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ABSTRACT This paper presents an efficient numerical tool for solving the problem of transient non-
linear evolution of plasma equilibrium in presence of eddy currents. The code, named FRIDA-TD
(FRIDA-Time Domain), and based on the existing FRIDA (FRee-boundary Integro-Differential Axisymmet-
ric) code, exploits two different approaches for solving the elated nonlinear system of Partial Differential
Equations (PDE): (i) Finite Element Method - Boundary Element Method (FEM-BEM) for plasma equilib-
rium, and (ii) Axisymmetric Volume Integral (AVI) formulation for eddy currents. The resulting FRIDA-TD
is a fast and flexible tool suitable for engineering-oriented purposes, such as the design of Tokamak devices,
set up of plasma operations, prediction of performance scenarios, and design of feedback control systems.
FRIDA-TD is successfully validated at first with the well-established CarMa0NL code, and then against
experimental data of the RFX-mod device.

INDEX TERMS Eddy currents, free-boundary equilibrium, Grad-Shafranov equation, magnetic confine-
ment fusion, magnetohydrodynamics.

I. INTRODUCTION
The problem of transient nonlinear evolution of plasma equi-
librium in presence of eddy currents is a key task in Magnetic
Confinement Fusion (MCF), specifically concerning toka-
mak devices. Computer codes that address this task are of
paramount importance, as they are used to set up discharge
scenarios, study breakdowns, disruptions, and design both the
layout of new machines and the feedback control systems.

During the last decades, many codes have been devel-
oped to solve the problem of transient nonlinear evolution
of plasma equilibrium in presence of eddy currents. Among
others, we mention PROTEUS [1], DINA [2], TSC [3],
MAXFEA [4], CEDRES++ [5], and CREATE-NL+ [6],
all assuming both the plasma and the external conductors to
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be axisymmetric. On the other hand, it is worth mentioning
another code that differs from the previous ones, because it
is based on an arbitrary three-dimensional description of the
external conductors, the CarMa0NL [7] code.

This paper aims to present an extension of the existing
FRIDA (FRee-boundary Integro-Differential Axisymmetric)
code [8], which solves the static free-boundary plasma equi-
librium problem. This novel tool, named FRIDA-TD, which
stands for FRIDA-Time Domain, exploits the same strengths
of the FRIDA code: (i) two different approaches for solving
the elated nonlinear system of Partial Differential Equations
(PDE), that are Finite Element Method - Boundary Element
Method (FEM-BEM) for plasma equilibrium, and Axisym-
metric Volume Integral (AVI) formulation for eddy currents,
requiring to mesh only the conductors and the vacuum cham-
ber; (ii) it is based on a novel FEM-BEM coupling scheme
which has been proven to have optimal convergence rate and
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is efficient concerning the computation of the Green matrix
needed for FEM-BEM coupling [8]; (iii) an Adaptive Inte-
gration Technique (AIT) for the computation of the plasma
source term has been implemented, to treat the problem of
mismatching between plasma domain, whose boundary is not
known a priori, and the mesh elements.

The resulting FRIDA-TD is based on an implicit time-
stepping scheme to self-consistently and accurately solve
the problem, providing a fast and flexible tool suitable for
engineering-oriented purposes, such as the design of tokamak
devices, set up of plasma operations, prediction of perfor-
mance scenarios, and design of feedback control systems.

The paper is organized as follows. Section II reports pre-
liminary considerations on the formulation of both the Free-
Boundary Plasma Equilibrium Problem (FB-PEP) and the
eddy current problem. The static version of the FRIDA code
is also presented. In Sect. III the self-consistent coupling of
FB-PEP and eddy current problem via implicit time-stepping
scheme is presented. Section IV reports a detailed validation
of FRIDA-TD, at first with the CarMa0NL code, and then
against experimental data of the RFX-mod device. Finally,
Sect. V is devoted to the conclusions and foreseen further
developments.

II. PRELIMINARY CONSIDERATIONS ON THE
FORMULATIONS OF THE PROBLEM
In the evolutionary equilibrium limit, the evolution of an
axisymmetric plasma in presence of conducting structures
surrounding the plasma itself is a time-dependent nonlinear
problem. In the plasma domain, the governing equation is
the Grad-Shafranov equation, which describes the problem
of equilibrium of an axi-symmetric plasma in a suitable
configuration of the external magnetic field. On the other
hand, the problem of eddy currents, which are induced inside
the conducting structures surrounding the plasma by time-
varying magnetic fields, are described byMaxwell’s equation
in the magneto-quasistatic limit.

This is a coupled problem: on one hand, the time variation
of the plasma equilibrium (e.g. variation of the total plasma
current, of the internal profiles, of the plasma cross-section)
would induce eddy currents in the passive structures; on the
other hand, such current would themselves affect the plasma
equilibrium.

Before going on, it is necessary to introduce and describe
in detail the formulations of these two problems. Such for-
mulations will be combined together in a coupled manner,
as described in Sect. III.

A. FREE-BOUNDARY PLASMA EQUILIBRIUM PROBLEM
1) MATHEMATICAL FORMULATION
In a cylindrical coordinate system (r, φ, z), let us consider
the domain �v, which is the vacuum region inside the first
wall and allowed to the plasma. The computational bound-
ary of �v is labeled as ∂�. Inside �v, the region which is
actually occupied by the plasma, i.e. the plasma cross-section,

is labeled �p. In addition to this, we define also the plasma
separatrix 0p, which is the plasma-vacuum interface. These
regions can be seen in blue in Fig. 1 for RFX-mod device [9].
The Free-Boundary Plasma Equilibrium Problem

(FB-PEP) in axisymmetric geometry is described by the
Grad-Shafranov Equation (GSE), together with suitable
boundary conditions (BCs):

∇ ·

(
1
r
∇ψ(r⃗)

)
=

{
−µ0jφ(r⃗, ψ) if r ∈ �p

0 elsewhere
(1)

ψ(r⃗)
∣∣
∂�

= ψ̂p(r⃗, ψ) + ψ̂ext (r⃗) (2)

where µ0 is the magnetic permeability of vacuum, and ψ(r⃗)
is the poloidal magnetic flux per radian [10] (i.e. provid-
ing the poloidal magnetic field as ∇ψ

r × e⃗φ , e⃗φ unit vector
in φ direction), and ψ̂p(r⃗, ψ) and ψ̂ext (r⃗) are the bound-
ary conditions of the plasma and the external environment,
respectively.

The current density in the Right Hand Side (RHS) of
Eq. (1) can be described in the following ways:

jφ = λg(ψ,ψa, ψb)

=


λ

(
r
dp(ψ̄)

dψ̄
+
f (ψ̄)

µ0r

df (ψ̄)

dψ̄

)
λ

(
rβ0
R0

+
(1 − β0)R0

r

)
(1 − ψ̄αM )αN

(3)

where the scaling parameter λ is needed to impose the
total plasma current. Equations (3) mean that current den-
sity function g(ψ,ψa, ψb) if described in terms of the pro-
files of the pressure p(ψ̄) and the poloidal current function
f (ψ̄) [10], or through a suitable parametrization [11], [12]
(here [αM , αN , β0] are the parameters, and R0 is the machine
major radius). In both cases, the normalized poloidal flux
ψ̄ = (ψ − ψa)/(ψb − ψa) is involved, where ψa and ψb
are respectively the value of the flux at the magnetic axis and
at the plasma separatrix 0p.

Information on the internal profiles, via p(ψ̄) and f (ψ̄)
function or via the parametrization coefficients [αM , αN , β0],
cannot be derived from the simple toroidal force balance, and
must be determined either from experimental data, or from
transport calculation [11], [12].

It is well known that the problem defined by Eqs. (1) - (2),
with source term (3), is a nonlinear problem. The nonlin-
earity is due to the fact that (i) the source term depends
on the solution ψ(r) (Eq. (3)), (ii) the BCs depend also
on the solution (Eq. (2)), and the plasma separatrix 0p,
necessary to define the source domain �p, is not known
a priori, being itself an unknown of the problem, because
it depends on the plasma equilibrium (i.e. free-boundary
problem).

2) THE FRIDA CODE
In order to solve the FB-PEP in axisymmetric geom-
etry, the FRIDA (FRee-boundary Integro-Differential
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FIGURE 1. Domain regions for the case of RFX-mod device.

Axi-symmetric) code has been recently developed [8].
The proposed method is based on a novel Finite Element
Method - Boundary Element Method (FEM-BEM) scheme,
obtained from an improvement of the Hagenow-Lackner
(HL) coupling method [13], and is able to efficiently model
the equilibrium problem in unbounded domains by discretiz-
ing only the plasma region. As pointed out in detail in [8], the
FRIDA code has several advantages. At first, it overcomes the
convergence limitations of the original HL scheme, providing
a FEM-BEM coupling scheme that has an optimal conver-
gence rate. In addition to this, the computation of the Green
matrix needed for FEM-BEM coupling, which depends only
on the geometry of the domain triangulation, is performed
beforehand during a preprocessing phase and it does not need
to be repeated if another equilibrium with the same mesh
is considered. Finally, an Adaptive Integration Technique
(AIT) for the computation of the plasma source term has
been implemented, to treat themismatching problem between
plasma separatrix, which is not known a priori, and the mesh
elements.

In the FRIDA code, the discrete version of the FB-PEP
equations is written as follows:

K Kbc 0 0 −µ0gp(x)
0 EI 0 0 −Gbpgp(x)

χa(x) 0 −1 0 0
χb(x) 0 0 −1 0
0 0 0 0 It (x)



ψ

ψ̂

ψa
ψb
λ



=


0
ψ̂ext
0
0
Ip

 (4)

where x = [ψ, ψ̂, ψa, ψb, λ]T is the vector of unknowns,
EI is the identity matrix, K and Kbc are the stiffness
matrix related to the internal and boundary nodes. Please
see eqs. 4.13 - 4.18 in [8] for a detailed description of the
quantities.

Equation (4) can be written, by noting that λgp(x) =

1
µ0
(Kψ + Kbcψ̂), as:

K Kbc 0 0 −µ0gp(x)
K̂ K̂bc 0 0 0

χa(x) 0 −1 0 0
χb(x) 0 0 −1 0
0 0 0 0 It (x)


︸ ︷︷ ︸

A(x)


ψ

ψ̂

ψa
ψb
λ


︸ ︷︷ ︸

x

=


0
ψ̂ext
0
0
Ip


︸ ︷︷ ︸

b

(5)

Equation (5), which can be written more compactly as
F(x) = A(x)x− b = 0, is a nonlinear system of equations of
dimension (Nn+3)×(Nn+3), whereNn is the number ofmesh
nodes of the triangular mesh of�v, considering both internal
and boundary nodes. The solution of (5) gives the poloidal
flux ψ on the entire computational domain �v, included its
boundary ∂�, the values of the flux at both the magnetic axis
and separatrix (i.e. ψa, ψb), as well as the scaling parameter
λ of the total plasma current.

The solution of this system, provided a suitable ini-
tial guess x0 is obtained, in the FRIDA code, exploit-
ing Newton-like algorithms, such as Newton-Raphson or
Newton-Krylov [14]. In [8], a detailed comparison of these
two methods is also reported.

3) BOUNDARY CONDITIONS
In the previous formulation, �v is chosen such as the only
source term inside the computational domain is due to the
plasma current density (FEM-BEM formulation), while all
the other sources (i.e. active coils for static equilibria) are
taken into account through the BCs term ψ̂ext in Eq. (2)
(integral formulation).
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For transient problems, in which eddy currents have to be
also considered, the term ψ̂ext must account also for their
contribution. Equation (2) is then modified as follows:

ψ(r⃗)
∣∣
∂�

= ψ̂p(r⃗, ψ) + ψ̂a(r⃗) + ψ̂c(r⃗, ψ) (6)

where ψ̂a(r⃗) is the contribution of the active coils, and
ψ̂c(r⃗, ψ) of the passive conductors. Since, as already men-
tioned at the beginning of this section, the eddy current evo-
lution is affected by the plasma itself, also their contribution
to the boundary condition depends on the plasma, giving
another source of nonlinearity.

It is worth noting that, depending on the formulation, the
active coils can be modeled as voltage-fed (V-fed) or current-
fed (I-fed) conductors. In the former case, both active and
passive conductors in Eq. (6) are considered through the term
ψ̂c(r⃗, ψ). In the following sections, both these formulations
will be considered.

The vector ψ̂c, which is the discrete counterpart of
ψ̂c(r⃗, ψ), gives additional Degrees of Freedom (DoFs). Thus,
the second equation of (5) has to be modified accordingly:

K̂ψ + K̂bcψ̂ = ψ̂a + ψ̂c (7)

In principle, the vector of DoF x should now include also ψ̂c,
leading to a larger system of equations.Wewill show how this
can be avoided, keeping ψ̂c into account implicitly without
adding DOFs to the original ones.

B. EDDY-CURRENT PROBLEM
For the eddy current problem in axisymmetric geometry,
we consider at first the weak formulation of Ohm’s law:∫

Vc
w⃗

(
ηJ⃗ − E⃗

)
dV = 0 (8)

where w⃗ is a test function, the vector field J⃗ and E⃗ are
respectively the current density and the electric fields in
the conducting domain Vc, and η is the electric resistivity.
Figure 2 shows, for RFX-mod, the conducting domain Vc
in the poloidal plane (red), the coils (gray), the domain �v
available to the plasma (blue), and its boundary ∂� (green).
Exploiting the axial-symmetry, since J⃗ = (0, Jϕ, 0) and

E⃗ = (0,Eϕ, 0):∫ 2π

0
dϕ

∫
�c

rw⃗
(
ηJϕ − Eϕ

)
d� = 0 (9)

where �c is the projection of Vc in the poloidal plane. The
electric field is expressed in terms of the magnetic vector
potential A⃗ and the scalar electric potential φ (Eϕ = −

∂Aϕ
∂t −

∇φ), and we use the Biot-Savart integral :

Aϕ(r⃗, t) =
µ0

4π

∫
Vc

Jϕ(r⃗ ′, t)
|r⃗ − r⃗ ′|

dV ′
+ Asϕ(r⃗, ψ̄, t) (10)

where1 A⃗s(r⃗, t) is the magnetic vector potential given by
sources external to the conducting structures, such as the

1Since we are considering the ϕ components of the quantities, in the
following part of the discussion the subscript ϕ will be dropped, and the
components will be specified only if necessary.

plasma and the active conductors in case of I-fed formulation.
It follows that:∫

�c

2πrw
{
ηJϕ +

∂

∂t

[
µ0

4π

∫
Vc

J (r⃗ ′, t)
|r⃗ − r⃗ ′|

dV ′
+

+ As(r⃗, t)
]}
d� = 0 (11)

Following the standard FEM approach, the computational
domain is discretized in triangular elements [15]. In addition
to this, we follow the Galerkin approach, choosing as test
functions w(r⃗) polynomials of degree Nd defined as:

w(r⃗) =

Nd∑
i=0

Nd∑
j=0

aijr izj (12)

where ahk are the coefficients of the basis functions. In this
context, we considered polynomial up to degree Nd = 3,
in order to model accurately the skin effect occurring in the
passive structures, especially during fast transients.

By expanding Jϕ in terms of basis functions (12), we can
write (11) as:

L
d jc
dt

+ Rjc = −M
d is
dt

(13)

where jc is the discrete counterpart of Jϕ , is is the vector of
external currents (i.e. active currents ia for I-FED approach,
and plasma nodal currents ip(ψ̄)), and:

Lij =

∫
�c

2πrwi(r⃗)
[
µ0

4π

∫
Vc

wj(r⃗ ′)
|r⃗ − r⃗ ′|

dV ′

]
d� (14)

Rij =

∫
�c

2πrηwi(r⃗)wj(r⃗)d� (15)

Ms,ij =

∫
�c

2πrwi(r⃗)
[
µ0

4π

∫
Vsi

χsi (r⃗
′)

|r⃗ − r⃗ ′|
dV ′

]
d� (16)

whereVsi defines the domain of ith external source and χsi (r⃗
′)

is a suitable basis function defined on Vsi . For a more detailed
description see appendix.

By introducing the quantity a such as a = UA⃗ϕ , where the
matrix U is defined in Eq. (75), and by considering that:

a = ac + as = Ljc +Mis (17)

⇒ jc = L−1(a−Mis) (18)

equation (13) is written to obtain the well-known state space
form:

da
dt

= −RL−1a+ RL−1Mieq (19)

which gives the current fed formulation of the eddy current
problem.

On the other hand, the active coils can be modeled as
passive conductors fed by a source voltage rather than by
a prescribed set of currents. However, not all the external
sources can be written with a V-fed approach, i.e. the plasma
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FIGURE 2. Definition of regions for RFX-mod case: conducting domain �c in the poloidal plane (red), the
coils (gray), the domain �v available to the plasma (blue), and its boundary ∂� (green).

currents have still to be written following an I-fed formu-
lation. For this reason, we will refer in the following to the
voltage-current fed formulation (VI-fed):

L
d jc
dt

+ Rjc = −M
d is
dt

+ VDv (20)

whereD is an incidence matrix related to the nodes belonging
to the electrodes, V is defined in (74) and v is the vector of
applied voltages. It follows that:

da
dt

= −RL−1a+ RL−1Mis + VDv (21)

1) MODEL OF TOROIDALLY DISCONTINUOUS STRUCTURES
We consider, at this point, the case of toroidally discontinuous
conducting structures. Discontinuous conducting structures
can be found in some experimental devices in order to allow,
through insulated gaps, the penetration of the electric and
magnetic fields into the plasma region [16]. This problem
has been already studied for eddy currents in the filamen-
tary approximation [17], but, it has been never developed
for a general Galerkin-based integral approach on triangular
meshes.

In the case of toroidally closed conducting structures,
Eq. (13) holds because the passive structures are short-
circuited, this is no longer true for toroidally discontinuous
structures. This fact is briefly summarized in Figs. 3. Indeed,
if the conducting structures are toroidally not continuous,
a voltage applied to the points P and Q develops in the case
of transient magneto-quasistatic phenomena, as can be seen
in fig. 3. In such case, Eq. (13) becomes:

L
d jc
dt

+ Rjc = −M
d is
dt

+ Vvgap (22)

with an additional degree of freedom vgap for every toroidally
discontinuous structure. The matrix V is defined as 74.

In order to close the system, adding additional constrains
have to be considered. This means to impose, for every
toroidally open structure, that the total induced current which

flows through the poloidal plane has to be zero. Thus, for each
structure: ∫

�c

Jϕ(r⃗)d� = 0 ⇔ αT jc = 0 (23)

where

αi =

N i
j∑

j=1

∫
�j

wij(r⃗)d� (24)

where�i is the local support given by theN i
j triangles sharing

the ith node.
By combining (18) with (23) we obtain the additional

constrain to close the system:

αT jc = αTL−1︸ ︷︷ ︸
βT

a− αTL−1M s︸ ︷︷ ︸
H

is = 0 (25)

The state-space equation (19) then becomes:[
EI 0
0 0

]
︸ ︷︷ ︸

E

∂

∂t

[
a
vgap

]
︸ ︷︷ ︸

y

=

[
−RL−1 V
βT 0

]
︸ ︷︷ ︸

A

[
a
vgap

]
+

[
RL−1M

−H

]
︸ ︷︷ ︸

B

is (26)

where EI is the identity matrix and V is defined in (74).
In case of Nopen toroidally discontinuous structures, (25) has
to be imposed for each structure. In this case, vgap is a vector
of dimension Nopen, and α and βT are matrices with Nopen
rows.

Concerning the VI-fed formulation, (22) can be written as:

da
dt

= −RL−1a+ RL−1Mis + VDv+ Vvgap (27)
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FIGURE 3. Toroidally continuous (left) and discontinuous structures (right).

which can be written as:[
EI 0
0 0

]
︸ ︷︷ ︸

E

∂

∂t

[
a
vgap

]
︸ ︷︷ ︸

y

=

[
−RL−1 V
β⃗T 0

]
︸ ︷︷ ︸

A

[
a
vgap

]
+

[
RL−1M

−H

]
︸ ︷︷ ︸

Bi

is +

[
VD
0

]
︸ ︷︷ ︸
Bv

v

(28)

In case of Nopen toroidally discontinuous structures, the same
considerations made for the I-fed formulation holds.

It is important to note than (28) is formally equivalent to
(26), by defining accordingly E, y, A, B.

III. SELF-CONSISTENT COUPLING OF FB-PEP AND EDDY
CURRENT PROBLEM VIA FULLY IMPLICIT
TIME-STEPPING SCHEME
A. MATHEMATICAL FORMULATION
The self-consistent coupling between free-boundary plasma
equilibrium and eddy current models is performed by intro-
ducing the so-called coupling surface Se. A proper coupling
surface is chosen such as it does not intersect either the plasma
or the passive structures, and all the conducting structures
are placed outside it. This approach is very common in the
fusion community for those applications dealing with cou-
pling/decoupling problems [7], [18], [19]. A sketched view
of this configuration can be seen in Fig. 4, where the trace
0eq of the coupling surface in the poloidal plane is shown,
together with the other domains.

An equivalent current ieq flows on the coupling surface, and
produces, outside it, the same magnetic flux of the plasma.
The procedure for the computation of ieq, given the actual
vector of plasma nodal currents, is explained in App. . The
matrixM is then computed considering the mutual coupling
between the passive conductors and the Neq circuits on the
coupling surface via (16).

Let us consider the general case of Eq. (26), together
with Eq. (18), and writing explicitly the source terms due
to active coils and plasma. In case of toroidally contin-
uous structures, Eq. (19) can be derived straightforwardly
from Eq. (26). We obtain the following system Differential

FIGURE 4. Sketched view of the geometry for the coupling of FB-PEP and
eddy current problem.

Algebraic Equations (DAE):{
Eẏ = Ay+ Baua + Bpλgp(x)
jc = Cy+ Daua + Dpλgp(x)

(29)

Matrices E, y, A have been defined in (26) (I-fed) or (28)
(VI-fed). The definition of Bp, C, and Dp are the same for
I-fed and VI-fed cases:

Bp =

[
RL−1McpT eq

−Hp

]
(30)

C =
[
L−1 0

]
(31)

Dp = −L−1McpT eq (32)

where Mcp is the mutual inductance matrix between equiv-
alent plasma currents and the passive structures, defined in
(16), and T eq is a Neq × Nn matrix giving the equivalent
current ieq from the plasma nodal currents ip defined in
App. . Conversely, the definition of Ba and Da depends on
the formulation:

Ba =

[
RL−1Mca

−Ha

]
Da = −L−1Mca I-fed (33)

Ba =

[
VD
0

]
Da = 0 VI-fed (34)

where Mca is the mutual inductance matrix between active
conductors and the passive structures, also defined in (16).
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The full system of equations of the coupled problem
follows:

Eẏ = Ay+ Baua + Bpλgp(x) (35)

jc = Cy+ Daua + Dpλgp(x) (36)

ψ̂c = G̃bcjc (37)

Kψ + Kbcψ̂ − µ0λgp(x) = 0 (38)

K̂ψ + K̂bcψ̂ − ψ̂c − ψ̂a = 0 (39)

χa(x)ψ − ψa = 0 (40)

χb(x)ψ − ψb = 0 (41)

λIt (x) − Ip = 0 (42)

consisting in 8 equations, 5 vectorial plus 3 scalar equations.
The system describes a time-dependent nonlinear problem:
the plasma contribution enters the eddy current problem
trough terms Bpλgp(x) and Dpλgp(x) of (29), whereas the
eddy current contribution enters the FB-PEP trough the term
ψ̂c of Eq. (39), which is the BCs of the FB-PEP due to the
eddy currents. Such term is computed via the Green matrix
G̃bc, defined in (76).

The DAE problem (35) is solved via Crank-Nicolson
method, giving:

E
(
yh+1

− yh
)

=
1t
2

[
f (th, xh, yh) + f (th+1, xh+1, yh+1)

]
(43)

where f (t, x, y) = Ay + Baua + Bpλgp(x), h stands for the
time instant. The RHS of (43) can be written as (note that Ip
is written in place of λgp(x)):

E
(
yh+1

− yh
)

=
1t
2

(
Ayh + Baxha

+ BpIhp + Ayh+1
+ Bauh+1

a + BpIh+1
p

)
(44)

after some manipulations, we obtain:(
E−

1t
2
A

)
︸ ︷︷ ︸

A1

yh+1
−
1t
2
BpIh+1

p

=

(
E+

1t
2
A

)
︸ ︷︷ ︸

A2

yh +
1t
2

(
Bauha + BpIhp + Bauh+1

a
)

(45)

We exploit now the relation (λgp(x))
h+1

=
1
µ0
(Kψh+1

+

Kbcψ̂
h+1

), as done in [8]:

A1yh+1
−
1t
2
Bp

1
µ0

(Kψh+1
+ Kbcψ̂

h+1
) (46)

= A2yh +
1t
2

(
Bauha + BpIhp + Bauh+1

a
)

(47)

which can be written as:

yh+1
−
1t
2µ0

A−1
1 BpKψh+1

−
1t
2µ0

A−1
1 BpKbcψ̂

h+1

= A−1
1 A2yh +

1t
2
A−1
1

(
Bauha + BpIhp + Bauh+1

a
)

(48)

or more compactly as:

yh+1
− Q̂ψh+1

− Q̂bcψ̂
h+1

= by (49)

where the following quantities have been defined:

Q̂ =
1t
2µ0

A−1
1 BpK (50)

Q̂bc =
1t
2µ0

A−1
1 BpK̂bc (51)

by = A−1
1 A2yh +

1t
2
A−1
1

(
Bauha + BpIhp + Bauh+1

a
)

(52)

The passive currents density jc is computed via (36),
together with (49) and giving that (λgp(x))

h+1
=

1
µ0
(Kψh+1

+ Kbcψ̂
h+1

):

jh+1
c = Cyh+1

+ Dauh+1
a + DpIh+1

p (53)

= C
(
Q̂ψh+1

+ Q̂bcψ̂
h+1

+ bx
)
+ Dauh+1

a +

+ Dp
1
µ0

(Kψh+1
+ Kbcψ̂

h+1
) (54)

=

(
CQ̂+

1
µ0

DpK
)
ψh+1

+

(
CQ̂bc +

1
µ0

DpKbc

)
ψ̂
h+1

+ +Cbx + Dauh+1
a

(55)

The contribution of eddy currents to the BCs term ψ̂c is
readily obtained through coupling equation (37):

ψ̂c = G̃bcjc (56)

= G̃bc

[(
CQ̂+

1
µ0

DpK
)
ψh+1

+ (57)

+

(
CQ̂bc+

1
µ0

DpKbc

)
ψ̂
h+1

+Cbx+Dauh+1
a

]
(58)

which is written as:

ψ̂c + P̂ψ + P̂bcψ̂ = b
ψ̂c

(59)

where:

P̂ = −G̃bc

(
CQ̂+

1
µ0

DpK
)

(60)

P̂bc = −G̃bc

(
CQ̂bc +

1
µ0

DpKbc

)
(61)

b
ψ̂c

= G̃bc
[
Cbx + Dauh+1

a
]

(62)

In principle, as already mentioned in Par. II-A3, the
unknowns ψ̂c have to be added to the vector of DoFs. From
the computational point of view, this could increase the com-
putational cost to solve the problem, because equation (59) is
fully populated. A convenient solution is to take into account
implicitly of ψ̂c, by including (59) into (39). Since ψ̂c =

−P̂ψ − P̂bcψ̂ + b
ψ̂c
, (39) becomes:(

K̂ + P̂
)
ψ +

(
K̂bc + P̂bc

)
ψ̂ = ψ̂a + b

ψ̂c
(63)
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which can be written more compactly:

Ŝψ + Ŝbcψ̂ = b
ψ̂

(64)

where:

Ŝ = K̂ + P̂ (65)

Ŝbc = K̂bc + P̂bc (66)

b
ψ̂

= ψ̂a + b
ψ̂c

(67)

Finally, the following system of equations, which is the
discrete counterpart of Eqs. (35) - (42), can be written:

K Kbc 0 0 −µ0gp(x)
Ŝ Ŝbc 0 0 0

χa(x) 0 −1 0 0
χb(x) 0 0 −1 0
0 0 0 0 It (x)


︸ ︷︷ ︸

A(xh)


ψ

ψ̂

ψa
ψb
λ


︸ ︷︷ ︸
xh+1

=


0
b
ψ̂

0
0
Ip


︸ ︷︷ ︸

bh

(68)

It is a vector-valued nonlinear problem of the form F(x) =

A(x)x − b = 0, that has to be solved at each time step h to
find the new solution xh+1.

It is important to notice that the number of DoFs of (68)
is the same as (5); moreover, it does not depend on the
discretization of the passive conductors, meaning that the
accuracy of the eddy current problem can be improved with-
out affecting the overall performances with respect to the
static case.

B. EFFICIENT NUMERICAL SOLUTION
As already mentioned, the solution of the nonlinear system
(68) has to be performed at each time instant th, meaning that,
at each time instant, an iterative scheme has to be used to find
the solution xh+1. A relaxed (or damped) Newton-Raphson
scheme [20] is used:

JF(xk )hk+1 = −F(xk ) (69)

xk+1 = xk + αkhk+1 (70)

where k stands for the iterations of the nonlinear solver, which
has to run until convergence, and αk is a relaxation parameter
suitably chosen at every iteration to avoid overshoot of the
solution.

For this specific problem, at each time instant th the jaco-
bian JF(xk ) can be written as a sum of two terms:

JF(xk ) = J ′

F(x0) + J ′′

F(xk ) (71)

where

J ′

F(x0) =


K Kbc 0 0 0 d

ψ

Ŝ Ŝbc 0 0 0 d
ψ

0 0 −1 0 0 d
ψ

0 0 0 −1 0 d
ψ

0 0 0 0 0 d
ψ


︸ ︷︷ ︸

fixed over k

(72)

FIGURE 5. View of RFX-mod geometry (grey = active coils, red = passive
conductors, blue = plasma domain) and pick-up probes (black dots).

J ′′

F(xk )=


−µ0

d i
dψ 0 −µ0

d i
dψa

−µ0
d i
dψb

−µ0
d i
dλ

d i
dψ 0 0 0 0 0
χa(x) 0 0 0 0
χb(x) 0 0 0 0
dIt
dψ 0 dIt

dψa
dIt
dψb

dIt
dλ


︸ ︷︷ ︸

to be updated at every iteration k

(73)

This peculiar feature of the jacobian was also typical of
the formulation at the basis of FRIDA code, described in
detail in [8]. Thus, also for this problem, the fixed term
J ′

F(x0) depends only on the geometry of the triangulation,
and it is always the same if the same mesh is consid-
ered. Consequently, it can be computed only once during a
preprocessing phase and stored, allowing a more efficient
implementation. On the other hand, J ′′

F(xk ), that has to be
updated at every iteration k , is computed using a hybrid semi-
analytical approach which exploits the sparsity of the original
matrix A. This approach is strongly parallelizable, ensuring a
fast and efficient implementation, both in terms of CPU time
and memory usage.

This algorithm has been implemented in the FRIDA-TD
(FRIDA-Time Domain) code. Like the static FRIDA [8],
FRIDA-TD has also been developed in the MATLAB envi-
ronment, with parallel C++ subroutines for the most demand-
ing computations.

Thanks to the efficient computation of the jacobian men-
tioned above, the only critical step in the entire algo-
rithm is the correction term hk+1, because it requires
the solution of the linear system (69). An efficient solu-
tion of this linear system is obtained by performing a
LU factorization of the jacobian JF(xk ) via the KLU
algorithm [21].

In order to further speed up the computation, a Quasi-
Newton method is adopted: both JF(xk ) and hk+1 are not
updated automatically at each iteration of the nonlinear
solver, but only if the norm of the residue does not decrease
sufficiently during a given iteration. By doing this, it is
possible to substantially reduce the number of jacobian com-
putations and the solution of (69).
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FIGURE 6. Waveforms of the current on the Ohmic Heating (OH) and Field Shaping (FS) windings, where each
color refer to a different circuit, and contour plots of the poloidal flux 9 for different time instants (these time
instants are also plotted on top of OH and FS currents).

FIGURE 7. Pick-up signal: experimental (black) versus FRIDA-TD (red).

IV. VALIDATION
This section is aimed at a comprehensive and detailed valida-
tion of the FRIDA-TD code, both against synthetic data from
a reference code and from experimental results.

As a preliminary test, the accuracy of the electromag-
netic model without plasma (i.e. vacuum model) presented
in Sec. II-B is assessed, specifically the ability to model
toroidally discontinuous passive conductors (Par. II-B1). For
this purpose, as a comparison, experimental data from a
RFX-mod vacuum shot were considered.

In order to characterize the accuracy of the FRIDA-TD
code, we firstly considered, as a reference, synthetic data
from the CarMa0NL code. In addition to this, experimental
data of the last part of the flat-top and the ramp-down of a
RFX-mod tokamak discharge have been also considered.

All following simulations and numerical experiments
have been performed on a standard Desktop machine with
Intel Core i7 processor (6 cores, 2666MHz) and 16GB of
memory.

A. VALIDATION OF THE VACUUM MODEL
Experimental data from a RFX-mod vacuum shot has been
considered. RFX-mod had three conducting structures, the
VacuumVessel (VV), the Plasma Stabilizing Shell (PSS), and
the Toroidal Support Structure (TSS). Among these struc-
tures, both the PSS and the TSS are toroidally discontinuous
and have to be modeled appropriately. A detailed description
of RFX-mod load assembly can be found in [22].

The geometry of RFX-mod device can be seen in Fig. 5
(grey = active coils, red = passive conductors, blue = plasma
domain). The accuracy of FRIDA-TD against experimental
reference results is performed considering the signal of the
ex-vessel pick-up probes installed on RFX-mod. RFX-mod
had 4 arrays of pick-up coils at 4 toroidal angles, each one
with 8 probes spanning a 2π angle in the poloidal direction
(black dots in Fig. 5). The axisymmetric component of the
pick-up measure has been obtained by averaging the signals
of the 4 arrays of pick-up coils placed at different toroidal
angles.
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FIGURE 8. Inputs for the test cases of the validation against the
CarMa0NL code. 8a): a sudden drop of the plasma poloidal beta βp,
modelled through a drop of the β0 parameter of the parametrization
(3); 8b) sudden drop of total plasma current.

The considered vacuum shot (i.e. shot no. 19051) had been
performed to assess the penetration time of a vertical field
through the passive conductors of RFX-mod. Figures (6)
show the waveforms of the current on the Ohmic Heating
(OH) and Field Shaping (FS) windings, and contour plots
of the poloidal flux 9 for different time instants (these time
instants are also plotted on top of OH and FS currents in (6)).

The results are shown in Fig. 7, where the signal from the
8 pick-up probes are compared. It can be seen that the results
agree well with the experimental results, highlighting that the
electromagnetic model is suitable to model both toroidally
continuous (VV) and discontinuous (PSS and TSS) passive
conductors.

B. VALIDATION AGAINST CarMa0NL CODE
The CarMa0NL code [7] has the capability of treating
self-consistently the nonlinear evolution of an axisymmet-
ric plasma, in the evolutionary equilibrium limit, in the
presence of three-dimensional (3D) volumetric conductors.
CarMa0NL has been extensively validated in the latest years
and can be considered one of the reference codes for address-
ing this kind of problem.

Two test cases are considered in this paragraph: a sudden
drop of the plasma poloidal beta βp [10], modelled through a
drop of the β0 parameter of the parametrization (3) (Fig. 8a)),
in presence of toroidally continuous passive conductors, and
a sudden drop of total plasma current (Fig. 8b), in presence
of toroidally discontinuous passive conductors. These cases
are named case 1 and 2, respectively.

Concerning the active coils, the same geometry of
RFX-mod coils has been used. As passive conductor, the
Plasma Stabilizing Shell (PSS, a 3mm thick copper shell) of
RFX-mod is considered, while the other passive conductors
(i.e. the VV and TSS) are neglected. For case 1, the PSS
gap has been neglected, resulting in a toroidally continuous
conductor. Conversely, for case 2, the PSS gap has been
considered. A cut view of the three-dimensional geometry of
external sources for CarMa0NL can be seen 9a.

FIGURE 9. 9a geometry of external sources for CarMa0NL; 9b current
density and separatrix (red) for the starting equilibrium at t = 0s.

For both the cases, the starting equilibrium is an RFX-mod
Upper Single Null tokamak equilibrium (i.e. shot no. 36922).
Figure 9b shows the current density and the separatrix (red)
for this equilibrium. Since RFX tokamak equilibria with
shaped cross-sections are vertically unstable [23], the aim of
these tests is to trigger a Vertical Displacement Event (VDE),
in order to solve and compare the evolutionary equilibrium
obtained by FRIDA-TD and CarMa0NL.

case 1: the only input which varies over time is the
β0 parameter, which enters the parametrization (3)
of the plasma current density. The passive con-
ductors are toroidally continuous. The external
sources (i.e. active and passive conductors) are all
axisymmetric, although CarMa0NL uses a three-
dimensional volumetric mesh for their description.
The first comparison concerns the solution of
(68), which gives the poloidal flux map at each
time instant t . Figure 10 shows the solution
given by FRIDA-TD (contour plot) together with
the separatrix computed by CarMa0NL (red line)
for 8 selected time instants. As can be seen, the
FRIDA-TD solution is in excellent agreement with
the CarMa0NL separatrix. The signal from the
8 pick-up probes are compared (Fig. 11). As can
be seen, the results given by FRIDA-TD agree well
with the CarMa0NL reference data for the entire
length of the transient. In addition to this, The eddy
current induced in the passive conductors, evaluated
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FIGURE 10. Map of the poloidal flux for various time instants during the transient: FRIDA-TD (contour plot) versus
CarMa0NL (red separatrix).

FIGURE 11. Pick-up signal: Carma0NL (green dashed) versus FRIDA-TD (red).

FIGURE 12. Current density in the passive conductors at three different poloidal angles: Carma0NL (black)
versus FRIDA-TD (red dashed).

at three different poloidal angles, are also compared
and can be seen in Fig. 12.

case 2: the total plasma current (i.e. Ip in RHS of Eq. (68))
is varied accordingly with the waveform shown in
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FIGURE 13. Map of the poloidal flux for various time instants during the transient: FRIDA-TD (contour plot) versus
CarMaoNL (red separatrix).

FIGURE 14. Pick-up signal: Carma0NL (green dashed) versus FRIDA-TD (red).

FIGURE 15. Current density in the passive conductors at three different poloidal angles: Carma0NL (black)
versus FRIDA-TD (red dashed).

Fig. 8. In addition to this, a toroidally discontinuous
passive shell is considered.

The poloidal flux map given by FRIDA-TD (con-
tour plot) and CarMa0NL (separatrix, red line) are
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FIGURE 16. Comparison of the distribution the eddy current along the poloidal angle θ for three selected time
instants.

compared in Fig. 13, showing that, although the
consistency between the results is not as good as the
axisymmetric case, a good agreement can be still
achieved. This is highlighted also by the pick-up
probes (Fig. 14). The results given by FRIDA-TD
are in good agreement with CarMa0NL reference
data for almost the entire length of the transient,
and a small deviation occurs in the last part. This
can be due to a slight underestimation of the stabi-
lizing effect of the passive conductors if the gap is
modeled with axisymmetric conductors, suggested
by the fact that the downward movement of the
plasma predicted by FRIDA-TD is slightly faster.
This consideration is corroborated by the compar-
ison of the eddy current induced in the passive
conductors, evaluated far from the gap (i.e. at the
opposite toroidal angle) at three different poloidal
angles (Fig. 15). The eddy currents computed by
FRIDA-TD are in good agreement in the first half
of the VDE, while being slightly smaller in the
last part of the transient. For three selected time
instants, the distribution of the eddy currents along
the poloidal angle θ obtained from the two codes is
also compared, showing a good agreement between
the results.

C. VALIDATION AGAINST RFX-MOD EXPERIMENTAL DATA
The equilibrium used in the comparison with the CarMa0NL
code is an experimental equilibrium achieved in RFX-mod
operating as a low current tokamak. The purpose of this
paragraph is to reproduce this experimental shot with the
FRIDA-TD code and compare the outcomes with the experi-
mental data available.

The considered discharge (i.e. shot no. 36922) is an Upper
Single Null (USN) discharge [24] lasting approximately 1.1s,
whose equilibrium at t = 0.6s has been already shown in
Fig. 9b. The waveforms of the currents in Ohmic Heating
(OH) and Field Shaping (FS) windings, and the total plasma
current, are reported in Figs. 17.

FIGURE 17. From top to bottom: waveforms of the currents in Ohmic
Heating (OH) and Field Shaping (FS) windings, total plasma current. The
time interval t ∈ [1.02,1.11]s considered in the simulation is highlighted
(thick).

This equilibrium, like other RFX-mod equilibria with
shaped cross-sections, is characterized by having an unstable
n = 0 mode (i.e. vertical instability), being n the toroidal
mode number. The typical growth rates of such vertical insta-
bility are between 2s−1 and 9s−1 [23]. Since, unlike the
RFX-mod experiment, no feedback control of the vertical
position is implemented in FRIDA-TD, a Vertical Displace-
ment Event (VDE) is expected if the timescale of the simula-
tion is comparable with the timescale of the n = 0 instability.
Therefore, a proper analysis of the entire shot from start-up to
ramp-down would necessarily require the implementation of
a feedback controller on the plasma position. For this reason,
only the last part of the ramp-down phase is analyzed, in the
interval t ∈ [1.02, 1.11]s (thick part in Fig. 17).
Figure 18 shows the good agreement between current

density predicted by FRIDA-TD (red) and the experimental
values (black) estimated following the procedure presented
in [25]. The same consistency in the results can be observed
also from the perturbed signal of the 8 pick-up probes (i.e. the
measure at t0 is subtracted to the signal), reported in Fig. 18b.
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FIGURE 18. Validation of FRIDA-TD against RFX-mod experimental data.

In addition to this, the experimental value of the loop voltage
measured by the flux loops is compared to the one computed

by FRIDA-TD (i.e. vgap in Eqs. (26) and (28)), and is shown
in Fig. 18c.
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V. CONCLUSION AND FURTHER DEVELOPMENTS
In this paper, an efficient numerical tool for solving the prob-
lem of transient nonlinear evolution of plasma equilibrium in
presence of eddy currents is presented. The code is named
FRIDA-TD (FRIDA-Time Domain) after the existing FRIDA
(FRee-boundary Integro-Differential Axisymmetric) static
equilibrium solver. Two different approaches are exploited to
efficiently deal with the problem: Finite Element Method -
Boundary Element Method (FEM-BEM) for plasma equilib-
rium, and Axisymmetric Volume Integral (AVI) formulation
for eddy currents.

After describing in detail the mathematical formulation
used to couple the free-boundary equilibrium and eddy
current problems, FRIDA-TD has been at first successfully
compared with the well-established CarMaoNL code. Fur-
thermore, FRIDA-TD has been validated against experimen-
tal data by accurately replicating the ramp-down phase of a
RFX-mod tokamak discharge.

The presented FRIDA-TD is a fast and flexible tool suit-
able for engineering-oriented purposes, such as the design of
Tokamak devices, set up of plasma operations, prediction of
performance scenarios, and the design of feedback control
systems. Further work will be devoted to the implementation
of plasma position and shape feedback controllers, to allow
the simulation of an entire shot from start-up to rump-down
phases.

APPENDIX
USEFUL RELATIONS
Additional relations mentioned in Sec. II-B for the axisym-
metric volume integral formulation of eddy current problem
are reported in this appendix.

Vij =

∫
�c

wi(r⃗)wj(r⃗)d� (74)

Uij =

∫
�c

2πrwi(r⃗)wj(r⃗)d� (75)

G̃bc,ij =
1
2π

∫
�cj

2πrwi(r⃗)
[
µ0

4π

∫
Vc

wj(r⃗ ′)
|r⃗ − r⃗ ′|

dV ′

]
d� (76)

where �ci is the local support of the ith node belonging to
the passive conductors, i.e. all the triangles which shares such
node, and χsi is a constant current density chosen in order to
obtain a unitary total current on the coil.

EQUATION FOR PLASMA RESPONSE
As pointed out in Par. III-A, the coupling between FB-PEP
and eddy current problem is based on the introduction of
a coupling surface Se, whose trace on the poloidal plane is
labeled 0eq. The coupling surface has to be chosen without
intersecting neither the plasma nor the passive structures, and
all these structures must be outside it. A sketched view of this
configuration can be seen in Fig. 4. An equivalent current ieq
flows on the coupling surface, producing outside it the same
magnetic flux of the actual plasma equilibrium [26].

FIGURE 19. 19a): plasma current density and coupling surface 0eq
(black); 19b): comparison between total flux produced by the actual
plasma current ip and by the equivalent current ieq on 0eq.

The equivalent surface current, rather than nodal plasma
currents ip, is then used to evaluate the mutual coupling
between plasma and passive conductors, which is computed
via relation (16). Since Neq ≪ Nn, the size of (16) reduces
dramatically with respect to the case of considering directly
the nodal plasma currents ip.

Given the nodal current densities gp (i.e. defined on the
mesh nodes) for a certain equilibrium, the equivalent current
density jeq on 0eq can be computed rigorously as [26]:

jeq = −
1
µ0r

∇ψ∗
· n⃗ (77)

here ψ∗
= ψ − ψvac, being ψ is the solution of (1) with

the actual plasma current density as source and the related
boundary conditions, andψvac is the solutionwith zero source
term (vacuum solution) but imposing the same boundary
conditions as for the previous case.

The approach exploited in this work is slightly different,
but still based on the constrain that the equivalent currents
produce, outside the coupling surface, the same magnetic
field produced by the plasma. For this reason, a set of Neq
points, located just outside the coupling surface, are cho-
sen, defining a target surface 0target . The Green matrix2

Gtp = G(r⃗target , r⃗p) and Gteq = G(r⃗target , r⃗eq) between the
equivalent currents and the target points are then computed.
By imposing that:

Gtpip = ψ target = Gteqieq (79)

it is possible to obtain the equivalent surface current:

ieq = G−1
teqGtpip = T eqip (80)

where T eq is a Neq×Nn already introduced in (30)-(31)-(32).
The matrix Gteq is square because Neq target point are cho-
sen, thus its inverse can be computed exactly. We stress

2The Green matrix gives the flux produced by a filamentary unit current
flowing through a circular loop at r onto a given point r′, and is defined
as [13]:

G(r′, r) =
µ0

√
rr ′

2πk(r⃗, r⃗′)

[(
2 − k2(r⃗, r⃗′)

)
K

(
k(r⃗, r⃗′)

)
−2E

(
k(r⃗, r⃗′)

)]
, (78)

where k2(r⃗, r⃗′) =
4rr ′

(r+r ′)2+(z−z′)2
, and K (k), E(k) are the complete elliptic

integrals of the first and second kind, respectively.
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the point that, by using this approach, it is not necessary
to compute ψ∗, which requires two solutions of Eq. (1).
The computation of T eq can be performed beforehand dur-
ing a preprocessing phase, and need to be done only once,
as such matrix is always the same if the mesh does not
change.

Figure 19a shows the plasma current density and cou-
pling surface 0eq (black), and, in Fig. 19b, a compari-
son between the total flux produced by the actual plasma
current ip (black) and by the equivalent current ieq on 0eq
(red circles).
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