] contains 1413 songs from differ-
ent albums by 20 European and American pop music artists
or groups. The labels of artists/groups refer to associated
musical groups or bands rather than individual singers so the
features may vary considerably.

Vocalset [20] is a dataset of clean singing by nine female
and eleven male professional singers. The dataset consists of
3560 wave files with a total of 10.1 hours of recorded audio
ranging from 1s to 1 minute. Vocalset recorded vowels and
various vocal techniques, such as scales, arpeggios, and long
notes.

The singing voice dataset [21] contains over 70 significant
recordings of Chinese opera performed by 28 professional
and amateur singers. It is mainly opera, with no multilingual
popular music, and the dataset can only be used as a test set
since it is not large enough.

The JukeBox [22] dataset contains 467 hours of 16 kHz
sampled singing audio data downloaded from the Internet
Archive (IA). With a total of 936 different singers, 533 of
whom are male. The singing voice dataset is annotated with
singer, gender, and language labels for developing and eval-
uating speaker recognition methods. However, most of the
singing audio data downloaded from the Internet has back-
ground accompaniment, which affects the accuracy of singer
identification.

In the era of data-driven deep learning technology devel-
opment, the lack of high-quality datasets with a cappella solo
singing data has limited the progress of singer recognition
research and applications [23].
In this paper, we propose a large vocal dataset of a cappella

solo singing and speech that is annotated with labels such
as singer, gender, age, and language. Table 1 shows a list of
music datasets in comparison to Vocal92. It also illustrates
the usefulness of Vocal92 by implementing a baseline system
based on Vocal92 training, which can be used in areas such
as singer recognition and song conversion. In the following
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FIGURE 1. The distribution of singers’ gender and age in the Vocal92
dataset.

FIGURE 2. The distribution of audio length in the Vocal92 dataset.

few sections, we will describe this dataset in detail, the data
collection process, several experimental scenarios, and ana-
lyze the performance of state-of-the-art singer recognition
methods on this dataset.

III. DATA COLLECTION
A. SINGER RECRUITMENT
A call for participants for vocal recordings was posted
online when offline activities were suspended because of the
COVID-19 pandemic. We have the following requirements
for volunteers:

1) Passion for music and a certain level of singing ability.
2) Recording clear audio through a smartphone or com-

puter microphone in a quiet environment.
3) Choose at least 10 songs that you are good at singing,

and each song should be no less than 2 minutes long.
We recruited 92 amateur singers to record voice data. The
majority of participants were university graduates, along with
some of their family and friends. The data set collected

FIGURE 3. The narrowband spectrograms of four audio files.

consisted of popular music sung in Mandarin Chinese, Can-
tonese and English, in the same language as the song chosen
by each volunteer. The recordings were collected over a
period of 10 to 50 days. The gender and age distribution of
the singers is shown in Figure 1.

B. RECORDING SETTINGS
Singing individuals recorded a cappella songs and read lyrics
in a quiet setting using either a mobile phone or computer
microphone. A minimum of ten songs were recorded by each
performer, with each vocalist utilizing a separate audio file
in various formats such as WAV, MP3, and M4A. Sampling
rates for these recordings generally ranged from 48kHz and
44.1kHz.

The audio files were recorded in a 2-channel stereo format
and subsequently converted to a single-channel, 16kHz sam-
pling rate wav format after undergoing preprocessing.

The distribution of audio length is shown in Figure 2.
Dataset Organization:
The Vocal92 dataset includes 4453 a cappella solo record-

ings and lyric readings, totaling 146.73 hours of voice data.
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TABLE 2. Dataset statistics of the Vocal92 dataset.

It consists of both singing and speech by 92 singers (36 male
and 56 female) speaking in various languages. The data is
organized in folders, with subfolders for each artist and song
title, and includes audio files. To facilitate use in research, the
dataset has been divided into train and test subsets. Addition-
ally, the set of 92 singers in the dataset has been split into two
subsets, as shown in Table 2.

We also selected audio from two volunteers singing and
speaking for 5 seconds each and plotted the narrowband
spectrograms, shown in Figure 3.

• Training set: Some singers with at least ten audio sam-
ples constitute the training set (83subjects). The training
set consists of the speech training set, the singing train-
ing set, and the overall training set. This set is reserved
for training singer recognition models.

• Test set: Some singers with at least two audio samples
constitute the test set (9 subjects). The test set is sep-
arated into a speech test set, a singing test set, and a
speech plus singing test set. This test set is reserved for
evaluating trained singer recognition models on speech
and singing voice data.

IV. METHODS
In this section, the proposed methodology will be discussed
with the workflow that will be incorporated for identifying
the singers. First, we discuss the architecture of our singer
recognition baseline system.1

A. SINGER RECOGNITION SYSTEM
The singer recognition model consists of a training stage and
a testing stage. During the training phase, three advanced neu-
ral networks are used to create embeddingmodels for individ-
ual singers. In the testing phase, the similarity between the
enroll audio and the test audio is measured using probabilis-
tic linear discriminant analysis (PLDA) scoring and cosine
similarity scoring to calculate the embedding similarity. The
general architecture of our baseline is depicted in Figure 4.
The feature extraction component converts the input audio
into spectrogram features using the Speech Brain toolkit [24].

1The baseline system has provided at https://github.com/dengzhuo97/
Vocal92-dataset

TABLE 3. Parameters for X-vector and ECAPA-TDNN model architecture.

FIGURE 4. The general architecture of our baseline.

Our baseline system has been designed to facilitate the recog-
nition of singers through the integration of these advanced
algorithms and the neural network model.

B. MODEL ARCHITECTURE
In this study, we utilize three state-of-the-art systems to
extract speaker embeddings: X-vector [25], emphasized
channel attention, propagation and aggregation in time delay
neural network (ECAPA-TDNN) [26], and ResNet50 for the
singer identification task. Table 3 lists the detailed parameters
for X-vector and ECAPA-TDNN architectures.

1) X-VECTOR-PLDA
The x-vector model [25] is a time delay neural network
(TDNN) that aggregates variable length inputs across time
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to create fixed-length representations capable of capturing
speaker characteristics. Speaker embeddings are extracted
from a bottleneck layer before the output layer. The method
follows an end-to-end system that uses time-delayed DNNs
to generate embeddings combined with similarity measures.
It compares them through an independently trained classifier
such as PLDA. Firstly, the time delay is used to extract
short-time frame-level context. The statistical pooling layer
aggregates over the input segments and calculates the mean
and standard deviation. Finally, the singer is classified by
DNN. The resulting segment-level singer embeddings are
called x vectors. Zhang et al. [27] selected the X-vector model
in the training phase of the singer recognition system and used
PLDA to calculate the verification score in the testing phase.

In our approach, the x-vector of the training set is used to
train the PLDA model [28], which is subsequently utilized
for scoring. The parameters φ and 6 of the PLDA model
are estimated from the training data. The method to estimate
these two parameters is the classical EM algorithm iterative
solution. In the test phase, we calculate whether two audio
sounds are generated in the same speaker space regardless of
intra-class spatial differences.

We use the log-likelihood ratio to calculate the score pre-
sented in Equation (1).

scor = log
p (η1, η2 |Hs)

p (η1 |Hd ) p (η2 |Hd )
, (1)

η1and η2 are the x-vectors of two sounds, respectively. The
hypothesis that these two sounds come from the same space
is Hs, and the hypothesis that they come from different
Spaces is Hd . The p(η1, η2|Hs) for two voices come from the
same space likelihood function, p(η1|Hd )p(η2|Hd ) respec-
tively to different space likelihood function. Calculating the
log-likelihood ratio, we can measure how similar the two
sounds are. The higher the score, the more likely it is that
the two voices belong to the same speaker.

2) ECAPA-TDNN
Desplanques et al. [26] propose several improvements
to the x-vector architecture. Specifically, they introduce
the ECAPA-TDNN model, which includes 1-dimensional
Res2Net modules with skip connections and squeeze excita-
tion (SE) blocks to capture channel interdependencies and a
channel-dependent self-attention mechanism that uses global
context at the frame-level layers and the statistics pooling
layer. Additionally, the ECAPA-TDNNmodel aggregates and
propagates features across multiple layers.

To measure the similarity of two audio segments using
the ECAPA-TDNN model, we employ the cosine similarity
measure. Cosine similarity is a measure of similarity between
two non-zero vectors in amulti-dimensional space, calculated
as the cosine of the angle between the vectors. The functions
can be mathematically presented in Equation (2):

Cos (θ) =
A · B

∥A∥ ∥B∥
, (2)

Here, A, B are two non-zero vectors andCos (θ) refers to the
cosine similarity.

3) RESNET50
ResNet50, a 50-layer convolutional neural network architec-
ture, was first introduced by Microsoft Research in 2015.
The design of this network was motivated by the vanishing
gradient problem, which affects the effectiveness of very
deep neural networks in image recognition tasks. ResNet50
addresses this issue by incorporating residual connections
that allow the network to bypass certain layers, thereby miti-
gating the vanishing gradient problem.

Residual connections in ResNet50 allow link connections
to skip one or more layers and add their output directly to the
output of the link, facilitating effective training of very deep
networks. The architecture includes 1×1, 3×3 and 5×5 con-
volutional layers, as well as maximum pooling and average
pooling layers. It also incorporates batch normalization and
ReLU activation functions to further enhance performance.
These design elements contribute to ResNet50’s high perfor-
mance in various image recognition tasks, including object
detection, image classification, and semantic segmentation.

We introduce ResNet50 as the third neural network model
for the baseline system and use the same cosine similarity as
the ECAPA TDNN model for scoring.

C. METRICS
The equal error rate (EER) is a commonly used metric for
evaluating the performance of singer recognition systems.
It is defined as the point at which the false acceptance and
rejection rates are equal. In addition to EER, the minimum
detection cost function (minDCF) is also used as a sec-
ondary metric for comparing the confirmation thresholds of
speaker recognition systems. This is represented by Equa-
tion (3). The minDCF is computed at a prior probability of
0.01 for the specified target speaker (Ptarget ) with the cost
of missed detection (CMISS ) and the cost of wrong detection
(CFalseAlarm) of 1.0.

CDCF = CMISS · Ptarget · FRR

+ CFalseAlarm ·
(
1 − Ptarget

)
· FAR, (3)

V. EXPERIMENT AND RESULTS
A. EXPERIMENTAL SETUP
1) DATASET PARTITIONING
In each experiment described in this work, the entire dataset
is randomly divided into a training set and an evaluation set
with a 9:1 ratio. The evaluation set consists of an enrollment
set and a test set, with each audio file from each singer in the
evaluation set becoming enrollment data in succession. The
remaining items will be reviewed.

The training set consists of the speaking training set, the
singing training set, and the overall training set. Similarly,
the evaluation data is separated into a speech evaluation set,
a singing evaluation set, and a speech plus singing evaluation
set.
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2) TRAINING SETUP
During the training phase, we implement a random sampling
strategy in which 3-second segments are randomly chosen
from audio files and their starting times are selected on the fly.
The ECAPA TDNNmodels in this study are trained using the
Additive Angular Margin (AAM) loss [29] and the x-vector
models are trained using the Negative Log Likelihood (NLL)
[30] loss.
The input features for the x-vector models consist of

24-dimensional filterbanks with a frame length of 25ms,
which are mean-normalized over a sliding window of up to
3 seconds. The input features for the ResNet50 model and the
ECAPA-TDNNmodel are 80-dimensional filterbanks from a
25ms window.

The training set is divided into 90% and 10% for training
and validation purposes. The validation set is randomly cho-
sen from the training set. As in the test set, it is possible for
different performers to sing the same song. To optimize the
ECAPA-TDNNmodels, we utilized the Adam optimizer [31]
with a learning rate of 0.0001 and aweight decay of 0.000002.
If the validation loss does not change for two epochs, the
learning rate is reduced by a factor of 0.3.

3) DATA AUGMENTATION
In this study, we also investigated suitable Data Augmenta-
tion (DA) strategies, i.e., the creation of moderately changed
new data obtained from the original. As a result of DA, neural
networks can learn new parameters and improve performance
without overfitting. In addition to the training and evaluation
datasets mentioned above, we use the MUSAN and RIRs
datasets for noise augmentation. The former contains three
types of noise, and the latter contains reverberation data in
several different conditions.We used Speech Brain’s augment
model to add room impulse responses (RIRs) and noises and
resample the audio at a slightly different rate to alter its speed.
Models trained without DA required 100 epochs of training,
while models trained with DA required 150.

4) ADAPTIVE SCORE NORMALIZATION
Adaptive score normalization means that the mean and
variance are calculated for selecting voices from the imper-
sonated speech set. Through adaptive normalization, each
validation pair may use different impersonated speech
sets. Adaptive score normalization selects the impersonated
speech set according to specific rules, often using the top
speech with the highest score of the registered speech or
test speech. We performed adaptive normalization of the test
scores of the ECAPA-TDNN model, which provided some
optimization for the results of singer identification.

5) SINGLE OR MULTIPLE SPEAKING STYLES EXPERIMENTS
Both human and machine recognition performance degrades
when the audio being evaluated is in a modality unfa-
miliar to the evaluator. Most of the previous speaker
recognition systems use homologous data for experiments.

TABLE 4. Experimental results of a single speaking styles. (Divide each
audio of the training set into 3 seconds, and input all the audio of the
enrolled set and the test set).

We experimentally investigate the effect of cross-modal train-
ing and test data on speaker recognition systems’ perfor-
mance and generalization ability. In this paper, experiments
were conducted on both unimodal and multiple speaking
styles data to verify the effect of adding modality on speaker
recognition. We found that the a cappella solo singing data
performs better in the cross-modal experiments and gener-
alizes better to the singer recognition system because of its
more comprehensive range and variable timbre.

B. RESULTS
1) EXPERIMENTS ON SINGLE AUDIO MODALITIES OF
EXPRESSION
The experimental results of X-vector-PLDA, ECAPA-
TDNN, and ResNet50 models are shown in Table 4 when
homogenous data are used for training and evaluating.

It is observed that a cappella solo singing data presents a
more comprehensive representation of the singer due to its
wider vocal range and more diverse features. When trained
with a cappella solo singing data, the robustness of themodels
was significantly improved compared to using speech data,
with the equal error rate of the x-vector-PLDAmodel decreas-
ing to 0.4718%. Additionally, the recognition performance
of the ECAPA-TDNN model was also satisfactory, correctly
identifying the singing evaluation set. Upon comparison of
the three models, it appears that the ECAPA-TDNN model
exhibits a greater advantage on this dataset.

2) EXPERIMENTS ON MULTIPLE AUDIO MODALITIES OF
EXPRESSION
The experimental results obtained when using different audio
modalities of expression data for training and testing are
presented in Table 5. These results demonstrate that the
ECAPA-TDNN model trained on a cappella singing data
exhibits a stronger migration ability and robustness among
the different speaking styles of test data, achieving an equal
error rate of 1.4723%. The use of all available training data
led to a noteworthy enhancement in the performance of the
cross-modal test set, as evidenced by the equal error rate
(EER) of 1.1659% for the X-vector-PLDAmodel and an EER
of 1.0496% for the ECAPA-TDNN model. The ResNet50

VOLUME 11, 2023 140963



Z. Deng, R. Zhou: Vocal92: Audio Dataset With a Cappella Solo Singing and Speech

TABLE 5. Results of multiple speaking styles experiments (the training
set audio in the experiments was divided into 3s, and the whole audio
was input for both registration and test audio).

model shows good performance when the training, enroll-
ment, and test data are not in the same audio expression,
especially when the training and test data are from different
sources.

The results of the multiple speaking styles experi-
ments indicate that the models trained with a cappella
solo singing data exhibit superior generalization ability.
According to our findings, models trained on clear singing
song data exhibit superior generalization performance when
evaluated on speech data. The X-Vector-PLDA model,
ECAPA-TDNN model, and ResNet50 model have equal
error rates of 2.3418%, 1.1360%, and 0.4435%, respec-
tively. In contrast, the models trained on speech data do
not perform well when evaluated on singing data. The
ResNet50 model performs comparably to ECAPA-TDNN
in terms of total performance, and both exhibit strong
performance.

TABLE 6. Experimental results of data augmentation.

TABLE 7. Experiment results of the X-Vector model using different
back-ends for scoring.

3) DATA AUGMENT EXPERIMENTS
The results of our experiments revealed the effectiveness
of using data augmentation in the X-vector-PLDA model.
In the singer verification experiments reported in Table 6,
we observed that the X-vector-PLDA models performed bet-
ter with data augmentation. However, the use of data augmen-
tation did not improve the performance of the ECAPA-TDNN
and ResNet50model.

4) X-VECTOR MODEL WITH PLDA OR COSINE SIMILARITY
FOR SCORING
Multiple scoring methods were utilized for the X-Vector
model, as demonstrated in Table 7. The experimental results
show that scoring after training a PLDA model has better
robustness than directly calculating cosine similarity.

5) THE EFFECT OF AUDIO LENGTH
We also explored the effect of different audio lengths on
the experimental results which are shown in Table 8. Dur-
ing the evaluation of 3-second audio segments from our
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TABLE 8. The experimental results of different audio lengths in the
models trained without data augment. (All training audios are divided
into 3-second segments).

test set, the x-vector-PLDA model and the ECAPA-TDNN
model demonstrated equal error rates (EER) of 7.6483% and

9.8382%, respectively, on the speech evaluation set. When
the audio segment length was increased to 5 seconds, the
EERs of the two models on the speech evaluation set were
4.4893% and 3.8105%, respectively. The results indicated
that longer audio segments resulted in better performance.
When the audio length reached 10 seconds, both models
exhibited significant improvements in all test results. On the
other hand, the song evaluation set did not perform as well
as the speech evaluation set when the test audio length was
shorter. However, as the test audio length increased, the
singing data experimental results improved. In comparison,
the x-vector-PLDA model outperformed the ECAPA-TDNN
model on the speech evaluation set.

These findings suggest that longer audio samples tend to
havemore rich and varied audio features, leading to improved
experimental results in singer recognition tasks.

VI. CONCLUSION
We present the first audio dataset specifically focusing on a
cappella solo singing and speech. Vocal92 consists of both
singing and speech by 92 singers and represents a significant
advancement in the field, filling a gap in the availability of
multiple speaking styles audio datasets for singer recognition.
The experimental results demonstrate the singer recognition
models trained on singing data exhibit a more vital migra-
tion ability and robustness among the cross-modal test data.
These findings suggest that singing data may contain a more
exhaustive range and features, such as timbre and pitch,
which contribute to better model performance. The Vocal92
dataset will also be a valuable resource for music information
retrieval, singer recognition, and speaker recognition.
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